The present invention relates to a rotary cutting tool and, more particularly to a rotary cutting tool primarily for cutting composite materials.
Rotary cutting tools are commonly used in manufacturing. One example of a conventional rotary cutting tool includes a power drill having a cutting portion having helical or spiral flutes. In industries such as the aircraft industry, challenges arise from drilling holes in composite materials such as metal composites, carbon composites and matrix stacked materials. The drilling of materials such as composite materials produces unwanted particles, chips and dust. Composite dust is very abrasive and may cause premature tool wear if not controlled. Additionally, uncontrolled particles, chips and dust may cause damage to the finished hole. A typical conventional rotary cutting tool is designed to begin cutting a hole at the center of the hole. This provides cutting forces that are directed outward and down against material fiber layers which may cause the material to delaminate. Material chips and debris are typically forced against the finished hole causing damage to the composite material.
In accordance to at least one embodiment of the present invention, the present invention provides a rotary cutting tool especially adapted for cutting composite materials. One of skill in the art would appreciate the cutting tool of the present invention is not, however, limited to the cutting of composite materials.
One feature of the present invention is the geometry of the cutting tool provides cutting forces that are controlled and directed to the inside of the hole being drilled, while in conventional cutting tools, forces are directed towards the outside of the hole. The cutting tool of one embodiment of the present invention preferably has a through hole or bore extending axially through the cutting tool. The through hole is preferably operatively connectable to a fluid source such as a vacuum or coolant source.
For the present invention to be clearly understood and readily practiced, the present invention will be described in conjunction with the following figures, wherein like reference characters designate the same or similar elements, which figures are incorporated into and constitute a part of the specification, wherein:
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements that may be well known. Those of ordinary skill in the art will recognize that other elements are desirable and/or required in order to implement the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein. The detailed description will be provided hereinbelow with reference to the attached drawings, wherein like numerals designate like components.
There is illustrated in
Cutting tool 10 includes a tool body 12 having a cylindrical shank portion 14 and a cutting portion 16. Cylindrical shank portion 14 is adapted to mate with a receiving portion of a drill or cutting machine (not illustrated). Cutting portion 16 has a single primary cutting edge 18 extending from shank portion 14 to a tip 20 and spiraling approximately 90° from shank portion 14 to tip 20 in a right handed spiral. A right handed spiral is shown here by way of example only, one of skill in the art would appreciate a left hand spiral could be used with a drill rotating in the opposite direction. Cutting portion 16 also has a secondary trailing edge 22 corresponding to primary cutting edge 18. Cutting portion 16 includes a concave cutting surface 24 (
Tip 20 has an outer portion 26 having a substantially crescent shape (
As shown best in
Cutting tool 10 preferably has a through hole or bore 50 extending axially through cutting tool 10 from a distal end of shank portion 14 through a recessed portion 51 of concave cutting surface 24. The recessed portion 51 extends into concave cutting surface 24 but not all the way to tip 20. Through hole 50 is operatively connectable to a fluid source 52 (
Cutting tool 10 is preferably formed from polycrystalline diamond (PCD), tool steel, tungsten carbide or ceramic. Cutting tool 10 may provided with a protective tool coating such as titanium diboride, titanium nitride, titanium aluminum nitride, chromium nitride and polycrystalline coating to provide thermal protection to the base material
Nothing in the above description is meant to limit the present invention to any specific materials, geometry, or orientation of elements. Many part/orientation substitutions are contemplated within the scope of the present invention and will be apparent to those skilled in the art. The embodiments described herein were presented by way of example only and should not be used to limit the scope of the invention.
Although the invention has been described in terms of particular embodiments in an application, one of ordinary skill in the art, in light of the teachings herein, can generate additional embodiments and modifications without departing from the spirit of, or exceeding the scope of, the claimed invention. Accordingly, it is understood that the drawings and the descriptions herein are proffered only to facilitate comprehension of the invention and should not be construed to limit the scope thereof.