Rotary degassers and components therefor

Information

  • Patent Grant
  • 10570745
  • Patent Number
    10,570,745
  • Date Filed
    Tuesday, December 6, 2016
    8 years ago
  • Date Issued
    Tuesday, February 25, 2020
    4 years ago
Abstract
Disclosed are degassers, couplings, impeller shafts and impellers for use in molten metal. One such coupling transfers gas into an impeller shaft, the coupling having a smooth, tapered internal surface to align with a corresponding surface on the impeller shaft and help prevent gas leakage and to assist in preventing damage to the impeller shaft. Improved impellers for shearing and mixing gas are also disclosed, as is a degasser including one or more of these components.
Description
FIELD OF THE INVENTION

The invention relates to couplings, impellers and rotary degassers used in molten metal. One aspect of the invention is an impeller shaft for use with an impeller shaft that transfers gas, wherein the coupling decreases the possibility of impeller shaft breakage, gas leakage and maintenance. Another aspect of the invention is an improved impeller for introducing, and mixing gas with molten metal.


BACKGROUND OF THE INVENTION

As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc, and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which may be released into molten metal.


A reverbatory furnace is used to melt metal and retain the molten metal while the metal is in a molten state. The molten metal in the furnace is sometimes called the molten metal bath. Reverbatory furnaces usually include a chamber for retaining a molten metal pump and that chamber is sometimes referred to as the pump well.


Known pumps for pumping molten metal (also called “molten-metal pumps”) include a pump base (also called a “base”, “housing” or “casing”) and a pump chamber (or “chamber” or “molten metal pump chamber”), which is an open area formed within the pump base. Such pumps also include one or more inlets in the pump base, an inlet being an opening to allow molten metal to enter the pump chamber.


A discharge is formed in the pump base and is a channel or conduit that communicates with the molten metal pump chamber, and leads from the pump chamber to the molten metal bath. A tangential discharge is a discharge formed at a tangent to the pump chamber. The discharge may also be axial, in which case the pump is called an axial pump. In an axial pump the pump chamber and discharge may be the essentially the same structure (or different areas of the same structure) since the molten metal entering the chamber is expelled directly through (usually directly above or below) the chamber.


A rotor, also called an impeller, is mounted in the pump chamber and is connected to a drive shaft. The drive shaft is typically a motor shaft coupled to a rotor shaft, wherein the motor shaft has two ends, one end being connected to a motor and the other end being coupled to the rotor shaft. The rotor shaft also has two ends, wherein one end is coupled to the motor shaft and the other end is connected to the rotor. Often, the rotor shaft is comprised of graphite, the motor shaft is comprised of steel, and the two are coupled by a coupling, which is usually comprised of steel.


As the motor turns the drive shaft, the drive shaft turns the rotor and the rotor pushes molten metal out of the pump chamber, through the discharge, which may be an axial or tangential discharge, and into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the rotor pushes molten metal out of the pump chamber.


Molten metal pump casings and rotors usually, but not necessarily, employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber such as rings at the inlet (which is usually the opening in the housing at the top of the pump chamber and/or bottom of the pump chamber) when the rotor is placed in the pump chamber. The purpose of the bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump chamber wall, during pump operation. A known bearing system is described in U.S. Pat. No. 5,203,681 to Cooper, the disclosure of which is incorporated herein by reference. U.S. Pat. Nos. 5,951,243 and 6,093,000, each to Cooper, the disclosures of which are incorporated herein by reference, disclose, respectively, bearings that may be used with molten metal pumps and rigid coupling designs and a monolithic rotor. U.S. Pat. No. 2,948,524 to Sweeney et al., U.S. Pat. No. 4,169,584 to Mangalick, and U.S. Pat. No. 6,123,523 to Cooper (the disclosure of the aforementioned patent to Cooper is incorporated herein by reference) also disclose molten metal pump designs. U.S. Pat. No. 6,303,074 to Cooper, which is incorporated herein by reference, discloses a dual-flow rotor, wherein the rotor has at least one surface that pushes molten metal into the pump chamber.


The materials forming the molten metal pump components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, capable of being used in the environment of a molten metal bath. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.


Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Most often, circulation pumps are used in a reverbatory furnace having an external well. The well is usually an extension of a charging well where scrap metal is charged (i.e., added).


Transfer pumps are generally used to transfer molten metal from the external well of a reverbatory furnace to a different location such as a launder, ladle, or another furnace. Examples of transfer pumps are disclosed in U.S. Pat. No. 6,345,964 B 1 to Cooper, the disclosure of which is incorporated herein by reference, and U.S. Pat. No. 5,203,681.


Gas-release pumps, such as gas-injection pumps, circulate molten metal while releasing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium, from the molten metal. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging.” Gas-release pumps may be used for either of these purposes or for any other application for which it is desirable to introduce gas into molten metal. Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second submerged in the molten metal bath. Gas is introduced into the first end of the gas-transfer conduit and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where it enters the pump chamber. A system for releasing gas into a pump chamber is disclosed in U.S. Pat. No. 6,123,523 to Cooper. Furthermore, gas may be released into a stream of molten metal passing through a discharge or metal-transfer conduit wherein the position of a gas-release opening in the metal-transfer conduit enables pressure from the molten metal stream to assist in drawing gas into the molten metal stream. Such a structure and method is disclosed in U.S. application Ser. No. 10/773,101 entitled “System for Releasing Gas into Molten Metal”, invented by Paul V. Cooper, and filed on Feb. 4, 2004, the disclosure of which is incorporated herein by reference.


Generally, a degasser (also called a rotary degasser) is used to remove gaseous impurities from molten metal. A degasser typically includes (1) an impeller shaft having a first end, a second end and a passage (or conduit) therethrough for transferring gas, (2) an impeller (also called a rotor), and (3) a drive source (which is typically a motor, such as a pneumatic motor) for rotating the impeller shaft and the impeller. The degasser impeller shaft is normally part of a drive shaft that includes the impeller shaft, a motor shaft and a coupling that couples the two shafts together. Gas is introduced into the motor shaft through a rotary union. Thus, the first end of the impeller shaft is connected to the drive source and to a gas source (preferably indirectly via the coupling and motor shaft). The second end of the impeller shaft is connected to the impeller, usually by a threaded connection. The gas is released from the end of the impeller shaft submersed in the molten metal bath, where it escapes under the impeller. Examples of rotary degassers are disclosed in U.S. Pat. No. 4,898,367 entitled “Dispersing Gas Into Molten Metal,” U.S. Pat. No. 5,678,807 entitled “Rotary Degassers,” and U.S. Pat. No. 6,689,310 to Cooper entitled “Molten Metal Degassing Device and Impellers Therefore,” the respective disclosures of which are incorporated herein by reference.


Known coupling-to-impeller shaft connections are usually threaded, and gas can seep past the threaded connections, especially after the threads have been worn after operation of the degasser, causing the graphite threads of the impeller shaft to wear. The leaks waste gas, and if caustic gas such as chlorine is used, the gas can interact with nearby steel causing the steel to oxidize as well as releasing the caustic chlorine gas into the atmosphere creating an environmental hazard.


Another problem with conventional devices is that broken or worn impeller shafts are difficult to remove. The impeller shafts, also called “shafts,” “degasser shafts,” or “degasser impeller shafts,” herein, are usually formed of graphite, silicon carbide or some combination thereof. The impeller shafts are typically connected to a coupling by a threaded connection wherein an internal cavity of a collar of the coupling is threaded and the external surface of the impeller shaft is threaded, and threadingly received in the internal cavity of the coupling. Stress is placed on the impeller shaft as it rotates and the shaft is weakened by the threads, so the impeller shaft tends to eventually break, and it typically breaks just below the coupling and the end still threaded into the coupling must be chiseled out, which is time consuming.


Another known way to couple an impeller shaft to a steel motor drive shaft is by threadingly connecting it to a threaded projection extending from the drive shaft. The projection comprises a threaded outer surface that is received in a threaded bore of the graphite impeller shaft. In this case, the single connection serves to both transfer torque to the impeller shaft and to create a gas-tight seal with a threaded bore in the impeller shaft. The impeller shaft is hollow, having an internal bore through which gas is transferred ultimately into the molten metal bath. Although this design allows for relatively easy removal of the impeller shaft if the shaft breaks, the impeller shaft is not supported or aligned by a coupling and the impeller shaft tends to wobble and the graphite threads in the bore wear quickly. As the fit loosens, the impeller shaft becomes more eccentric in its movement, i.e., it wobbles more, and eventually breaks.


One attempt to solve the problems associated with coupling a graphite shaft to a steel drive shaft is shown in U.S. Pat. No. 5,203,681 to Cooper entitled “Submersible Molten Metal Pump.” This reference discloses a two-piece clamp held in position by a through bolt. Shafts retained by this clamp must include a cross axial bore to allow the bolt to pass through the shaft. This structure would not be used by one skilled in the art to couple a hollow shaft that functions as a gas-transfer conduit because gas could leak from the holes formed as part of the cross axial bore.


Further, many conventional devices do not adequately mix the gas being introduced into the molten metal. The gas can become trapped in a pocket within the impeller or rotor, or is otherwise not properly dispersed into the molten metal. Additionally, if rotated too fast in order to more thoroughly mix the gas and molten metal, “cavitation” can occur. Cavitation is when essentially a whirlpool is created that pulls air from the surface into the molten metal. This causes oxidation at the surface of the bath and slag or other impurities may be formed.


SUMMARY OF THE INVENTION

In accordance with the invention a rotary degasser for introducing gas into molten metal is disclosed. In one embodiment the degasser comprises: (1) an impeller (or degasser) shaft including a first end for connecting to a coupling without the use of threads and an internal passage that transfers gas; (2) an impeller coupled to a second end of the impeller shaft, wherein the impeller comprises: at least one impeller opening communicating with the impeller shaft passage, and the opening allows gas to escape into the molten metal under the impeller and enter at least one channel in the bottom of the impeller where it is directed to at least one cavity, which is preferably defined in part by a curved side of the impeller; and (3) a coupling having a collar that receives the first end of the impeller shaft and retains it without a threaded connection. The impeller shaft is preferably connected to a drive source by the coupling and the drive source turns the impeller shaft and the impeller. The impeller thereby displaces the molten metal while simultaneously gas is introduced into the molten metal through the opening.


An impeller of the invention may include at least a top surface and one cavity defined by a curved impeller side surface (or portion) juxtaposed an edge or other shearing structure. In the preferred embodiment, the distance from the center of each curved impeller side surface is closer to a center of the impeller than the distance from each of the shearing structures to the center of the impeller. One or more channels may be formed in the bottom surface of the impeller, wherein each channel extends from the opening in the bottom of the impeller to the center of a respective cavity. There may be four channels, wherein each extends to the center of a respective cavity. The impeller is preferably threadingly received onto the second end of the impeller shaft.


In one embodiment a coupling configured to be connectable to an impeller shaft preferably comprises an inner surface defining a smooth tapered, wall, and (2) at least one opening to receive a retention device, such as a set screw. An impeller shaft according to the invention is preferably not threadingly coupled to the coupling, so the coupling need not include threads.


Another impeller according to the invention has at least one cavity in a first vertical position and at least one cavity in a second vertical position, wherein the second vertical position is above the first vertical position. Preferably, there is a plurality of cavities in each of the two vertical positions. Each cavity is juxtaposed an edge, or other shearing structure. The impeller includes a gas release opening for allowing gas to escape under the impeller. At least some of the gas then enters the first and/or second cavity(ies), where it is mixed with molten metal as the rotor rotates. This impeller thus has two stages at which gas can be mixed with the molten metal.


Both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principals of the invention and not to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one embodiment of a rotary degasser according to the invention.



FIG. 2 is a perspective view of an impeller and impeller shaft according to one embodiment of the present invention.



FIGS. 3A-3F are views of an alternate embodiment of an impeller and impeller shaft according to the invention.



FIG. 4 depicts one embodiment of a coupling/impeller shaft connection according to the invention.



FIGS. 5A-5D depicts alternative views of the coupling shown in FIG. 4.



FIG. 6 depicts an embodiment of the coupling/impeller shaft connection as shown in FIG. 4, but showing the entire impeller shaft.



FIGS. 7A-7C depicts an embodiment of a set screw according to the invention.



FIGS. 8A-8D depict an impeller shaft according to one embodiment of the invention.



FIG. 9 depicts a plurality of rotary degassers according to the invention separated by dividers in a molten metal bath.



FIG. 10 depicts the flow of molten metal and gas mixture utilizing a rotary degasser according to the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference will now be made in detail to the present exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. FIG. 1 depicts a gas-release device 10 according to the invention. Device 10 is adapted to operate in a molten metal bath B contained within a vessel 1. Vessel 1 includes a bottom 2 and side walls 3. Vessel 1 may have any suitable size, shape, and configuration.


The exemplary rotary degasser 10 includes an impeller shaft 100 (also shown are shafts 100′ and 100″), an impeller 200 and a coupling 20 for coupling the impeller shaft to the motor shaft of a drive source (not shown). Impeller shaft 100, impeller 200, and each of the impellers used in the practice of the invention, are preferably made of graphite impregnated with oxidation-resistant solution, although any material capable of being used in a molten metal bath, such as ceramic, or non-impregnated graphite could be used. Oxidation and erosion treatments for graphite parts are practiced commercially, and graphite so treated can be obtained from sources known to those skilled in the art.


The drive source can be any structure, system, or device capable of rotating shaft 100 and impeller 200 and is preferably a pneumatic motor or electric motor, the respective structures of which are known to those skilled in the art. The drive source can be connected to impeller shaft 100 in any suitable manner, but is preferably indirectly connected by a motor shaft that is connected to one end of coupling 20, whereas the other end (or collar) of coupling 20 is connected to a first end 102 of the impeller shaft 100. The motor shaft is preferably comprised of steel, comprises an inner passage for the transfer of gas, and is preferably in communication with a rotary union, which releases gas from a gas source into the motor shaft, as is known by those skilled in the art. A typical rotary union is a rotary union of the type described in U.S. Pat. No. 6,123,523 to Cooper, filed Sep. 11, 1998, the disclosure of which from page 9, line 21 to page 10, line 23, and FIGS. 4 and 4D, are incorporated herein by reference.


As is illustrated in FIGS. 1, 4 and 6, shaft 100 comprises a first end 102, a second end 104, a sidewall 106 and an inner passage 108 for transferring gas. Shaft 100 may be a unitary structure or may be a plurality of pieces connected together. The purpose of shaft 100 is to connect to an impeller to (1) rotate the impeller, and (2) transfer gas to the bottom surface of the impeller. Any structure capable of performing these functions can be used in conjunction with the present invention.


A preferred embodiment of the shaft 100 at end 102 is shown in FIGS. 4 and 6. In this embodiment, first end 102 (which is received in coupling 20) is tapered. It also comprises at least one groove 430 for receiving at least one retainer 411. In this exemplary embodiment, the groove 430 in shaft 100 is helical and extends along the shaft 100 such that preferably two or more retainers 411 (and preferably as many as four although any number may be used) can engage the groove at different positions to retain impeller shaft 100. As used herein with respect to end 102 of impeller 100, “groove” means any recess, indentation or structure designed to receive a retainer.


The tapered portion 102A of end 102 of the impeller shaft 100 aligns with an internal, tapered portion 422 of coupling 200, as seen in FIGS. 4, 5A and 5C. This alignment helps prevent gas from escaping between the tapered portion 102A of the impeller shaft 100 and the interior, tapered portion of the coupling 422. The groove 430 could extend onto the tapered portion 102A of the shaft 100, but it is preferred that the groove does not extend onto portion 102A, since it may then weaken end 102. The impeller shaft 100 is preferably threaded at second end 104 for being threadingly connected to impeller 200, although second end 104 may be configured to couple with the impeller 200 in any suitable manner.


An embodiment of a coupling according to the present invention is shown in FIGS. 4-6. Coupling 20 vertically and rigidly couples a motor shaft to an impeller shaft, such as impeller shaft 100. Referring to FIG. 5, coupling 20 is preferably a one-piece coupling incorporating two coupling members, first member 402 and second member 404. Member 402 can be any structure designed to connect to and receive suitable driving force from a motor shaft. In the preferred embodiment, coupling 402 is designed to receive a motor shaft (which is preferably cylindrical and/or keyed), within the opening 440 formed in the member 402. The motor shaft may be retained within the opening 440 in any suitable manner, such as by using set screws 412 positioned in apertures 20A of the coupling 20 (not shown) spaced about the circumference of member 402. In such a configuration, the set screws can be tightened against motor shaft to help retain shaft within the opening 440.


Second coupling member 404 (best seen in FIGS. 5A-5C) is configured to receive the impeller shaft 100 through opening 410. The coupling member 404 may engage the impeller shaft 100 in any suitable manner. In the present exemplary embodiment, one or more retainers 411 (which may include bosses, bolt-retention devices, cap screws or set screws 412) engage the shaft 100 through apertures 20A.


In one embodiment, referring now to FIGS. 7A-7C, each of two retention devices 411 comprises a set screw 412 that aligns with an aperture 20A formed in coupling member 404. Each set screw 412 is tightened to engage the shaft 100, preferably by using a tool, such as an Allen wrench, in order to secure shaft 100 in second coupling member 404. The threaded portion of each screw 412 preferably interfaces with corresponding threads around the aperture 414. The portion of each screw 412 that engages the impeller shaft 100 may be any size, shape, and configuration to retain the impeller shaft 100 within the coupling 20. In the exemplary embodiment depicted in FIGS. 7A-7C, the end of each set screw 412 is sized, shaped, and configured to engage a groove 430 formed in the surface of the impeller shaft 100.


When end 102 (as shown in FIGS. 8A-8D) is received in bore 404, tapered portion 103 of the impeller shaft 100 is received into the tapered portion 422. When these tapered, generally smooth surfaces align, the close fit helps to prevent gas leakage and helps to center the shaft 100 and reduce shaft vibration.


Turning now to FIGS. 2 and 3A-3E, embodiments of impeller 200 are shown. Impeller 200 is designed to displace a relatively large quantity of molten metal and thoroughly mix the gas being released into the molten metal. Therefore, impeller 200 can, at a slower speed (i.e., lower revolutions per minute (rpm)), mix the same amount of gas with molten metal as conventional devices operating at higher speeds. Impeller 200 can preferably also operate at a higher speed at which it would mix more gas and molten metal than conventional devices operating at the same higher speed.


By operating impeller 200 at a lower speed less stress is transmitted to the moving components, which leads to longer component life, less maintenance and less downtime. Another advantage that may be realized by operating the impeller at slower speeds is the elimination of a vortex. Some known devices must be operated at high speeds to achieve a desired efficiency. This can create a vortex that draws air into the molten metal from the surface of bath B. The air can lead to metal ingots and finished parts that have air pockets, which is undesirable and/or to the formation of dross. As shown by the arrows in FIG. 10, for example, the impeller 200 of the present invention circulates gas throughout the molten metal bath B as it rotates without creating a vortex.


In one embodiment, impeller 200 comprises a top surface 202, sides 204, 206, 208 (not shown) and 210 (not shown) corners 212, 214, 216 and 218, and a lower surface 220. Impeller 200 is preferably imperforate, rectangular and most preferably square in plan view, with sides 204, 206, 208 and 210 being preferably equal in length. It also is possible that impeller 200 could be triangular, pentagonal, or otherwise polygonal in plan view. A connector (not shown) is formed in top surface 202. The connector is preferably a threaded bore that extends from top surface 202 to lower surface 220 and terminates in gas-release opening 223, though the impeller 200 can be connected to the shaft 100 in any suitable manner.


This exemplary impeller 200 includes one or more cavities 224 defined in part by each of curved sides 204, 206, 208 and 210, which are beneath upper surface 230. Each cavity 224 is preferably symmetrical about the center of its respective side (204, 206, 208, or 210), although one or more of the cavities could be formed off center from its respective side. The cavities need not be identical to each other as long as gas escaping through the gas-release opening enters each cavity where it is ultimately mixed with the molten metal entering the cavity. The invention could function with fewer than or more than four cavities 224. Additionally, the cavities may be formed in any portion of impeller 200, rather than being formed at 90-degree intervals by the sides (204, 206, 208, or 210) as shown in FIG. 2. Additionally, a cavity may have any suitable size, shape, and configuration.


In the present exemplary embodiment, each cavity preferably comprises an identical structure, therefore only one cavity 224 shall be described. Cavity 224 is partially defined by concave side surface 204, wherein the distance from the center of the curved surface 204 is closer to a center of the impeller 200 than the distance from ends (212, 214) of the curved surface 204 to the center of the impeller 200. Cavity 224 is further defined by upper surface 230. In the present exemplary embodiment, surface 230 of the impeller 200 is substantially flat and circular as viewed from the bottom of the impeller 200.


The impeller 200 may comprise one or more channels 225 in the bottom surface 220 of the impeller 200. The channels 225 may be any size, shape, and configuration. In the present exemplary embodiment, the device comprises four channels 225, one that extends to in each of the four side cavities.


The edges, such as edges 212, 214, 216 and 218, act as sheering surfaces to break apart gas bubbles into smaller bubbles as the rotor 200 rotates. The impeller 200 is threadingly received onto the impeller shaft. A lip 234 is formed between top wall 230 and top surface 202; lip 234 preferably comprises a minimum width of one quarter of an inch. Lower surface 220 comprises edges 240 juxtaposed each of the recesses 224. The impeller 200 is comprised of a heat resistant material such as graphite or ceramic.


In one embodiment, the second end 104 of shaft 100 is preferably connected to impeller 200 by threading end 104 into a connector (not shown) on the impeller. If desired, shaft 100 could be connected to impeller 200 by techniques other than a threaded connection, such as by being cemented, pinned or in any other suitable manner. The use of coarse threads (4 pitch, UNC) facilitates manufacture and assembly. The threads may be tapered.


Upon placing impeller 200 in molten metal bath B and releasing gas through passage 108, the gas will be released through gas-release opening 223 and at least some will flow outwardly through the channels 225 in lower surface 220, and into each cavity.


As impeller 200 turns, the gas in each of cavities 224 mixes with the molten metal entering the cavity and this mixture is pushed outward from impeller 200. The released gas will also be sheared into smaller bubbles as they are struck by a shearing surface when rotor 200 rotates.


By using impeller 200, high volumes of gas can be mixed with the molten metal at relatively low impeller speeds. Unlike some conventional devices that do not have cavities, the gas cannot simply rise past the side of the impeller 200. Instead at least some of the gas enters the cavities 224 and is mixed with the molten metal.


An alternate, impeller 300 is shown in FIGS. 3A-3F. Impeller 300 is preferably imperforate, formed from graphite and connected to, and driven by, a shaft such as shaft 100 or shaft 100″. Impeller 300 further includes a connective portion 304, which is preferably a threaded bore, but can be any structure capable of drivingly engaging shaft 100.


Impeller 300 includes two sets of cavities, wherein each set is at a different vertical position, that can capture gas and mix it with molten metal. Thus, impeller 300 is a two-stage impeller with respect to mixing gas and molten metal. Impeller 300 comprises a top surface 302, a bottom surface 320, a first stage 360 and a second stage 370. First stage 360 includes a plurality of cavities 362 wherein each cavity is juxtaposed by at least one edge, or other shearing structure, 362A.


Impeller 300 also has a second stage 370 that includes four sides 304, 306, 308 and 310 four corners 312, 314, 316 and 318, and cavities 372. Impeller 300 is preferably imperforate, and rectangular (and most preferably square in plan view, with sides 304, 306, 308 and 310 being preferably equal in length). It also is possible that impeller 300 could be triangular, pentagonal, or otherwise polygonal in plan view. A connector 322 is formed in top surface 302. The connector is preferably a threaded bore that extends from top surface 302 to lower surface 320 and terminates in gas-release opening 323, though any other suitable connector may be used.


One or more cavities 372 are formed in part by sides 304, 306, 308 and 310. Each cavity 372 is preferably symmetric about the center of its respective side, although one or more of the cavities could be formed off center. Further, the invention could function with fewer than or more than the cavities shown. Additionally, the cavities may be formed in any suitable portion of impeller 300 and may be of any suitable size, shape, or configuration.


An impeller 300 rotates, gas is released through opening 323 and at least some of the gas enters the one or more cavities 362 and the one or more cavities 372. The respective edges, or other shearing structures 362A and 372A break the gas into smaller bubbles as rotor 300 rotates thereby helping to disperse the gas into the molten metal.


Referring now to FIG. 9, any number of molten metal degassers of the present invention, as described above, may be employed in a molten metal bath B. In this exemplary embodiment, a plurality of degassers are disposed in a molten metal bath B separated by dividers 910. The dividers 910 may be made out of any suitable heat resistant material. In the preferred embodiment they are made from the same material as the walls of the molten metal bath B. The dividers 910 may be any suitable size, shape, and configuration and may partially or completely separate portions of the vessel 1. In one embodiment, the dividers 910 couple to the top surface of the molten metal bath B; however, the dividers 910 may couple to any wall of the vessel 1 such as a side wall 3, bottom surface 2, or be suspended by an alternative support structure. The dividers 910 may be coupled to the vessel 1 in any suitable manner, such as by pressure fitting, cementing, clamping, welding, and/or being formed as part of the vessel. The dividers 910 are may be positioned in various locations within the vessel 1 or bath B. In some embodiments the placement of the dividers 910 may travel the entire length of the vessel 1 (they may be placed in any position) and may be repositioned into a different location with ease. The dividers 910 may divide each degasser, two degassers or more than two degassers. Any suitable number of dividers 910 may be implemented. Multiple dividers 910 may be made of different materials, different dimensions and sizes, and may comprise different openings for molten metal to pass through.


As shown in FIG. 9, there is preferably no gap between the sides of the divider 910 and the side walls 3 of vessel 1, as the divider 910 runs the entire width of the molten metal bath. In this embodiment, there is a gap between the bottom surface 906 of the molten metal bath B to the bottom most edge 904 of divider 910 to allow molten metal to flow between the chambers.


Having thus described some embodiments of the invention, other variations and embodiments that do not depart from the spirit of the invention will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired result.

Claims
  • 1. A rotor shaft configured for use in a molten metal environment, the rotor shaft comprising one or more of graphite and ceramic, and the rotor shaft being configured so that it cannot be threadingly connected to a corresponding coupling, and is configured to be received and retained in the corresponding coupling, which has no internal threads, the rotor shaft comprising: (a) a first end that is tapered and not threaded;(b) a non-tapered center portion that that includes at least one helical groove that is not threads, and that is configured to receive an end of a retainer, wherein the non-tapered center portion has a first side connected to the first end, and a second side;(c) an outer surface connected to the second end side of the center portion, wherein the outer surface has no threads or grooves; and(d) a second end that is threaded and configured to connect to a rotor;wherein the first end of the shaft is configured to be received in the corresponding coupling so that the first end of the shaft mates with an inner tapered portion of the corresponding coupling, and one or more retainers are received in openings in the corresponding coupling such that each of the one or more retainers is positioned to be pressed against the at least one helical groove, in order to apply driving force from the corresponding coupling to the shaft.
  • 2. The rotor shaft of claim 1, wherein the second end is connected to a rotor.
  • 3. The rotor shaft of claim 1 wherein the taper is at an angle between 20° and 45°.
  • 4. The rotor shaft of claim 1 that has a single helical groove.
  • 5. The rotor shaft of claim 2, wherein the taper is at an angle between 20° and 45°.
  • 6. The rotor shaft of claim 2 that has a single helical groove.
  • 7. The rotor shaft of claim 1 that is a unitary structure.
  • 8. The rotor shaft of claim 1 that further comprises an inner passage for transferring gas.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and is a Continuation Application of U.S. patent application Ser. No. 14/923,296 (Now U.S. Pat. No. 9,657,578), filed on Oct. 26, 2015, entitled “Rotary Degassers and Components Therefor,” and invented by Paul V. Cooper, which is a Continuation Application of U.S. patent application Ser. No. 13/973,962, (Now U.S. Pat. No. 9,328,615), filed on Aug. 22, 2013, entitled “Rotary Degassers and Components Therefor, and invented by Paul V. Cooper, which is a Divisional Application of U.S. patent application Ser. No. 12/878,984, (Now U.S. Pat. No. 8,524,146), filed on Sep. 9, 2010, entitled “Rotary Degassers and Components Therefor,” and invented by Paul V. Cooper. Each of the foregoing disclosures of which that are not inconsistent with the present disclosure are incorporated herein by reference. U.S. patent application Ser. No. 12/878,984, (Now U.S. Pat. No. 8,524,146), also claims priority to U.S. Provisional Application No. 61/240,981, filed on Sep. 9, 2009, entitled “Impeller and Degasser Couplings for Molten Metal Devices,” and invented by Paul V. Cooper. The drawings and pages 29-35 of Provisional Application No. 61/240,981 are incorporated herein by reference. U.S. patent application Ser. No. 12/878,984, (Now U.S. Pat. No. 8,524,146), is also a continuation in part of and claims priority to U.S. patent application Ser. No. 12/853,255, (Now U.S. Pat. No. 8,535,603), entitled “Rotary Degasser and Rotor Therefor,” filed on Aug. 9, 2010, and invented by Paul V. Cooper and which claims priority to U.S. Provisional Patent Application No. 61/232,384 entitled “Rotary Degasser and Rotor Therefor,” filed on Aug. 7, 2009. The disclosures of U.S. patent application Ser. No. 12/853,255 and U.S. Provisional Patent Application Ser. No. 61/232,384 that are not inconsistent with the present disclosure are incorporated herein by reference.

US Referenced Citations (707)
Number Name Date Kind
35604 Guild Jun 1862 A
116797 Barnhart Jul 1871 A
209219 Bookwalter Oct 1878 A
251104 Finch Dec 1881 A
307845 Curtis Nov 1884 A
364804 Cole Jun 1887 A
390319 Thomson Oct 1888 A
495760 Seitz Apr 1893 A
506572 Wagener Oct 1893 A
585188 Davis Jun 1897 A
757932 Jones Apr 1904 A
882477 Neumann Mar 1908 A
882478 Neumann Mar 1908 A
890319 Wells Jun 1908 A
898499 O'donnell Sep 1908 A
909774 Flora Jan 1909 A
919194 Livingston Apr 1909 A
1037659 Rembert Sep 1912 A
1100475 Frankaerts Jun 1914 A
1170512 Chapman Feb 1916 A
1196758 Blair Sep 1916 A
1304068 Krogh May 1919 A
1331997 Neal Feb 1920 A
1185314 London Mar 1920 A
1377101 Sparling May 1921 A
1380798 Hansen et al. Jun 1921 A
1439365 Hazell Dec 1922 A
1454967 Gill May 1923 A
1470607 Hazell Oct 1923 A
1513875 Wilke Nov 1924 A
1518501 Gill Dec 1924 A
1522765 Wilke Jan 1925 A
1526851 Hall Feb 1925 A
1669668 Marshall May 1928 A
1673594 Schmidt Jun 1928 A
1697202 Nagle Jan 1929 A
1717969 Goodner Jun 1929 A
1718396 Wheeler Jun 1929 A
1896201 Sterner-Rainer Feb 1933 A
1988875 Saborio Jan 1935 A
2013455 Baxter Sep 1935 A
2038221 Kagi Apr 1936 A
2075633 Anderegg Mar 1937 A
2090162 Tighe Aug 1937 A
2091677 Fredericks Aug 1937 A
2138814 Bressler Dec 1938 A
2173377 Schultz, Jr. et al. Sep 1939 A
2264740 Brown Dec 1941 A
2280979 Rocke Apr 1942 A
2290961 Hueuer Jul 1942 A
2300688 Nagle Nov 1942 A
2304849 Ruthman Dec 1942 A
2368962 Blom Feb 1945 A
2382424 Stepanoff Aug 1945 A
2423655 Mars et al. Jul 1947 A
2488447 Tangen et al. Nov 1949 A
2493467 Sunnen Jan 1950 A
2515097 Schryber Jul 1950 A
2515478 Tooley et al. Jul 1950 A
2528208 Bonsack et al. Oct 1950 A
2528210 Stewart Oct 1950 A
2543633 Lamphere Feb 1951 A
2566892 Jacobs Apr 1951 A
2625720 Ross Jan 1953 A
2626086 Forrest Jan 1953 A
2676279 Wilson Apr 1954 A
2677609 Moore et al. Apr 1954 A
2698583 House et al. Jan 1955 A
2714354 Farrand Aug 1955 A
2762095 Pemetzrieder Sep 1956 A
2768587 Corneil Oct 1956 A
2775348 Williams Dec 1956 A
2779574 Schneider Jan 1957 A
2787873 Hadley Apr 1957 A
2808782 Thompson et al. Oct 1957 A
2809107 Russell Oct 1957 A
2821472 Peterson et al. Jan 1958 A
2824520 Bartels Feb 1958 A
2832292 Edwards Apr 1958 A
2839006 Mayo Jun 1958 A
2853019 Thorton Sep 1958 A
2865295 Nikolaus Dec 1958 A
2865618 Abell Dec 1958 A
2868132 Rittershofer Jan 1959 A
2901006 Andrews Aug 1959 A
2901677 Chessman et al. Aug 1959 A
2906632 Nickerson Sep 1959 A
2918876 Howe Dec 1959 A
2948524 Sweeney et al. Aug 1960 A
2958293 Pray, Jr. Nov 1960 A
2966381 Menzel Dec 1960 A
2978885 Davison Apr 1961 A
2984524 Franzen May 1961 A
2987885 Hodge Jun 1961 A
3010402 King Nov 1961 A
3015190 Arbeit Jan 1962 A
3039864 Hess Jun 1962 A
3044408 Mellott Jul 1962 A
3048384 Sweeney et al. Aug 1962 A
3070393 Silverberg et al. Dec 1962 A
3092030 Wunder Jun 1963 A
3099870 Seeler Aug 1963 A
3128327 Upton Apr 1964 A
3130678 Chenault Apr 1964 A
3130679 Sence Apr 1964 A
3171357 Egger Mar 1965 A
3172850 Englesberg et al. Mar 1965 A
3203182 Pohl Aug 1965 A
3227547 Szekely Jan 1966 A
3244109 Barske Apr 1966 A
3251676 Johnson May 1966 A
3255702 Gehrm Jun 1966 A
3258283 Winberg et al. Jun 1966 A
3272619 Sweeney et al. Sep 1966 A
3289473 Louda Dec 1966 A
3291473 Sweeney et al. Dec 1966 A
3368805 Davey et al. Feb 1968 A
3374943 Cervenka Mar 1968 A
3400923 Howie et al. Sep 1968 A
3417929 Secrest et al. Dec 1968 A
3432336 Langrod Mar 1969 A
3459133 Scheffler Aug 1969 A
3459346 Tinnes Aug 1969 A
3477383 Rawson et al. Nov 1969 A
3487805 Satterthwaite Jan 1970 A
3512762 Umbricht May 1970 A
3512788 Kilbane May 1970 A
3532445 Scheffler et al. Oct 1970 A
3561885 Lake Feb 1971 A
3575525 Fox et al. Apr 1971 A
3581767 Jackson Jun 1971 A
3612715 Yedidiah Oct 1971 A
3618917 Fredrikson Nov 1971 A
3620716 Hess Nov 1971 A
3650730 Derham et al. Mar 1972 A
3689048 Foulard et al. Sep 1972 A
3715112 Carbonnel Feb 1973 A
3732032 Daneel May 1973 A
3737304 Blayden Jun 1973 A
3737305 Blayden et al. Jun 1973 A
3743263 Szekely Jul 1973 A
3743500 Foulard et al. Jul 1973 A
3753690 Emley et al. Aug 1973 A
3759628 Kempf Sep 1973 A
3759635 Carter et al. Sep 1973 A
3767382 Bruno et al. Oct 1973 A
3776660 Anderson et al. Dec 1973 A
3785632 Kraemer et al. Jan 1974 A
3787143 Carbonnel et al. Jan 1974 A
3799522 Brant et al. Mar 1974 A
3799523 Seki Mar 1974 A
3807708 Jones Apr 1974 A
3814400 Seki Jun 1974 A
3824028 Zenkner et al. Jul 1974 A
3824042 Barnes et al. Jul 1974 A
3836280 Koch Sep 1974 A
3839019 Bruno et al. Oct 1974 A
3844972 Tully, Jr. et al. Oct 1974 A
3871872 Downing et al. Mar 1975 A
3873073 Baum et al. Mar 1975 A
3873305 Claxton et al. Mar 1975 A
3881039 Baldieri et al. Apr 1975 A
3886992 Maas et al. Jun 1975 A
3915594 Nesseth Oct 1975 A
3915694 Ando Oct 1975 A
3935003 Steinke et al. Jan 1976 A
3941588 Dremann Mar 1976 A
3941589 Norman et al. Mar 1976 A
3942473 Chodash Mar 1976 A
3954134 Maas et al. May 1976 A
3958979 Valdo May 1976 A
3958981 Forberg et al. May 1976 A
3961778 Carbonnel et al. Jun 1976 A
3966456 Ellenbaum et al. Jun 1976 A
3967286 Andersson et al. Jun 1976 A
3972709 Chin et al. Aug 1976 A
3973871 Hance Aug 1976 A
3984234 Claxton et al. Oct 1976 A
3985000 Hartz Oct 1976 A
3997336 van Linden et al. Dec 1976 A
4003560 Carbonnel Jan 1977 A
4008884 Fitzpatrick et al. Feb 1977 A
4018598 Markus Apr 1977 A
4043146 Stegherr Aug 1977 A
4052199 Mangalick Oct 1977 A
4055390 Young Oct 1977 A
4063849 Modianos Dec 1977 A
4068965 Lichti Jan 1978 A
4073606 Eller Feb 1978 A
4091970 Kimiyama et al. May 1978 A
4119141 Thut et al. Oct 1978 A
4125146 Muller Nov 1978 A
4126360 Miller et al. Nov 1978 A
4128415 van Linden et al. Dec 1978 A
4144562 Cooper Mar 1979 A
4147474 Heimdal et al. Apr 1979 A
4169584 Mangalick Oct 1979 A
4191486 Pelton Mar 1980 A
4192011 Cooper et al. Mar 1980 A
4213091 Cooper Jul 1980 A
4213176 Cooper Jul 1980 A
4213742 Henshaw Jul 1980 A
4219882 Cooper et al. Aug 1980 A
4242039 Villard et al. Dec 1980 A
4244423 Thut et al. Jan 1981 A
4286985 van Linden et al. Sep 1981 A
4305214 Hurst Dec 1981 A
4322245 Claxton Mar 1982 A
4338062 Neal Jul 1982 A
4347041 Cooper Aug 1982 A
4351514 Koch Sep 1982 A
4355789 Dolzhenkov et al. Oct 1982 A
4356940 Ansorge Nov 1982 A
4360314 Pennell Nov 1982 A
4370096 Church Jan 1983 A
4372541 Bocourt et al. Feb 1983 A
4375937 Cooper Mar 1983 A
4389159 Sarvanne Jun 1983 A
4392888 Eckert et al. Jul 1983 A
4410299 Shimoyama Oct 1983 A
4419049 Gelboth et al. Dec 1983 A
4456424 Araoka Jun 1984 A
4456974 Cooper Jun 1984 A
4470846 Dube Sep 1984 A
4474315 Gilbert et al. Oct 1984 A
4489475 Struttmann Dec 1984 A
4496393 Lustenberger Jan 1985 A
4504392 Groteke Mar 1985 A
4509979 Bauer Apr 1985 A
4537624 Tenhover et al. Aug 1985 A
4537625 Tenhover et al. Aug 1985 A
4556419 Otsuka et al. Dec 1985 A
4557766 Tenhover et al. Dec 1985 A
4586845 Morris May 1986 A
4592700 Toguchi et al. Jun 1986 A
4593597 Albrecht et al. Jun 1986 A
4594052 Niskanen Jun 1986 A
4596510 Arneth et al. Jun 1986 A
4598899 Cooper Jul 1986 A
4600222 Appling Jul 1986 A
4607825 Briolle et al. Aug 1986 A
4609442 Tenhover et al. Sep 1986 A
4611790 Otsuka et al. Sep 1986 A
4617232 Chandler et al. Oct 1986 A
4634105 Withers et al. Jan 1987 A
4640666 Sodergard Feb 1987 A
4651806 Allen et al. Mar 1987 A
4655610 Al-Jaroudi Apr 1987 A
4673434 Withers et al. Jun 1987 A
4682585 Hiltebrandt Jul 1987 A
4684281 Patterson Aug 1987 A
4685822 Pelton Aug 1987 A
4696703 Henderson et al. Sep 1987 A
4701226 Henderson et al. Oct 1987 A
4702768 Areauz et al. Oct 1987 A
4714371 Cuse Dec 1987 A
4717540 McRae et al. Jan 1988 A
4739974 Mordue Apr 1988 A
4743428 McRae et al. May 1988 A
4747583 Gordon et al. May 1988 A
4767230 Leas, Jr. Aug 1988 A
4770701 Henderson et al. Sep 1988 A
4786230 Thut Nov 1988 A
4802656 Hudault et al. Feb 1989 A
4804168 Otsuka et al. Feb 1989 A
4810314 Henderson et al. Mar 1989 A
4822473 Arnesen Apr 1989 A
4834573 Asano et al. May 1989 A
4842227 Harrington et al. Jun 1989 A
4844425 Piras et al. Jul 1989 A
4851296 Tenhover et al. Jul 1989 A
4859413 Harris et al. Aug 1989 A
4860819 Moscoe et al. Aug 1989 A
4867638 Handtmann et al. Sep 1989 A
4884786 Gillespie Dec 1989 A
4898367 Cooper Feb 1990 A
4908060 Duenkelmann Mar 1990 A
4911726 Warkentin Mar 1990 A
4923770 Grasselli et al. May 1990 A
4930986 Cooper Jun 1990 A
4931091 Waite et al. Jun 1990 A
4940214 Gillespie Jul 1990 A
4940384 Amra et al. Jul 1990 A
4954167 Cooper Sep 1990 A
4973433 Gilbert et al. Nov 1990 A
4986736 Kajiwara Jan 1991 A
4989736 Andersson et al. Feb 1991 A
5006232 Lidgitt et al. Apr 1991 A
5015518 Sasaki et al. May 1991 A
5025198 Mordue et al. Jun 1991 A
5028211 Mordue et al. Jul 1991 A
5029821 Bar-on et al. Jul 1991 A
5049841 Cooper et al. Sep 1991 A
5058654 Simmons Oct 1991 A
5078572 Amra et al. Jan 1992 A
5080715 Provencher et al. Jan 1992 A
5083753 Soofie Jan 1992 A
5088893 Gilbert et al. Feb 1992 A
5092821 Gilbert et al. Mar 1992 A
5098134 Monckton Mar 1992 A
5099554 Cooper Mar 1992 A
5114312 Stanislao May 1992 A
5126047 Martin et al. Jun 1992 A
5131632 Olson Jul 1992 A
5135202 Yamashita et al. Aug 1992 A
5143357 Gilbert et al. Sep 1992 A
5145322 Senior, Jr. et al. Sep 1992 A
5152631 Bauer Oct 1992 A
5154652 Ecklesdafer Oct 1992 A
5158440 Cooper et al. Oct 1992 A
5162858 Shoji et al. Nov 1992 A
5165858 Gilbert et al. Nov 1992 A
5172458 Cooper Dec 1992 A
5177304 Nagel Jan 1993 A
5191154 Nagel Mar 1993 A
5192193 Cooper et al. Mar 1993 A
5202100 Nagel et al. Apr 1993 A
5203681 Cooper Apr 1993 A
5209641 Hoglund et al. May 1993 A
5214448 Cooper Jun 1993 A
5215448 Cooper Jun 1993 A
5268020 Claxton Dec 1993 A
5286163 Amra et al. Feb 1994 A
5298233 Nagel Mar 1994 A
5301620 Nagel et al. Apr 1994 A
5303903 Butler et al. Apr 1994 A
5308045 Cooper May 1994 A
5310412 Gilbert et al. May 1994 A
5318360 Langer et al. Jun 1994 A
5322547 Nagel et al. Jun 1994 A
5324341 Nagel et al. Jun 1994 A
5330328 Cooper Jul 1994 A
5354940 Nagel Oct 1994 A
5358549 Nagel et al. Oct 1994 A
5358697 Nagel Oct 1994 A
5364078 Pelton Nov 1994 A
5369063 Gee et al. Nov 1994 A
5383651 Blasen et al. Jan 1995 A
5388633 Mercer, II et al. Feb 1995 A
5395405 Nagel et al. Mar 1995 A
5399074 Nose et al. Mar 1995 A
5407294 Giannini Apr 1995 A
5411240 Rapp et al. May 1995 A
5425410 Reynolds Jun 1995 A
5431551 Aquino et al. Jul 1995 A
5435982 Wilkinson Jul 1995 A
5436210 Wilkinson et al. Jul 1995 A
5443572 Wilkinson et al. Aug 1995 A
5454423 Tsuchida et al. Oct 1995 A
5468280 Areaux Nov 1995 A
5470201 Gilbert et al. Nov 1995 A
5484265 Horvath et al. Jan 1996 A
5489734 Nagel et al. Feb 1996 A
5491279 Robert et al. Feb 1996 A
5494382 Kloppers Feb 1996 A
5495746 Sigworth Mar 1996 A
5505143 Nagel Apr 1996 A
5505435 Laszlo Apr 1996 A
5509791 Turner Apr 1996 A
5511766 Vassillicos Apr 1996 A
5520422 Friedrich May 1996 A
5537940 Nagel et al. Jul 1996 A
5543558 Nagel et al. Aug 1996 A
5555822 Loewen et al. Sep 1996 A
5558501 Wang et al. Sep 1996 A
5558505 Mordue et al. Sep 1996 A
5571486 Robert et al. Nov 1996 A
5585532 Nagel Dec 1996 A
5586863 Gilbert et al. Dec 1996 A
5591243 Colussi et al. Jan 1997 A
5597289 Thut Jan 1997 A
5613245 Robert Mar 1997 A
5616167 Eckert Apr 1997 A
5622481 Thut Apr 1997 A
5629464 Bach et al. May 1997 A
5634770 Gilbert et al. Jun 1997 A
5640706 Nagel et al. Jun 1997 A
5640707 Nagel et al. Jun 1997 A
5640709 Nagel et al. Jun 1997 A
5655849 McEwen et al. Aug 1997 A
5660614 Waite et al. Aug 1997 A
5662725 Cooper Sep 1997 A
5676520 Thut Oct 1997 A
5678244 Shaw et al. Oct 1997 A
5678807 Cooper Oct 1997 A
5679132 Rauenzahn et al. Oct 1997 A
5685701 Chandler et al. Nov 1997 A
5690888 Robert Nov 1997 A
5695732 Sparks et al. Dec 1997 A
5716195 Thut Feb 1998 A
5717149 Nagel et al. Feb 1998 A
5718416 Flisakowski et al. Feb 1998 A
5735668 Klien Apr 1998 A
5735935 Areaux Apr 1998 A
5741422 Eichenmiller et al. Apr 1998 A
5744117 Wilikinson et al. Apr 1998 A
5745861 Bell et al. Apr 1998 A
5755847 Quayle May 1998 A
5772324 Falk Jun 1998 A
5776420 Nagel Jul 1998 A
5785494 Vild et al. Jul 1998 A
5805067 Bradley et al. Sep 1998 A
5810311 Davison et al. Sep 1998 A
5842832 Thut Dec 1998 A
5858059 Abramovich et al. Jan 1999 A
5863314 Morando Jan 1999 A
5864316 Bradley et al. Jan 1999 A
5866095 McGeever et al. Feb 1999 A
5875385 Stephenson et al. Feb 1999 A
5935528 Stephenson et al. Aug 1999 A
5944496 Cooper Aug 1999 A
5947705 Mordue et al. Sep 1999 A
5948352 Jagt Sep 1999 A
5949369 Bradley et al. Sep 1999 A
5951243 Cooper Sep 1999 A
5961285 Meneice et al. Oct 1999 A
5963580 Eckert Oct 1999 A
5992230 Scarpa et al. Nov 1999 A
5993726 Huang Nov 1999 A
5993728 Vild Nov 1999 A
5995041 Bradley et al. Nov 1999 A
6019576 Thut Feb 2000 A
6024286 Bradley et al. Feb 2000 A
6027685 Cooper Feb 2000 A
6036745 Gilbert et al. Mar 2000 A
6074455 van Linden et al. Jun 2000 A
6082965 Morando Jul 2000 A
6093000 Cooper Jul 2000 A
6096109 Nagel et al. Aug 2000 A
6113154 Thut Sep 2000 A
6123523 Cooper Sep 2000 A
6152691 Thut Nov 2000 A
6168753 Morando Jan 2001 B1
6187096 Thut Feb 2001 B1
6199836 Rexford et al. Mar 2001 B1
6217823 Vild et al. Apr 2001 B1
6231639 Eichenmiller May 2001 B1
6243366 Bradley et al. Jun 2001 B1
6250881 Mordue et al. Jun 2001 B1
6254340 Vild et al. Jul 2001 B1
6270717 Tremblay et al. Aug 2001 B1
6280157 Cooper Aug 2001 B1
6293759 Thut Sep 2001 B1
6303074 Cooper Oct 2001 B1
6345964 Cooper Feb 2002 B1
6354796 Morando Mar 2002 B1
6358467 Mordue Mar 2002 B1
6364930 Kos Apr 2002 B1
6371723 Grant et al. Apr 2002 B1
6398525 Cooper Jun 2002 B1
6439860 Greer Aug 2002 B1
6451247 Mordue et al. Sep 2002 B1
6457940 Lehman Oct 2002 B1
6457950 Cooper et al. Oct 2002 B1
6464458 Vild et al. Oct 2002 B2
6495948 Garrett, III Dec 2002 B1
6497559 Grant Dec 2002 B1
6500228 Klingensmith et al. Dec 2002 B1
6503292 Klingensmith et al. Jan 2003 B2
6524066 Thut Feb 2003 B2
6533535 Thut Mar 2003 B2
6551060 Mordue et al. Apr 2003 B2
6562286 Lehman May 2003 B1
6648026 Look et al. Nov 2003 B2
6656415 Kos Dec 2003 B2
6679936 Quackenbush Jan 2004 B2
6689310 Cooper Feb 2004 B1
6695510 Look et al. Feb 2004 B1
6709234 Gilbert et al. Mar 2004 B2
6716147 Hinkle et al. Apr 2004 B1
6723276 Cooper Apr 2004 B1
6805834 Thut Oct 2004 B2
6843640 Mordue et al. Jan 2005 B2
6848497 Sale et al. Feb 2005 B2
6869271 Gilbert et al. Mar 2005 B2
6869564 Gilbert et al. Mar 2005 B2
6881030 Thut Apr 2005 B2
6887424 Ohno et al. May 2005 B2
6887425 Mordue et al. May 2005 B2
6902696 Klingensmith et al. Jun 2005 B2
6955489 Thut Oct 2005 B2
7037462 Klingensmith et al. May 2006 B2
7056322 Davison et al. Jun 2006 B2
7074361 Carolla Jul 2006 B2
7083758 Tremblay Aug 2006 B2
7131482 Vincent et al. Nov 2006 B2
7157043 Neff Jan 2007 B2
7204954 Mizuno Apr 2007 B2
7279128 Kennedy et al. Oct 2007 B2
7326028 Morando Feb 2008 B2
7402276 Cooper Jul 2008 B2
7470392 Cooper Dec 2008 B2
7476357 Thut Jan 2009 B2
7481966 Mizuno Jan 2009 B2
7497988 Thut Mar 2009 B2
7507365 Thut Mar 2009 B2
7507367 Cooper Mar 2009 B2
7543605 Morando Jun 2009 B1
7731891 Cooper Jun 2010 B2
7771171 Mohr Aug 2010 B2
7896617 Morando Mar 2011 B1
7906068 Cooper Mar 2011 B2
8075837 Cooper Dec 2011 B2
8110141 Cooper Feb 2012 B2
8137023 Greer Mar 2012 B2
8142145 Thut Mar 2012 B2
8178037 Cooper May 2012 B2
8328540 Wang Dec 2012 B2
8333921 Thut Dec 2012 B2
8337746 Cooper Dec 2012 B2
8361379 Cooper Jan 2013 B2
8366993 Cooper Feb 2013 B2
8409495 Cooper Apr 2013 B2
8440135 Cooper May 2013 B2
8444911 Cooper May 2013 B2
8449814 Cooper May 2013 B2
8475594 Bright et al. Jul 2013 B2
8475708 Cooper Jul 2013 B2
8480950 Jetten et al. Jul 2013 B2
8501084 Cooper Aug 2013 B2
8524146 Cooper Sep 2013 B2
8529828 Cooper Sep 2013 B2
8535603 Cooper Sep 2013 B2
8580218 Turenne et al. Nov 2013 B2
8613884 Cooper Dec 2013 B2
8714914 Cooper May 2014 B2
8753563 Cooper Jun 2014 B2
8840359 Vick et al. Sep 2014 B2
8899932 Tetkoskie et al. Dec 2014 B2
8915830 March et al. Dec 2014 B2
8920680 Mao Dec 2014 B2
9011761 Cooper Apr 2015 B2
9017597 Cooper Apr 2015 B2
9034244 Cooper May 2015 B2
9057376 Thut Jun 2015 B2
9080577 Cooper Jul 2015 B2
9108224 Schererz Aug 2015 B2
9108244 Cooper Aug 2015 B2
9156087 Cooper Oct 2015 B2
9193532 March et al. Nov 2015 B2
9205490 Cooper Dec 2015 B2
9234520 Morando Jan 2016 B2
9273376 Lutes et al. Mar 2016 B2
9328615 Cooper May 2016 B2
9377028 Cooper Jun 2016 B2
9382599 Cooper Jul 2016 B2
9383140 Cooper Jul 2016 B2
9409232 Cooper Aug 2016 B2
9410744 Cooper Aug 2016 B2
9422942 Cooper Aug 2016 B2
9435343 Cooper Sep 2016 B2
9464636 Cooper Oct 2016 B2
9470239 Cooper Oct 2016 B2
9476644 Howitt et al. Oct 2016 B2
9481035 Cooper Nov 2016 B2
9481918 Vild et al. Nov 2016 B2
9482469 Cooper Nov 2016 B2
9506129 Cooper Nov 2016 B2
9506346 Bright et al. Nov 2016 B2
9566645 Cooper Feb 2017 B2
9581388 Cooper Feb 2017 B2
9587883 Cooper Mar 2017 B2
9657578 Cooper May 2017 B2
9855600 Cooper Jan 2018 B2
9862026 Cooper Jan 2018 B2
9903383 Cooper Feb 2018 B2
9909808 Cooper Mar 2018 B2
9925587 Cooper Mar 2018 B2
9951777 Morando et al. Apr 2018 B2
9970442 Tipton May 2018 B2
9982945 Cooper May 2018 B2
10052688 Cooper Aug 2018 B2
10072897 Cooper Sep 2018 B2
10126058 Cooper Nov 2018 B2
10126059 Cooper Nov 2018 B2
10195664 Cooper et al. Feb 2019 B2
10267314 Cooper Apr 2019 B2
10274256 Cooper Apr 2019 B2
10302361 Cooper May 2019 B2
10307821 Cooper Jun 2019 B2
10309725 Cooper Jun 2019 B2
10322451 Cooper Jun 2019 B2
10345045 Cooper Jul 2019 B2
10352620 Cooper Jul 2019 B2
20010000465 Thut Apr 2001 A1
20010012758 Bradley et al. Aug 2001 A1
20020089099 Denning Jul 2002 A1
20020146313 Thut Oct 2002 A1
20020185790 Klingensmith Dec 2002 A1
20020185794 Vincent Dec 2002 A1
20020187947 Jarai et al. Dec 2002 A1
20030047850 Areaux Mar 2003 A1
20030075844 Mordue et al. Apr 2003 A1
20030082052 Gilbert et al. May 2003 A1
20030151176 Ohno Aug 2003 A1
20030201583 Klingensmith Oct 2003 A1
20040050525 Kennedy et al. Mar 2004 A1
20040076533 Cooper Apr 2004 A1
20040115079 Cooper Jun 2004 A1
20040199435 Abrams et al. Oct 2004 A1
20040262825 Cooper Dec 2004 A1
20050013713 Cooper Jan 2005 A1
20050013714 Cooper Jan 2005 A1
20050013715 Cooper Jan 2005 A1
20050053499 Cooper Mar 2005 A1
20050077730 Thut Apr 2005 A1
20050081607 Patel et al. Apr 2005 A1
20050116398 Tremblay Jun 2005 A1
20060180963 Thut Aug 2006 A1
20070253807 Cooper Nov 2007 A1
20080202644 Grassi Aug 2008 A1
20080211147 Cooper Sep 2008 A1
20080213111 Cooper Sep 2008 A1
20080230966 Cooper Sep 2008 A1
20080253905 Morando et al. Oct 2008 A1
20080304970 Cooper Dec 2008 A1
20080314548 Cooper Dec 2008 A1
20090054167 Cooper Feb 2009 A1
20090269191 Cooper Oct 2009 A1
20100104415 Morando Apr 2010 A1
20100200354 Yagi Aug 2010 A1
20110133374 Cooper Jun 2011 A1
20110140319 Cooper Jun 2011 A1
20110142603 Cooper Jun 2011 A1
20110142606 Cooper Jun 2011 A1
20110148012 Cooper Jun 2011 A1
20110163486 Cooper Jul 2011 A1
20110210232 Cooper Sep 2011 A1
20110220771 Cooper Sep 2011 A1
20110303706 Cooper Dec 2011 A1
20120003099 Tetkoskie Jan 2012 A1
20120163959 Morando Jun 2012 A1
20130105102 Cooper May 2013 A1
20130142625 Cooper Jun 2013 A1
20130214014 Cooper Aug 2013 A1
20130224038 Tetkoskie Aug 2013 A1
20130292426 Cooper Nov 2013 A1
20130292427 Cooper Nov 2013 A1
20130299524 Cooper Nov 2013 A1
20130299525 Cooper Nov 2013 A1
20130306687 Cooper Nov 2013 A1
20130334744 Tremblay Dec 2013 A1
20130343904 Cooper Dec 2013 A1
20140008849 Cooper Jan 2014 A1
20140041252 Vild et al. Feb 2014 A1
20140044520 Tipton Feb 2014 A1
20140083253 Lutes et al. Mar 2014 A1
20140210144 Torres et al. Jul 2014 A1
20140232048 Howitt et al. Aug 2014 A1
20140252701 Cooper Sep 2014 A1
20140261800 Cooper Sep 2014 A1
20140265068 Cooper Sep 2014 A1
20140271219 Cooper Sep 2014 A1
20140363309 Henderson et al. Dec 2014 A1
20150069679 Henderson et al. Mar 2015 A1
20150192364 Cooper Jul 2015 A1
20150217369 Cooper Aug 2015 A1
20150219111 Cooper Aug 2015 A1
20150219112 Cooper Aug 2015 A1
20150219113 Cooper Aug 2015 A1
20150219114 Cooper Aug 2015 A1
20150224574 Cooper Aug 2015 A1
20150252807 Cooper Sep 2015 A1
20150285557 Cooper Oct 2015 A1
20150285558 Cooper Oct 2015 A1
20150323256 Cooper Nov 2015 A1
20150328682 Cooper Nov 2015 A1
20150328683 Cooper Nov 2015 A1
20160031007 Cooper Feb 2016 A1
20160040265 Cooper Feb 2016 A1
20160047602 Cooper Feb 2016 A1
20160053762 Cooper Feb 2016 A1
20160053814 Cooper Feb 2016 A1
20160082507 Cooper Mar 2016 A1
20160089718 Cooper Mar 2016 A1
20160091251 Cooper Mar 2016 A1
20160116216 Schlicht et al. Apr 2016 A1
20160221855 Retorick et al. Aug 2016 A1
20160250686 Cooper Sep 2016 A1
20160265535 Cooper Sep 2016 A1
20160305711 Cooper Oct 2016 A1
20160320129 Cooper Nov 2016 A1
20160320130 Cooper Nov 2016 A1
20160320131 Cooper Nov 2016 A1
20160346836 Henderson et al. Dec 2016 A1
20160348973 Cooper Dec 2016 A1
20160348974 Cooper Dec 2016 A1
20160348975 Cooper Dec 2016 A1
20170037852 Bright et al. Feb 2017 A1
20170038146 Cooper Feb 2017 A1
20170045298 Cooper Feb 2017 A1
20170056973 Tremblay et al. Mar 2017 A1
20170082368 Cooper Mar 2017 A1
20170106435 Vincent Apr 2017 A1
20170167793 Cooper et al. Jun 2017 A1
20170198721 Cooper Jul 2017 A1
20170219289 Williams et al. Aug 2017 A1
20170241713 Henderson et al. Aug 2017 A1
20170246681 Tipton et al. Aug 2017 A1
20170276430 Cooper Sep 2017 A1
20180058465 Cooper Mar 2018 A1
20180111189 Cooper Apr 2018 A1
20180178281 Cooper Jun 2018 A1
20180195513 Cooper Jul 2018 A1
20180311726 Cooper Nov 2018 A1
20190032675 Cooper Jan 2019 A1
20190270134 Cooper Sep 2019 A1
Foreign Referenced Citations (32)
Number Date Country
683469 Mar 1964 CA
2115929 Aug 1992 CA
2244251 Dec 1996 CA
2305865 Feb 2000 CA
2176475 Jul 2005 CA
2924572 Apr 2015 CA
392268 Sep 1965 CH
1800446 Dec 1969 DE
168250 Jan 1986 EP
665378 Feb 1995 EP
1019635 Jun 2006 EP
543607 Mar 1942 GB
942648 Nov 1963 GB
1185314 Mar 1970 GB
2217784 Mar 1989 GB
58048796 Mar 1983 JP
63104773 May 1988 JP
5112837 May 1993 JP
11270799 Oct 1999 JP
227385 Apr 2005 MX
90756 Jan 1959 NO
416401 Feb 1974 RU
773312 Oct 1980 RU
199808990 Mar 1998 WO
199825031 Jun 1998 WO
200009889 Feb 2000 WO
2002012147 Feb 2002 WO
2004029307 Apr 2004 WO
2010147932 Dec 2010 WO
2014055082 Apr 2014 WO
2014150503 Sep 2014 WO
2014185971 Nov 2014 WO
Non-Patent Literature Citations (426)
Entry
“Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627,” Including Declarations of Haynes and Johnson, dated Apr. 16, 2001.
Document No. 504217: Excerpts from “Pyrotek Inc.'s Motion for Summary Judgment of Invalidity and Unenforceability of U.S. Pat. No. 7,402,276,” Oct. 2, 2009.
Document No. 505026: Excerpts from “MMEI's Response to Pyrotek's Motion for Summary Judgment of Invalidity or Enforceability of U.S. Pat. No. 7,402,276,” Oct. 9, 2009.
Document No. 507689: Excerpt from “MMEI's Pre-Hearing Brief and Supplemental Motion for Summary Judgment of Infringement of the Claims 3-4, 15, 17-20, 26 and 28-29 of the '074 Patent and Motion for Reconsideration of the Validity of Claims 7-9 of the '276 Patent,” Nov. 4, 2009.
Document No. 517158: Excerpts from “Reasoned Award,” Feb. 19, 2010.
Document No. 525055: Excerpts from “Molten Metal Equipment Innovations, Inc.'s Reply Brief in Support of Application to Confirm Arbitration Award and Opposition to Motion to Vacate,” May 12, 2010.
USPTO; Notice of Reissue Examination Certificate dated Aug. 27, 2001 in U.S. Appl. No. 90/005,910.
USPTO; Office Action dated Feb. 23, 1996 in U.S. Appl. No. 08/439,739.
USPTO; Office Action dated Aug. 15, 1996 in U.S. Appl. No. 08/439,739.
USPTO; Advisory Action dated Nov. 18, 1996 in U.S. Appl. No. 08/439,739.
USPTO; Advisory Action dated Dec. 9, 1996 in U.S. Appl. No. 08/439,739.
USPTO; Notice of Allowance dated Jan. 17, 1997 in U.S. Appl. No. 08/439,739.
USPTO; Office Action dated Jul. 22, 1996 in U.S. Appl. No. 08/489,962.
USPTO; Office Action dated Jan. 6, 1997 in U.S. Appl. No. 08/489,962.
USPTO; Interview Summary dated Mar. 4, 1997 in U.S. Appl. No. 08/489,962.
USPTO; Notice of Allowance dated Mar. 27, 1997 in U.S. Appl. No. 08/489,962.
USPTO; Office Action dated Sep. 23, 1998 in U.S. Appl. No. 08/759,780.
USPTO; Interview Summary dated Dec. 30, 1998 in U.S. Appl. No. 08/789,780.
USPTO; Notice of Allowance dated Mar. 17, 1999 in U.S. Appl. No. 08/789,780.
USPTO; Office Action dated Jul. 23, 1998 in U.S. Appl. No. 08/889,882.
USPTO; Office Action dated Jan. 21, 1999 in U.S. Appl. No. 08/889,882.
USPTO; Notice of Allowance dated Mar. 17, 1999 in U.S. Appl. No. 08/889,882.
USPTO; Office Action dated Feb. 26, 1999 in U.S. Appl. No. 08/951,007.
USPTO; Interview Summary dated Mar. 15,1999 in U.S. Appl. No. 08/951,007.
USPTO; Office Action dated May 17, 1999 in U.S. Appl. No. 08/951,007.
USPTO; Notice of Allowance dated Aug. 27, 1999 in U.S. Appl. No. 08/951,007.
USPTO; Office Action dated Dec. 23, 1999 in U.S. Appl. No. 09/132,934.
USPTO; Notice of Allowance dated Mar. 9, 2000 in U.S. Appl. No. 09/132,934.
USPTO; Office Action dated Jan. 7, 2000 in U.S. Appl. No. 09/152,168.
USPTO; Notice of Allowance dated Aug. 7, 2000 in U.S. Appl. No. 09/152,168.
USPTO; Office Action dated Sep. 29, 1999 in U.S. Appl. No. 09/275,627.
USPTO; Office Action dated May 22, 2000 in U.S. Appl. No. 09/275,627.
USPTO; Office Action dated Nov. 14, 2000 in U.S. Appl. No. 09/275,627.
USPTO; Office Action dated May 21, 2001 in U.S. Appl. No. 09/275,627.
USPTO; Notice of Allowance dated Aug. 31, 2001 in U.S. Appl. No. 09/275,627.
USPTO; Office Action dated Jun. 15, 2000 in U.S. Appl. No. 09/312,361.
USPTO; Notice of Allowance dated Jan. 29, 2001 in U.S. Appl. No. 09/312,361.
USPTO; Office Action dated Jun. 22, 2001 in U.S. Appl. No. 09/569,461.
USPTO; Office Action dated Oct. 12, 2001 in U.S. Appl. No. 09/569,461.
USPTO; Office Action dated May 3, 2002 in U.S. Appl. No. 09/569,461.
USPTO; Advisory Action dated May 14, 2002 in U.S. Appl. No. 09/569,461.
USPTO; Office Action dated Dec. 4, 2002 in U.S. Appl. No. 09/569,461.
USPTO; Interview Summary dated Jan. 14, 2003 in U.S. Appl. No. 09/569,461.
USPTO; Notice of Allowance dated Jun. 24, 2003 in U.S. Appl. No. 09/569,461.
USPTO; Office Action dated Nov. 21, 2000 in U.S. Appl. No. 09/590,108.
USPTO; Office Action dated May 22, 2001 in U.S. Appl. No. 09/590,108.
USPTO; Notice of Allowance dated Sep. 10, 2001 in U.S. Appl. No. 09/590,108.
USPTO; Office Action dated Jan. 30, 2002 in U.S. Appl. No. 09/649,190.
USPTO; Office Action dated Oct. 4, 2002 in U.S. Appl. No. 09/649,190.
USPTO; Office Action dated Apr. 18, 2003 in U.S. Appl. No. 09/649,190.
USPTO; Notice of Allowance dated Nov. 21, 2003 in U.S. Appl. No. 09/649,190.
USPTO; Office Action dated Jun. 7, 2006 in U.S. Appl. No. 10/619,405.
USPTO; Final Office Action dated Feb. 20, 2007 in U.S. Appl. No. 10/619,405.
USPTO; Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/619,405.
USPTO; Final Office Action dated May 29, 2008 in U.S. Appl. No. 10/619,405.
USPTO; Interview Summary dated Aug. 22, 2008 in U.S. Appl. No. 10/619,405.
USPTO; Ex Parte Quayle dated Sep. 12, 2008 in U.S. Appl. No. 10/619,405.
USPTO; Interview Summary dated Oct. 16, 2008 in U.S. Appl. No. 10/619,405.
USPTO; Notice of Allowance dated Nov. 14, 2008 in U.S. Appl. No. 10/619,405.
USPTO; Office Action dated Mar. 20, 2006 in U.S. Appl. No. 10/620,318.
USPTO; Office Action dated Nov. 16, 2006 in U.S. Appl. No. 10/620,318.
USPTO; Final Office Action dated Jul. 25, 2007 in U.S. Appl. No. 10/620,318.
USPTO; Office Action dated Feb. 12, 2008 in U.S. Appl. No. 10/620,318.
USPTO; Final Office Action dated Oct. 16, 2008 in U.S. Appl. No. 10/620,318.
USPTO; Office Action dated Feb. 25, 2009 in U.S. Appl. No. 10/620,318.
USPTO; Final Office Action dated Oct. 8, 2009 in U.S. Appl. No. 10/620,318.
USPTO; Notice of Allowance dated Jan. 26, 2010 in U.S. Appl. No. 10/620,318.
USPTO; Office Action dated Nov. 15, 2007 in U.S. Appl. No. 10/773,101.
USPTO; Office Action dated Jun. 27, 2006 in U.S. Appl. No. 10/773,102.
USPTO; Final Office Action dated Mar. 6, 2007 in U.S. Appl. No. 10/773,102.
USPTO; Office Action dated Oct. 11, 2007 in U.S. Appl. No. 10/773,102.
USPTO; Interview Summary dated Mar. 18, 2008 in U.S. Appl. No. 10/773,102.
USPTO; Notice of Allowance dated Apr. 18, 2008 in U.S. Appl. No. 10/773,102.
USPTO; Office Action dated Jul. 24, 2006 in U.S. Appl. No. 10/773,105.
USPTO; Final Office Action dated Jul. 21, 2007 in U.S. Appl. No. 10/773,105.
USPTO; Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/773,105.
USPTO; Interview Summary dated Jan. 25, 2008 in U.S. Appl. No. 10/773,105.
USPTO; Office Action dated May 19, 2008 in U.S. Appl. No. 10/773,105.
USPTO; Interview Summary dated Jul. 21, 2008 in U.S. Appl. No. 10/773,105.
USPTO; Notice of Allowance dated Sep. 29, 2008 in U.S. Appl. No. 10/773,105.
USPTO; Office Action dated Jan. 31, 2008 in U.S. Appl. No. 10/773,118.
USPTO; Final Office Action dated Aug. 18, 2008 in U.S. Appl. No. 10/773,118.
USPTO; Interview Summary dated Oct. 16, 2008 in U.S. Appl. No. 10/773,118.
USPTO; Office Action dated Dec. 15, 2008 in U.S. Appl. No. 10/773,118.
USPTO; Final Office Action dated May 1, 2009 in U.S. Appl. No. 10/773,118.
USPTO; Office Action dated Jul. 27, 2009 in U.S. Appl. No. 10/773,118.
USPTO; Final Office Action dated Feb. 2, 2010 in U.S. Appl. No. 10/773,118.
USPTO; Interview Summary dated Jun. 4, 2010 in U.S. Appl. No. 10/773,118.
USPTO; Ex Parte Quayle Action dated Aug. 25, 2010 in U.S. Appl. No. 10/773,118.
USPTO; Notice of Allowance dated Nov. 5, 2010 in U.S. Appl. No. 10/773,118.
USPTO; Office Action dated Mar. 16, 2005 in U.S. Appl. No. 10/827,941.
USPTO; Final Office Action dated Nov. 7, 2005 in U.S. Appl. No. 10/827,941.
USPTO; Office Action dated Jul. 12, 2006 in U.S. Appl. No. 10/827,941.
USPTO; Final Office Action dated Mar. 8, 2007 in U.S. Appl. No. 10/827,941.
USPTO; Office Action dated Oct. 29, 2007 in U.S. Appl. No. 10/827,941.
USPTO; Office Action dated Sep. 26, 2008 in U.S. Appl. No. 11/413,982.
USPTO; Office Action dated Dec. 11, 2009 in U.S. Appl. No. 11/766,617.
USPTO; Office Action dated Mar. 8, 2010 in U.S. Appl. No. 11/766,617.
USPTO; Final Office Action dated Sep. 20, 2010 in U.S. Appl. No. 11/766,617.
USPTO; Office Action dated Mar. 1, 2011 in U.S. Appl. No. 11/766,617.
USPTO; Final Office Action dated Sep. 22, 2011 in U.S. Appl. No. 11/766,617.
USPTO; Office Action dated Jan. 27, 2012 in U.S. Appl. No. 11/766,617.
USPTO; Notice of Allowance dated May 15, 2012 in U.S. Appl. No. 11/766,617.
USPTO; Supplemental Notice of Allowance dated Jul. 31, 2012 in U.S. Appl. No. 11/766,617.
USPTO; Notice of Allowance dated Aug. 24, 2012 in U.S. Appl. No. 11/766,617.
USPTO; Final Office Action dated Oct. 14, 2008 in U.S. Appl. No. 12/111,835.
USPTO; Office Action dated May 15, 2009 in U.S. Appl. No. 12/111,835.
USPTO; Office Action dated Mar. 31, 2009 in U.S. Appl. No. 12/120,190.
USPTO; Final Office Action dated Dec. 4, 2009 in U.S. Appl. No. 12/120,190.
USPTO; Office Action dated Jun. 28, 2010 in U.S. Appl. No. 12/120,190.
USPTO; Final Office Action dated Jan. 6, 2011 in U.S. Appl. No. 12/120,190.
USPTO; Office Action dated Jun. 27, 2011 in U.S. Appl. No. 12/120,190.
USPTO; Final Office Action dated Nov. 28, 2011 in U.S. Appl. No. 12/120,190.
USPTO; Notice of Allowance dated Feb. 6, 2012 in U.S. Appl. No. 12/120,190.
USPTO; Office Action dated Nov. 3, 2008 in U.S. Appl. No. 12/120,200.
USPTO; Final Office Action dated May 28, 2009 in U.S. Appl. No. 12/120,200.
USPTO; Office Action dated Dec. 18, 2009 in U.S. Appl. No. 12/120,200.
USPTO; Final Office Action dated Jul. 9, 2010 in U.S. Appl. No. 12/120,200.
USPTO; Office Action dated Jan. 21, 2011 in U.S. Appl. No. 12/120,200.
USPTO; Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/120,200.
USPTO; Final Office Action dated Feb. 3, 2012 in U.S. Appl. No. 12/120,200.
USPTO; Notice of Allowance dated Jan. 17, 2013 in U.S. Appl. No. 12/120,200.
USPTO; Office Action dated Jun. 16, 2009 in U.S. Appl. No. 12/146,770.
USPTO; Final Office Action dated Feb. 24, 2010 in U.S. Appl. No. 12/146,770.
USPTO; Office Action dated Jun. 9, 2010 in U.S. Appl. No. 12/146,770.
USPTO; Office Action dated Nov. 18, 2010 in U.S. Appl. No. 12/146,770.
USPTO; Final Office Action dated Apr. 4, 2011 in U.S. Appl. No. 12/146,770.
USPTO; Notice of Allowance dated Aug. 22, 2011 in U.S. Appl. No. 12/146,770.
USPTO; Notice of Allowance dated Nov. 1, 2011 in U.S. Appl. No. 12/146,770.
USPTO; Office Action dated Apr. 27, 2009 in U.S. Appl. No. 12/146,788.
USPTO; Final Office Action dated Oct. 15, 2009 in U.S. Appl. No. 12/146,788.
USPTO; Office Action dated Feb. 16, 2010 in U.S. Appl. No. 12/146,788.
USPTO; Final Office Action dated Jul. 13, 2010 in U.S. Appl. No. 12/146,788.
USPTO; Office Action dated Apr. 19, 2011 in U.S. Appl. No. 12/146,788.
USPTO; Notice of Allowance dated Aug. 19, 2011 in U.S. Appl. No. 12/146,788.
USPTO; Office Action dated Apr. 13, 2009 in U.S. Appl. No. 12/264,416.
USPTO; Final Office Action dated Oct. 8, 2009 in U.S. Appl. No. 12/264,416.
USPTO; Office Action dated Feb. 1, 2010 in U.S. Appl. No. 12/264,416.
USPTO; Final Office Action dated Jun. 30, 2010 in U.S. Appl. No. 12/264,416.
USPTO; Office Action dated Mar. 17, 2011 in U.S. Appl. No. 12/264,416.
USPTO; Final Office Action dated Jul. 7, 2011 in U.S. Appl. No. 12/264,416.
USPTO; Office Action dated Nov. 4, 2011 in U.S. Appl. No. 12/264,416.
USPTO; Final Office Action dated Jun. 8, 2012 in U.S. Appl. No. 12/264,416.
USPTO; Office Action dated Nov. 28, 2012 in U.S. Appl. No. 12/264,416.
USPTO; Ex Parte Quayle dated Apr. 3, 2013 in U.S. Appl. No. 12/264,416.
USPTO; Notice of Allowance dated Jun. 23, 2013 in U.S. Appl. No. 12/264,416.
USPTO; Office Action dated May 22, 2009 in U.S. Appl. No. 12/369,362.
USPTO; Final Office Action dated Dec. 14, 2009 in U.S. Appl. No. 12/369,362.
USPTO; Final Office Action dated Jun. 11, 2010 in U.S. Appl. No. 12/395,430.
USPTO; Office Action dated Nov. 24, 2010 in U.S. Appl. No. 12/395,430.
USPTO; Final Office Action dated Apr. 6, 2011 in U.S. Appl. No. 12/395,430.
USPTO; Office Action dated Aug. 18, 2011 in U.S. Appl. No. 12/395,430.
USPTO; Final Office Action dated Dec. 13, 2011 in U.S. Appl. No. 12/395,430.
USPTO; Notice of Allowance dated Sep. 20, 2012 in U.S. Appl. No. 12/395,430.
USPTO; Advisory Action dated Feb. 22, 2012 in U.S. Appl. No. 12/395,430.
USPTO; Office Action dated Sep. 29, 2010 in U.S. Appl. No. 12/758,509.
USPTO; Final Office Action dated May 11, 2011 in U.S. Appl. No. 12/758,509.
USPTO; Office Action dated Feb. 1, 2012 in U.S. Appl. No. 12/853,201.
USPTO; Final Office Action dated Jul. 3, 2012 in U.S. Appl. No. 12/853,201.
USPTO; Notice of Allowance dated Jan. 31, 2013 in U.S. Appl. No. 12/853,201.
USPTO; Office Action dated Jan. 3, 2013 in U.S. Appl. No. 12/853,238.
USPTO; Office Action dated Dec. 18, 2013 in U.S. Appl. No. 12/853,238.
USPTO; Final Office Action dated May 19, 2014 in U.S. Appl. No. 12/853,238.
USPTO; Office Action dated Mar. 31, 2015 in U.S. Appl. No. 12/853,238.
USPTO; Office Action dated Jan. 20, 2016 in U.S. Appl. No. 12/853,238.
USPTO; Office Action dated Feb. 27, 2012 in U.S. Appl. No. 12/853,253.
USPTO; Ex Parte Quayle Action dated Jun. 27, 2012 in U.S. Appl. No. 12/853,253.
USPTO; Notice of Allowance dated Oct. 2, 2012 in U.S. Appl. No. 12/853,253.
USPTO; Office Action dated Mar. 12, 2012 in U.S. Appl. No. 12/853,255.
USPTO; Final Office Action dated Jul. 24, 2012 in U.S. Appl. No. 12/853,255.
USPTO; Office Action dated Jan. 18, 2013 in U.S. Appl. No. 12/853,255.
USPTO; Notice of Allowance dated Jun. 20, 2013 in U.S. Appl. No. 12/853,255.
USPTO; Office Action dated Apr. 19, 2012 in U.S. Appl. No. 12/853,268.
USPTO; Final Office Action dated Sep. 17, 2012 in U.S. Appl. No. 12/853,268.
USPTO; Notice of Allowance dated Nov. 21, 2012 in U.S. Appl. No. 12/853,268.
USPTO; Office Action dated Aug. 1, 2013 in U.S. Appl. No. 12/877,988.
USPTO; Notice of Allowance dated Dec. 24, 2013 in U.S. Appl. No. 12/877,988.
USPTO; Office Action dated May 29, 2012 in U.S. Appl. No. 12/878,984.
USPTO; Office Action dated Oct. 3, 2012 in U.S. Appl. No. 12/878,984.
USPTO; Final Office Action dated Jan. 25, 2013 in U.S. Appl. No. 12/878,984.
USPTO; Notice of Allowance dated Mar. 28, 2013 in U.S. Appl. No. 12/878,984.
USPTO; Office Action dated Sep. 22, 2011 in U.S. Appl. No. 12/880,027.
USPTO; Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/880,027.
USPTO; Office Action dated Dec. 14, 2012 in U.S. Appl. No. 12/880,027.
USPTO; Final Office Action dated Jul. 11, 2013 in U.S. Appl. No. 12/880,027.
USPTO; Office Action dated Jul. 16, 2014 in U.S. Appl. No. 12/880,027.
USPTO; Ex Parte Quayle Office Action dated Dec. 19, 2014 in U.S. Appl. No. 12/880,027.
USPTO; Notice of Allowance dated Apr. 8, 2015 in U.S. Appl. No. 12/880,027.
USPTO; Office Action dated Dec. 18, 2013 in U.S. Appl. No. 12/895,796.
USPTO; Final Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/895,796.
USPTO; Office Action dated Nov. 17, 2014 in U.S. Appl. No. 12/895,796.
USPTO; Office Action dated Sep. 1, 2015 in U.S. Appl. No. 12/895,796.
USPTO; Office Action dated Aug. 25, 2011 in U.S. Appl. No. 13/047,719.
USPTO; Final Office Action dated Dec. 16, 2011 in U.S. Appl. No. 13/047,719.
USPTO; Office Action dated Sep. 11, 2012 in U.S. Appl. No. 13/047,719.
USPTO; Notice of Allowance dated Feb. 28, 2013 in U.S. Appl. No. 13/047,719.
USPTO; Office Action dated Aug. 25, 2011 in U.S. Appl. No. 13/047,747.
USPTO; Final Office Action dated Feb. 7, 2012 in U.S. Appl. No. 13/047,747.
USPTO; Notice of Allowance dated Apr. 18, 2012 in U.S. Appl. No. 13/047,747.
USPTO; Office Action dated Dec. 13, 2012 in U.S. Appl. No. 13/047,747.
USPTO; Notice of Allowance dated Apr. 3, 2013 in U.S. Appl. No. 13/047,747.
USPTO; Office Action dated Apr. 12, 2013 in U.S. Appl. No. 13/106,853.
USPTO; Notice of Allowance dated Aug. 23, 2013 in U.S. Appl. No. 13/106,853.
USPTO; Office Action dated Apr. 18, 2012 in U.S. Appl. No. 13/252,145.
USPTO; Final Office Action dated Sep. 17, 2012 in U.S. Appl. No. 13/252,145.
USPTO; Notice of Allowance dated Nov. 30, 2012 in U.S. Appl. No. 13/252,145.
USPTO; Office Action dated Sep. 18, 2013 in U.S. Appl. No. 13/752,312.
USPTO; Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/752,312.
USPTO; Final Office Action dated May 23, 2014 in U.S. Appl. No. 13/752,312.
USPTO; Notice of Allowance dated Dec. 17, 2014 in U.S. Appl. No. 13/752,312.
USPTO; Office Action dated Sep. 6, 2013 in U.S. Appl. No. 13/725,383.
USPTO; Office Action dated Oct. 24, 2013 in U.S. Appl. No. 13/725,383.
USPTO; Office Action dated Mar. 3, 2015 in U.S. Appl. No. 13/725,383.
USPTO; Office Action dated Nov. 20, 2015 in U.S. Appl. No. 13/725,383.
USPTO; Office Action dated Sep. 11, 2013 in U.S. Appl. No. 13/756,468.
USPTO; Notice of Allowance dated Feb. 3, 2014 in U.S. Appl. No. 13/756,468.
USPTO; Office Action dated Sep. 10, 2014 in U.S. Appl. No. 13/791,952.
USPTO; Office Action dated Dec. 15, 2015 in U.S. Appl. No. 13/800,460.
USPTO; Office Action dated Sep. 23, 2014 in U.S. Appl. No. 13/843,947.
USPTO; Office Action dated Nov. 28, 2014 in U.S. Appl. No. 13/843,947.
USPTO; Final Office dated Apr. 10, 2015 in U.S. Appl. No. 13/843,947.
USPTO; Final Office Action dated Sep. 11, 2015 in U.S. Appl. No. 13/843,947.
USPTO; Ex Parte Quayle Action dated Jan. 25, 2016 in U.S. Appl. No. 13/843,947.
USPTO; Office Action dated Sep. 22, 2014 in U.S. Appl. No. 13/830,031.
USPTO; Notice of Allowance dated Jan. 30, 2015 in U.S. Appl. No. 13/830,031.
USPTO; Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/838,601.
USPTO; Final Office Action dated Mar. 3, 2015 in U.S. Appl. No. 13/838,601.
USPTO; Office Action dated Jul. 24, 2015 in U.S. Appl. No. 13/838,601.
USPTO; Office Action dated Aug. 14, 2014 in U.S. Appl. No. 13/791,889.
USPTO; Final Office Action dated Dec. 5, 2014 in U.S. Appl. No. 13/791,889.
USPTO; Office Action dated Sep. 15, 2014 in U.S. Appl. No. 13/797,616.
USPTO; Notice of Allowance dated Feb. 4, 2015 in U.S. Appl. No. 13/797,616.
USPTO; Restriction Requirement dated Sep. 17, 2014 in U.S. Appl. No. 13/801,907.
USPTO; Office Action dated Dec. 9, 2014 in U.S. Appl. No. 13/801,907.
USPTO; Notice of Allowance dated Jun. 5, 2015 in U.S. Appl. No. 13/801,907.
USPTO; Supplemental Notice of Allowance dated Oct. 2, 2015 in U.S. Appl. No. 13/801,907.
USPTO; Office Action dated Jan. 9, 2015 in U.S. Appl. No. 13/802,040.
USPTO; Notice of Allowance dated Jul. 14, 2015 in U.S. Appl. No. 13/802,040.
USPTO; Restriction Requirement dated Sep. 17, 2014 in U.S. Appl. No. 13/802,203.
USPTO; Office Action dated Dec. 11, 2014 in U.S. Appl. No. 13/802,203.
USPTO; Office Action dated Jan. 12, 2016 in U.S. Appl. No. 13/802,203.
USPTO; Office Action dated Feb. 13, 2015 in U.S. Appl. No. 13/973,962.
USPTO; Final Office Action dated Jul. 16, 2015 in U.S. Appl. No. 13/973,962.
USPTO; Office Action dated Apr. 10, 2015 in U.S. Appl. No. 14/027,237.
USPTO; Notice of Allowance dated Jan. 15, 2016 in U.S. Appl. No. 14/027,237.
USPTO; Notice of Allowance dated Nov. 24, 2015 in U.S. Appl. No. 13/973,962.
USPTO; Final Office Action dated Aug. 20, 2015 in U.S. Appl. No. 14/027,237.
USPTO; Ex Parte Quayle Action dated Nov. 4, 2015 in U.S. Appl. No. 14/027,237.
USPTO; Restriction Requirement dated Jun. 25, 2015 in U.S. Appl. No. 13/841,938.
USPTO; Office Action dated Aug. 25, 2015 in U.S. Appl. No. 13/841,938.
USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 12/853,238.
USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 13/725,383.
USPTO; Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/841,594.
USPTO; Final Office Action dated Feb. 23, 2016 in U.S. Appl. No. 13/841,594.
USPTO; Office Action dated Dec. 17, 2015 in U.S. Appl. No. 14/286,442.
USPTO; Office Action dated Dec. 23, 2015 in U.S. Appl. No. 14/662,100.
USPTO; Office Action dated Dec. 14, 2015 in U.S. Appl. No. 14/687,806.
USPTO; Office Action dated Dec. 18, 2015 in U.S. Appl. No. 14/689,879.
USPTO; Office Action dated Dec. 15, 2015 in U.S. Appl. No. 14/690,064.
USPTO; Office Action dated Dec. 31, 2015 in U.S. Appl. No. 14/690,099.
USPTO; Office Action dated Jan. 4, 2016 in U.S. Appl. No. 14/712,435.
USPTO; Office Action dated Feb. 11, 2016 in U.S. Appl. No. 14/690,174.
USPTO; Office Action dated Feb. 25, 2016 in U.S. Appl. No. 13/841,938.
USPTO; Notice of Allowance dated Mar. 8, 2016 in U.S. Appl. No. 13/973,962.
USPTO; Office Action dated Mar. 10, 2016 in U.S. Appl. No. 14/690,218.
USPTO; Notice of Allowance dated Mar. 11, 2016 in U.S. Appl. No. 13/843,947.
USPTO; Notice of Allowance dated Apr. 11, 2016 in U.S. Appl. No. 14/690,064.
USPTO; Notice of Allowance dated Apr. 12, 2016 in U.S. Appl. No. 14/027,237.
USPTO; Final Office Action dated May 2, 2016 in U.S. Appl. No. 14/687,806.
USPTO; Office action dated May 4, 2016 in U.S. Appl. No. 14/923,296.
USPTO; Notice of Allowance dated May 6, 2016 in U.S. Appl. No. 13/725,383.
USPTO; Notice of Allowance dated May 8, 2016 in U.S. Appl. No. 13/802,203.
USPTO; Office Action dated May 9, 2016 in U.S. Appl. No. 14/804,157.
USPTO; Office Action dated May 19, 2016 in U.S. Appl. No. 14/745,845.
USPTO; Office Action dated May 27, 2016 in U.S. Appl. No. 14/918,471.
USPTO; Office Action dated Jun. 6, 2016 in U.S. Appl. No. 14/808,935.
USPTO; Final Office Action dated Jun. 15, 2016 in U.S. Appl. No. 14/689,879.
USPTO; Notice of Allowance dated Jul. 7, 2016 in U.S. Appl. No. 14/804,157.
USPTO; Notice of Allowance dated Jul. 7, 2016 in U.S. Appl. No. 14/690,218.
USPTO; Notice of Allowance dated Jul. 7, 2016 in U.S. Appl. No. 14/690,099.
USPTO; Notice of Allowance dated Jul. 7, 2016 in U.S. Appl. No. 14/662,100.
USPTO; Notice of Allowance dated Jul. 20, 2016 in U.S. Appl. No. 14/715,435.
USPTO; Final Office Action dated Jul. 28, 2016 in U.S. Appl. No. 13/800,460.
USPTO; Office Action dated Aug. 1, 2016 in U.S. Appl. No. 15/153,735.
USPTO; Final Office Action dated Aug. 10, 2016 in U.S. Appl. No. 12/853,238.
USPTO; Office Action dated Aug. 15, 2016 in U.S. Appl. No. 14/811,655.
USPTO; Office Action dated Aug. 17, 2016 in U.S. Appl. No. 14/959,758.
USPTO Final Office Action dated Aug. 26, 2016 in U.S. Appl. No. 14/923,296.
USPTO; Office action dated Aug. 29, 2016 in U.S. Appl. No. 14/687,806.
USPTO; Final Office Action dated Sep. 15, 2016 in U.S. Appl. No. 14/745,845.
USPTO; Office Action dated Sep. 15, 2016 in U.S. Appl. No. 14/746,593.
USPTO; Office Action dated Sep. 22, 2016 in U.S. Appl. No. 13/841,594.
USPTO; Notice of Allowance dated Sep. 28, 2016 in U.S. Appl. No. 14/918,471.
USPTO; Office Action dated Oct. 11, 2016 in U.S. Appl. No. 13/841,938.
USPTO; Office Action dated Oct. 27, 2016 in U.S. Appl. No. 14/689,879.
USPTO; Notice of Allowance dated Nov. 25, 2016 in U.S. Appl. No. 15/153,735.
USPTO; Notice of Allowance dated Nov. 29, 2016 in U.S. Appl. No. 14/808,935.
USPTO; Notice of Allowance dated Dec. 27, 2016 in U.S. Appl. No. 14/687,806.
USPTO; Notice of Allowance dated Dec. 30, 2016 in U.S. Appl. No. 14/923,296.
USPTO; Notice of Allowance dated Mar. 13, 2017 in U.S. Appl. No. 14/923,296.
USPTO; Final Office Action dated Mar. 17, 2017 in U.S. Appl. No. 14/811,655.
USPTO; Office Action dated Mar. 17, 2017 in U.S. Appl. No. 14/880,998.
CIPO; Office Action dated Dec. 4, 2001 in Application No. 2,115,929.
CIPO; Office Action dated Apr. 22, 2002 in Application No. 2,115,929.
CIPO; Notice of Allowance dated Jul. 18, 2003 in Application No. 2,115,929.
CIPO; Office Action dated Jun. 30, 2003 in Application No. 2,176,475.
CIPO; Notice of Allowance dated Sep. 15, 2004 in Application No. 2,176,475.
CIPO; Office Action dated May 29, 2000 in Application No. 2,242,174.
CIPO; Office Action dated Feb. 22, 2006 in Application No. 2,244,251.
CIPO; Office Action dated Mar. 27, 2007 in Application No. 2,244,251.
CIPO; Notice of Allowance dated Jan. 15, 2008 in Application No. 2,244,251.
CIPO; Office Action dated Sep. 18, 2002 in Application No. 2,305,865.
CIPO; Notice of Allowance dated May 2, 2003 in Application No. 2,305,865.
EPO; Examination Report dated Oct. 6, 2008 in Application No. 08158682.
EPO; Office Action dated Jan. 26, 2010 in Application No. 08158682.
EPO; Office Action dated Feb. 15, 2011 in Application No. 08158682.
EPO; Search Report dated Nov. 9, 1998 in Application No. 98112356.
EPO; Office Action dated Feb. 6, 2003 in Application No. 99941032.
EPO; Office Action dated Aug. 20, 2004 in Application No. 99941032.
PCT; International Search Report or Declaration dated Nov. 15, 1999 in Application No. PCT/US1999/18178.
PCT; International Search Report or Declaration dated Oct. 9, 1998 in Application No. PCT/US1999/22440.
USPTO; Final Office Action dated Apr. 3, 2017 in U.S. Appl. No. 14/745,845.
USPTO; Office Action dated Apr. 11, 2017 in U.S. Appl. No. 14/959,811.
USPTO; Office Action dated Apr. 12, 2017 in U.S. Appl. No. 14/746,593.
USPTO; Office Action dated Apr. 20, 2017 in U.S. Appl. No. 14/959,653.
USPTO; Non-Final Office Action dated Dec. 6, 2017 in U.S. Appl. No. 14/791,137.
USPTO; Notice of Allowance dated Dec. 6, 2017 in U.S. Appl. No. 14/959,653.
USPTO; Notice of Allowance dated Dec. 8, 2017 in U.S. Appl. No. 14/811,655.
USPTO; Notice of Allowance dated Dec. 12, 2017 in U.S. Appl. No. 14/959,811.
USPTO; Notice of Allowance dated Dec. 20, 2017 in U.S. Appl. No. 13/800,460.
USPTO; Non-Final Office Action dated Jan. 5, 2018 in U.S. Appl. No. 15/013,879.
USPTO; Notice of Allowance dated Jan. 5, 2018 in U.S. Appl. No. 15/194,544.
USPTO; Final Office Action dated Jan. 10, 2018 in U.S. Appl. No. 14/689,879.
USPTO; Final Office Action dated Jan. 17, 2018 in U.S. Appl. No. 14/745,845.
USPTO; Notice of Allowance dated Jan. 22. 2018 in U.S. Appl. No. 13/800,460.
USTPO; Notice of Allowance dated Feb. 8, 2018 in U.S. Appl. No. 15/194,544.
USPTO; Notice of Allowance dated Feb. 14, 2018 in U.S. Appl. No. 14/959,811.
USPTO; Final Office Action dated Jun. 15, 2017 in U.S. Appl. No. 13/841,938.
USPTO; Office Action dated Aug. 1, 2017 in U.S. Appl. No. 14/811,655.
USPTO; Office Action dated Aug. 22, 2017 in U.S. Appl. No. 15/194,544.
USPTO; Office Action dated Aug. 18, 2017 in U.S. Appl. No. 14/745,845.
USPTO; Notice of Allowance dated Aug. 31, 2017 in U.S. Appl. No. 14/959,653.
USPTO; Office Action dated Sep. 1, 2017 in U.S. Appl. No. 14/689,879.
USPTO; Notice of Allowance dated Sep. 26, 2017 in U.S. Appl. No. 14/811,655.
USPTO; Final Office Action dated Sep. 26, 2017 in U.S. Appl. No. 14/959,811.
USPTO; Notice of Allowance dated Sep. 29, 2017 in U.S. Appl. No. 15/194,544.
USPTO; Non-Final Office Action dated Oct. 4, 2017 in U.S. Appl. No. 12/853,238.
USPTO; Non-Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 15/205,700.
USPTO; Non-Final Office Action dated Oct. 18, 2017 in U.S. Appl. No. 15/205,878.
USPTO; Notice of Allowance dated Oct. 20, 2017 in U.S. Appl. No. 13/800,460.
USPTO; Non-Final Office Action dated Nov. 1, 2017 in U.S. Appl. No. 15/209,660.
USPTO; Notice of Allowance dated Nov. 13, 2017 in U.S. Appl. No. 14/959,811.
USPTO; Non-Final Office Action dated Nov. 14, 2017 in U.S. Appl. No. 15/233,882.
USPTO; Notice of Allowance dated Nov. 16, 2017 in U.S. Appl. No. 15/194,544.
USPTO; Non-Final Office Action dated Nov. 16, 2017 in U.S. Appl. No. 15/233,946.
USPTO; Notice of Allowance dated Nov. 17, 2017 in U.S. Appl. No. 13/800,460.
USPTO; Non-Final Office Action dated Nov. 17, 2017 in U.S. Appl. No. 13/841,938.
USPTO; Non-Final Office Action dated Nov. 20, 2017 in U.S. Appl. No. 14/791,166.
USPTO; Non-Final Office Action dated Dec. 4, 2017 in U.S. Appl. No. 15/234,490.
USPTO; Notice of Allowance dated Jul. 25, 2018 in U.S. Appl. No. 14/689,879.
USPTO; Notice of Allowance dated Jul. 30, 2018 in U.S. Appl. No. 15/205,700.
USPTO; Notice of Allowance dated Aug. 6, 2018 in U.S. Appl. No. 15/233,882.
USPTO; Notice of Allowance dated Aug. 13, 2018 in U.S. Appl. No. 15/233,882.
USPTO; Notice of Allowance dated Aug. 13, 2018 in U.S. Appl. No. 15/233,946.
USPTO; Non-Final Office Action dated Aug. 31, 2018 in U.S. Appl. No. 15/234,490.
USPTO; Non-Final Office Action dated Sep. 11, 2018 in U.S. Appl. No. 15/406,515.
USPTO; Notice of Allowance dated May 22, 2018 in U.S. Appl. No. 15/435,884.
USPTO; Final Office Action dated Jun. 4, 2018 in U.S. Appl. No. 14/791,137.
USPTO; Notice of Allowance dated Jun. 5, 2018 in U.S. Appl. No. 13/841,938.
USPTO; Notice of Allowance dated Jun. 15, 2018 in U.S. Appl. No. 13/841,938.
USPTO; Non-Final Office Action dated Jun. 21, 2018 in U.S. Appl. No. 12/853,238.
USPTO; Notice of Allowance dated Jun. 22, 2018 in U.S. Appl. No. 13/841,938.
USPTO, Non-Final Office Action dated Jun. 28, 2018 in U.S. Appl. No. 14/791,166.
USPTO; Non-Final Office Action dated Jun. 28, 2018 in U.S. Appl. No. 15/431,596.
USPTO; Non-Final Office Action dated Jul. 2, 2108 in U.S. Appl. No. 15/619,289.
USPTO; Non-Final Office Action dated Jul. 6, 2018 in U.S. Appl. No. 15/902,444.
USPTO; Non-Final Office Action dated Jul. 11, 2018 in U.S. Appl. No. 15/339,624.
USPTO; Final Office Action dated Jul. 11, 2018 in U.S. Appl. No. 15/013,879.
USPTO; Non-Final Office Action dated Sep. 20, 2018 in U.S. Appl. No. 15/804,903.
USPTO; Notice of Allowance dated Sep. 25, 2018 in U.S. Appl. No. 14/791,166.
USPTO; Non-Final Office Action dated Oct. 5, 2018 in U.S. Appl. No. 16/030,547.
USPTO; Notice of Allowance dated Oct. 12, 2018 in U.S. Appl. No. 14/791,166.
USPTO; Non-Final Office Action dated Oct. 25, 2018 in U.S. Appl. No. 14/791,137.
USPTO; Ex Parte Quayle Action dated Nov. 7, 2018 in U.S. Appl. No. 15/332,163.
USPTO; Non-Final Office Action dated Nov. 7, 2018 in U.S. Appl. No. 15/205,700.
USPTO; Notice of Allowance dated Nov. 9, 2018 in U.S. Appl. No. 15/431,596.
USPTO; Notice of Allowance dated Mar. 12, 2018 in U.S. Appl. No. 15/209,660.
USPTO; Final Office Action dated Mar. 20, 2018 in U.S. Appl. No. 15/205,700.
USPTO; Final Office Action dated Apr. 25, 2018 in U.S. Appl. No. 15/233,946.
USPTO; Final Office Action dated Apr. 26, 2018 in U.S. Appl. No. 15/233,882.
USPTO; Notice of Allowance dated May 11, 2018 in U.S. Appl. No. 14/689,879.
USPTO; Final Office Action dated May 17, 2018 in U.S. Appl. No. 15/234,490.
USPTO; Non-Final Office Action dated May 18, 2018 in U.S. Appl. No. 14/745,845.
USPTO; Non-Final Office Action dated May 24, 2018 in U.S. Appl. No. 15/332,163.
USPTO; Notice of Allowance dated Mar. 4, 2019 in U.S. Appl. No. 15/205,700.
USPTO; Notice of Allowance dated Mar. 13, 2019 in U.S. Appl. No. 14/745,845.
USPTO; Notice of Allowance dated Mar. 13, 2019 in U.S. Appl. No. 15/902,444.
USPTO; Notice of Allowance dated Mar. 15, 2019 in U.S. Appl. No. 16/030,547.
USPTO; Notice of Allowance dated Mar. 18, 2019 in U.S. Appl. No. 15/205,700.
USPTO; Notice of Allowance dated Mar. 19, 2019 in U.S. Appl. No. 15/332,163.
USPTO; Notice of Allowance dated Mar. 20, 2019 in U.S. Appl. No. 15/234,490.
USPTO; Notice of Allowance dated Mar. 21, 2019 in U.S. Appl. No. 12/853,238.
USPTO; Notice of Allowance dated Apr. 5, 2019 in U.S. Appl. No. 15/902,444.
USPTO; Notice of Allowance dated Apr. 23, 2019 in U.S. Appl. No. 15/234,490.
USPTO; Notice of Allowance dated Apr. 18, 2019 in U.S. Appl. No. 15/205,700.
USPTO; Notice of Allowance dated Apr. 19, 2019 in U.S. Appl. No. 15/332,163.
USPTO; Final Office Action dated Nov. 30, 2018 in U.S. Appl. No. 14/745,845.
USPTO; Final Office Action dated Dec. 4, 2018 in U.S. Appl. No. 15/619,289.
USPTO; Notice of Allowance dated Dec. 13, 2018 in U.S. Appl. No. 15/406,515.
USPTO; Notice of Allowance dated Jan. 3, 2019 in U.S. Appl. No. 15/431,596.
USPTO; Notice of Allowance dated Jan. 8, 2019 in U.S. Appl. No. 15/339,624.
USPTO; Notice of Allowance dated Jan. 18, 2019 in U.S. Appl. No. 15/234,490.
USPTO; Non-Final Office Action dated Jan. 23, 2019 in U.S. Appl. No. 16/144,873.
USPTO; Notice of Allowance dated Jan. 28, 2019 in U.S. Appl. No. 16/030,547.
USPTO; Notice of Allowance dated Feb. 12, 2019 in U.S. Appl. No. 15/332,163.
USPTO; Notice of Allowance dated Feb. 21, 2019 in U.S. Appl. No. 15/902,444.
USPTO; Final Office Action dated Feb. 25, 2019 in U.S. Appl. No. 12/853,238.
USPTO; Non-Final Office Action dated Feb. 27, 2019 in U.S. Appl. No. 15/013,879.
USPTO; Office Action dated Jun. 13, 2019 in U.S. Appl. No. 15/804,903.
USPTO; Office Action dated Jun. 27, 2019 in U.S. Appl. No. 15/849,479.
USPTO; Office Action dated Aug. 2, 2019 in U.S. Appl. No. 16/415,271.
USPTO; Final Office Action dated Sep. 11, 2019 in U.S. Appl. No. 16/144,873.
USPTO; Ex Parte Quayle Action dated Jun. 5, 2019 in U.S. Appl. No. 15/619,289.
USPTO; Notice of Allowance dated Aug. 14, 2019 in U.S. Appl. No. 15/619,289.
USPTO; Notice of Allowance dated Jul. 25, 2019 in U.S. Appl. No. 14/791,137.
USPTO; Final Office Action dated Aug. 6, 2019 in U.S. Appl. No. 15/013,879.
Related Publications (1)
Number Date Country
20170082368 A1 Mar 2017 US
Provisional Applications (2)
Number Date Country
61240981 Sep 2009 US
61232384 Aug 2009 US
Divisions (1)
Number Date Country
Parent 12878984 Sep 2010 US
Child 13973962 US
Continuations (2)
Number Date Country
Parent 14923296 Oct 2015 US
Child 15371086 US
Parent 13973962 Aug 2013 US
Child 14923296 US
Continuation in Parts (1)
Number Date Country
Parent 12853255 Aug 2010 US
Child 12878984 US