The present disclosure relates generally to rotary drum apparatuses, and more particularly, relates to rotary drum apparatuses that are reconfigurable for advancing discrete lengths of elastic substrate of various sizes.
Along an assembly line, various types of articles, such as diapers and other absorbent articles, may be assembled by adding components to and otherwise modifying an advancing, continuous web of material. In some processes, advancing webs of material are combined with other advancing webs of material. In other processes, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheet, absorbent cores, front and/or back ears, fastener components, and various types of elastic webs and components such as leg elastics, barrier leg cuff elastics, and waist elastics. Once the desired component parts are assembled, the advancing web or webs and component parts are subjected to a final cut to separate the web or webs into discrete diapers or other absorbent articles. The discrete diapers or absorbent articles may also then be folded and packaged.
Some processes are configured to advance substrates on a rotating drum, and, in particular, to advance elastic substrates in a stretched state on the drum. The elastic substrate may be cut into discrete lengths of elastic substrate while advancing on the drum. Sometimes, the drum may include anvils for cutting the substrate while advancing on the drum. In some processes, the drum may include a vacuum system to hold the discrete lengths of elastic substrate in a stretched state on the drum. The drum may be configured for processing a particular size discrete length of elastic substrate. For example, anvils may be spaced circumferentially at predetermined distances around the drum for cutting the substrate into discrete lengths of elastic substrate of a predetermined size. In addition, the drum may include vacuum apertures configured to maintain stretch in a discrete length of elastic substrate of a predetermined size. Such drums may not be adaptable to or reconfigurable to accept more than one size discrete length of elastic substrate. As such, it may be necessary to change drums on an assembly line in order to process discrete lengths of elastic substrate of different sizes. For example, the size of a drum may increase as the size of the discrete lengths of elastic substrate increase. In turn, as the size of the drum increases, the mass may increase and so may the cost to manufacture the drum or drums. Additionally, a production line configured for one size drum may have to be reconfigured in order to operate in conjunction with a different size drum, which may include moving or replacing equipment. The process of replacing drums and reconfiguring the production line can be time consuming and labor intensive. Due to the size and mass of the drum, additional labor and/or mechanical assistance may be required to change the drums.
It may be desirable to provide a drum capable of processing discrete lengths of elastic substrate of various sizes, while maintaining the overall dimensions of the drum.
Aspects of the present disclosure involve rotary drum apparatuses that are reconfigurable for advancing and cutting substrates into discrete lengths of elastic substrate of various sizes. In one form, an apparatus comprises a drum rotatable about an axis of rotation. The rotary drum apparatus comprises a first set of first shell segments having a first number of first shell segments. Each first shell segment is releasably connectable with the drum, and each first shell segment has an outer surface. When the first number of the first shell segments are connected with the drum, the outer surfaces combine to form a continuous first outer circumferential surface defining a maximum radial distance from the axis of rotation. The rotary drum apparatus comprises a second set of second shell segments having a second number of shell segments, each second shell segment being releasably connectable with the drum, and each second shell segment having an outer surface. When the second number of the second shell segments are connected with the drum, the outer surfaces combine to form a continuous second outer circumferential surface located within 10% of the maximum radial distance. The first number of first shell segments is greater than the second number of second shell segments.
In another form, an apparatus comprises a shell member having a curved outer surface. The shell member defines a first end and a second end. The outer surface of the shell member comprises a plurality of vacuum apertures. The apparatus comprises a first support member that is releasably connectable with the first end of the shell member and a second support member that is releasably connectable with the second end of the shell member. The apparatus comprises an anvil releasably that is connectable with each of the first and second support members and located adjacent to the outer surface of the shell member. The apparatus comprises a grip plate that is connected with the outer surface of the shell member and located relatively near each of the first and second ends of the shell member. The grip plates define an outer edge, the outer edge of the grip plates having a rough surface. The apparatus comprises a vacuum member that is releasably connectable with the shell member. The vacuum apertures are in fluid communication with the vacuum member.
In another form, a method for configuring a rotary drum apparatus for advancing a discrete length of elastic substrate of substrate of a particular size comprises the steps of: providing a drum rotatable about an axis of rotation, the drum comprising a first set of first shell segments having a first number of first shell segments, each first shell segment releasably connectable with the drum, and each first shell segment having an outer surface, and when the first number of the first shell segments are connected with the drum, the outer surfaces combine to form a continuous first outer circumferential surface defining a maximum radial distance from the axis of rotation; removing the first set of shell segments from the drum; providing a second set of second shell segments having a second number of shell segments, each second shell segment releasably connectable with the drum, and each second shell segment having an outer surface, and when the second number of the second shell segments are connected with the drum, the outer surfaces combine to form a continuous second outer circumferential surface located within 10% of the maximum radial distance from the axis of rotation, wherein the first number of first shell segments is greater than the second number of second shell segments; and connecting the second set of second shell segments with the drum.
This application claims priority to U.S. Provisional Application Ser. No. 61/665,938, filed Jun. 29, 2012, which is hereby incorporated by reference in its entirety.
The following definitions may be useful in understanding the present disclosure:
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes.
“Diaper” is used herein to refer to an absorbent article generally worn by infants and incontinent persons about the lower torso.
“Disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after a single use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
“Disposed” is used herein to mean that an element(s) is formed (joined and positioned) in a particular place or position as a macro-unitary structure with other elements or as a separate element joined to another element.
“Joined” is used herein to encompass configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
“Radial” means a direction running from an axis of rotation of a drum toward an outer circumferential surface of the drum.
“Substrate” is used herein to describe a material which is primarily two-dimensional (i.e. in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e. 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a layer or layers or fibrous materials, films and foils such as plastic films or metallic foils that may be used alone or laminated to one or more web, layer, film and/or foil. As such, a web is a substrate.
“Nonwoven” refers herein to a material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as spunbonding, meltblowing, and the like. Nonwovens do not have a woven or knitted filament pattern.
An “elastic,” “elastomer” or “elastomeric” refers to any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force. The term “inelastic” refers herein to any material that does not fall within the definition of “elastic”.
“Activation” is the mechanical deformation of an extensible material that results in permanent elongation of the extensible material in the direction of activation in the X-Y plane of the material. For example, activation occurs when a web or portion of a web is subjected to a stress that causes the material to strain beyond the onset of plasticity, which may or may not include complete mechanical failure of the material or portion of the material. Activation of a layered elastic substrate that includes an elastic material joined to an extensible material typically results in the extensible material deforming plastically, while the elastic material returns substantially to its original dimension. “Activated” means a material that has been subjected to an activation process.
“Machine direction” (MD) is used herein to refer to the direction travel of a substrate through a process.
“Cross direction” (CD) is used herein to refer to a direction that is generally not parallel to, and usually perpendicular to, the machine direction in the XY plane of the material.
Aspects of the present disclosure involve apparatuses and methods utilizing continuous lengths of substrate for manufacturing absorbent articles, and more particularly, apparatuses for advancing continuous lengths of elastic substrate in a stretched state. As discussed below, such methods and apparatuses may include a rotary drum that may be configured for cutting an elastic substrate into discrete lengths of elastic substrate of a predetermined size while advancing the discrete length of elastic substrate on the drum. The rotary drum apparatus may be configured to apply vacuum to hold the discrete lengths of elastic substrate in a stretched state on the drum. The rotary drum apparatus may be reconfigured for cutting and maintaining stretch in advancing discrete lengths of elastic substrate of various sizes. More specifically, the apparatuses and methods may be useful for providing a rotary drum apparatus that is reconfigurable for handling discrete lengths of elastic substrate of various sizes while retaining the overall dimensions of the drum.
In general, a rotary drum apparatus may comprise a drum rotatable about an axis of rotation. The drum is defined by an inner circumferential surface located at an inner radial distance from the axis of rotation. The rotary drum apparatus may comprise a set of shell segments releasably connectable with the inner circumferential surface of the drum. The shell segments may be defined by an outer surface. The outer surface of the shell segments may be curved. The shell segments are configured to connect with the inner circumferential surface of the drum to form a continuous outer circumferential surface around the inner circumferential surface of the drum. The outer circumferential surface may be located at an outer radial distance from the axis of rotation. The outer radial distance defines a maximum radial distance from the axis of rotation. The rotary drum apparatus may include one or more sets of shell segments capable of forming the outer circumferential surface of the drum. Each set of shell segments may be releasably connectable with the drum to form an outer circumferential surface of the drum located within 10% of the maximum radial distance. Each set of shell segments may be configured for discrete lengths of elastic substrate of a predetermined size. Maintaining the overall dimensions of the drum with each set of shell segments allows for the simplified transformation of a production line for handling discrete lengths of elastic substrate of different sizes.
As discussed in more detail below, the shell segment includes a support member releasably connectable with the inner circumferential surface of the drum and a shell member releasably connectable with the support member. The shell members may be configured with vacuum apertures for applying vacuum pressure to hold the discrete lengths of elastic substrate in a stretched state on the outer circumferential surface of the drum. The vacuum apertures may be in fluid communication with a vacuum member that is located radially inward from the outer circumferential surface of the drum and releasably connectable with the shell member. The rotary drum apparatus may also include an anvil that is releasably connectable with the support member and located between adjacent shell members in the outer circumferential surface of the drum.
It is to be appreciated that although the methods and apparatuses herein may be configured to advance and cut various sizes of discrete lengths of elastic substrate, the methods and apparatuses are discussed below in the context of manufacturing absorbent articles. In particular, the methods and apparatuses are discussed in the context of advancing and cutting continuous lengths of elastic substrate into discrete lengths of elastic substrate in the form of elastic waistbands. While the present disclosure relates mainly to advancing discrete lengths of elastic substrate such as waistbands to be joined with absorbent articles, it is to be appreciated that the methods and apparatuses disclosed herein can also be used for advancing and cutting other components used on diapers as well as other types of absorbent articles. For example, elastic components can include pre-stretched ears or side panels, leg cuffs, and elasticized topsheets. While the methods and apparatuses herein are discussed in the context of discrete lengths of elastic substrate, it is to be appreciated that the present invention may be used to advance and cut inelastic substrates into discrete components of various sizes. Inelastic components may include backsheets, topsheet, absorbent cores, front and/or back ears, and fastener components.
In one exemplary configuration,
With continuing reference to
It is to be appreciated that the discrete lengths of elastic substrate may be transferred from the drum to other processing stations. For example, as shown in
The rotary drum apparatus 110 may be used with various methods and apparatuses for joining discrete lengths of elastic substrate to an advancing substrate such as those described in U.S. Provisional Patent No. 61/665,930; U.S. Provisional Patent Application No. 61/665,928; U.S. Provisional Patent Application No. 61/665,933; U.S. Provisional Application No. 61/666,087; U.S. Pat. No. 5,693,165; U.S. Pat. No. 6,596,108; U.S. Pat. No. 6,494,244; U.S. Pat. No. 7,811,403; and U.S. Publication Nos. 2010/0252603 and 2009/0294044, for example.
With continuing reference to
With reference back to
As shown in
With reference to
As discussed above, with continuing reference to
The anvil 140 may extend the entire width W of the shell segment 122. The outer surface 146a of the anvil may be located at the outer radial distance RO that is the same radial distance as the outer surface 129 of the adjacent shell members 121 such that the outer circumferential surface 130 of the drum 112 is continuous. The outer surface 146 of the anvil 140 may be curved or flat. The anvil 140 may be positioned along the outer circumferential surface 130 of the drum 112 where the elastic substrate is to be cut into discrete lengths of elastic substrate. The anvil 140 may be made of any suitable material capable of withstanding pressure and generation of heat from the cutter such as tool steel or carbide.
As shown in
With reference to
With reference to
As shown in
As shown in
A number of different products may be manufactured in accordance with the methods and apparatuses described herein. For the purposes of a specific illustration,
As shown in
Although the first and second ears 256, 258 as well as the third and fourth ears 260, 262 shown in
As shown in
The diaper may be provided in the form of a pant-type diaper or may alternatively be provided with a re-closable fastening system, which may include fastener elements in various locations to help secure the diaper in position on the wearer. For example, fastener elements may be located on the first and second ears and may be adapted to releasably connect with one or more corresponding fastening elements located in the second waist region. It is to be appreciated that various types of fastening elements may be used with the diaper. In one example, the fastening elements include hook & loop fasteners, such as those available from 3M or Velcro Industries. In other examples, the fastening elements include adhesives and/or tap tabs, while others are configured as a macrofastener or hook (e.g., a MACRO or “button-like” fastener). Some exemplary fastening elements and systems are disclosed in U.S. Pat. Nos. 3,848,594; 4,662,875; 4,846,815; 4,894,060; 4,946,527; 5,151,092; and 5,221,274. Additional examples of fasteners and/or fastening elements are discussed in U.S. Pat. Nos. 6,251,097 and 6,432,098; and U.S. Patent Publication Nos. 2007/0078427 and 2007/0093769. Other fastening systems are described in more detail in U.S. Pat. Nos. 5,595,567; 5,624,427; 5,735,840; and 5,928,212. The fastening system may also provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140.
The absorbent article may also include discrete lengths of elastic substrate 102a and 102b such as shown in
The first and second waistbands 294a and 294b can be incorporated into the diaper in accordance with the methods discussed herein and may extend at least longitudinally outwardly from the absorbent core 292 and generally form at least a portion of the first and/or second outer edges 278, 280 of the diaper 252. In addition, the first and second waistbands 294a and 294b may extend laterally to include the ears. In addition, the first and second waistbands 294a and 294b may be disposed on the outer, garment-facing surface 284 of the chassis 254; the inner, body-facing surface 282; or between the inner and outer facing surfaces. It is to be appreciated that the first waistband 294a and the second waistband 294b shown in
The discrete lengths of elastic substrate may comprise various materials and/or layers of materials. For example, the substrate may include an elastic material interposed between layers of nonwovens webs. Nonwoven webs include, for example, natural materials (e.g., wood or cotton fibers), synthetic fibers (e.g., polyolefins, polyamides, polyester, polyethylene, or polypropylene fibers) or a combination of natural and/or synthetic fibers. The elastic material may comprise elastic strands, ribbons, films, or combinations thereof. In some examples, the substrate may be constructed from a single elastic or poly film (e.g., polyethylene or polypropylene). In yet other examples, the substrate may be constructed from a single layer nonwoven or activated nonwoven.
Exemplary nonwoven webs include spunbond-meltblown-meltblown-spunbond (SMMS) nonwovens having a basis weight of 10 grams per square meter (gsm) and spunbond-meltblown-spunbond (SMS) nonwovens having a basis weight of 10 gsm, both of which are manufactured by Avgol Ltd. of Tel Aviv, Israel. Other exemplary nonwoven webs include spunbond-meltblown-meltblown-meltblown-spunbond (SMMMS) nonwovens having a basis weight of 11 gsm, which is manufactured by Fibertex Nonwovens A/S of Aalborg, Denmark. Exemplary elastic strands have a mass-density of 680 decitex and are manufactured by Hyousong of Seoul, Korea. Other exemplary elastic strands have a decitex of 680 and are manufactured by Invista of Wichita, Kans. under the designation Lycra®.
Components of the disposable absorbent article (i.e., diaper, disposable pant, adult incontinence article, sanitary napkin, pantiliner, etc.) described in this specification can at least partially be comprised of bio-sourced content as described in US 2007/0219521A1 Hird, et al published on Sep. 20, 2007, US 2011/0139658A1 Hird, et al published on Jun. 16, 2011, US 2011/0139657A1 Hird, et al published on Jun. 16, 2011, US 2011/0152812A1 Hird, et al published on Jun. 23, 2011, US 2011/0139662A1 Hird, et al published on Jun. 16, 2011, and US 2011/0139659A1 Hird, et al published on Jun. 16, 2011. These components include, but are not limited to, topsheet nonwovens, backsheet films, backsheet nonwovens, side panel nonwovens, barrier leg cuff nonwovens, super absorbent, nonwoven acquisition layers, core wrap nonwovens, adhesives, fastener hooks, and fastener landing zone nonwovens and film bases.
In at least one exemplary configuration, a disposable absorbent article component comprises a bio-based content value from about 10% to about 100% using ASTM D6866-10, method B, in another embodiment, from about 25% to about 75%, and in yet another embodiment, from about 50% to about 60% using ASTM D6866-10, method B.
In order to apply the methodology of ASTM D6866-10 to determine the bio-based content of any disposable absorbent article component, a representative sample of the disposable absorbent article component must be obtained for testing. In at least one embodiment, the disposable absorbent article component can be ground into particulates less than about 20 mesh using known grinding methods (e.g., Wiley® mill), and a representative sample of suitable mass taken from the randomly mixed particles.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3674194 | Moesser | Jul 1972 | A |
3848594 | Buell | Nov 1974 | A |
3860003 | Buell | Jan 1975 | A |
3911173 | Sprague, Jr. | Oct 1975 | A |
3929135 | Thompson | Dec 1975 | A |
4324246 | Mullane et al. | Apr 1982 | A |
4342314 | Radel et al. | Aug 1982 | A |
4381781 | Sciaraffa et al. | May 1983 | A |
4463045 | Ahr et al. | Jul 1984 | A |
4573986 | Minetola et al. | Mar 1986 | A |
4609518 | Curro et al. | Sep 1986 | A |
4610678 | Weisman et al. | Sep 1986 | A |
4629643 | Curro et al. | Dec 1986 | A |
4662875 | Hirotsu et al. | May 1987 | A |
4673402 | Weisman et al. | Jun 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4785996 | Ziecker et al. | Nov 1988 | A |
4795454 | Dragoo | Jan 1989 | A |
4808178 | Aziz et al. | Feb 1989 | A |
4834735 | Alemany et al. | May 1989 | A |
4842666 | Werenicz | Jun 1989 | A |
4846815 | Scripps | Jul 1989 | A |
4857067 | Wood et al. | Aug 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4894060 | Nestegard | Jan 1990 | A |
4909803 | Aziz et al. | Mar 1990 | A |
4925520 | Beaudoin et al. | May 1990 | A |
4946527 | Battrell | Aug 1990 | A |
4963140 | Robertson et al. | Oct 1990 | A |
4988344 | Reising et al. | Jan 1991 | A |
4988345 | Reising | Jan 1991 | A |
5006394 | Baird | Apr 1991 | A |
5137537 | Herron et al. | Aug 1992 | A |
5147345 | Young et al. | Sep 1992 | A |
5151092 | Buell et al. | Sep 1992 | A |
5221274 | Buell et al. | Jun 1993 | A |
5260345 | Desmarais et al. | Nov 1993 | A |
5342338 | Roe | Aug 1994 | A |
5380104 | Garnett | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5518801 | Chappell et al. | May 1996 | A |
5562646 | Goldman et al. | Oct 1996 | A |
5571096 | Dobrin et al. | Nov 1996 | A |
5580411 | Nease et al. | Dec 1996 | A |
5595567 | King et al. | Jan 1997 | A |
5624427 | Bergman et al. | Apr 1997 | A |
5650222 | Desmarais et al. | Jul 1997 | A |
5669894 | Goldman et al. | Sep 1997 | A |
5674216 | Buell et al. | Oct 1997 | A |
5691035 | Chappell et al. | Nov 1997 | A |
5693165 | Schmitz | Dec 1997 | A |
5723087 | Chappell et al. | Mar 1998 | A |
5735840 | Kline et al. | Apr 1998 | A |
5836500 | Jourde | Nov 1998 | A |
5865823 | Curro | Feb 1999 | A |
5916663 | Chappell et al. | Jun 1999 | A |
5928212 | Kline et al. | Jul 1999 | A |
5941864 | Roe | Aug 1999 | A |
6004306 | Roe et al. | Dec 1999 | A |
6010491 | Roe et al. | Jan 2000 | A |
6027483 | Chappell et al. | Feb 2000 | A |
6251097 | Kline et al. | Jun 2001 | B1 |
6414215 | Roe | Jul 2002 | B1 |
6432098 | Kline et al. | Aug 2002 | B1 |
6441266 | Dyer et al. | Aug 2002 | B1 |
6494244 | Parrish et al. | Dec 2002 | B2 |
6573423 | Herrlein et al. | Jun 2003 | B1 |
6596108 | McCabe | Jul 2003 | B2 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6739489 | Nicolai et al. | May 2004 | B1 |
7811403 | Andrews | Oct 2010 | B2 |
8377249 | Gill | Feb 2013 | B2 |
20040162536 | Becker et al. | Aug 2004 | A1 |
20040167486 | Busam et al. | Aug 2004 | A1 |
20050215972 | Roe et al. | Sep 2005 | A1 |
20050215973 | Roe et al. | Sep 2005 | A1 |
20060189956 | Vatansever | Aug 2006 | A1 |
20070078427 | Raycheck et al. | Apr 2007 | A1 |
20070093769 | Kline et al. | Apr 2007 | A1 |
20070142798 | Goodlander et al. | Jun 2007 | A1 |
20070142806 | Roe et al. | Jun 2007 | A1 |
20070219521 | Hird et al. | Sep 2007 | A1 |
20070287348 | Autran et al. | Dec 2007 | A1 |
20070287982 | Lodge et al. | Dec 2007 | A1 |
20070287983 | Autran et al. | Dec 2007 | A1 |
20090294044 | Gill | Dec 2009 | A1 |
20100252603 | Gill | Oct 2010 | A1 |
20110139657 | Hird et al. | Jun 2011 | A1 |
20110139658 | Hird et al. | Jun 2011 | A1 |
20110139659 | Hird et al. | Jun 2011 | A1 |
20110139662 | Hird et al. | Jun 2011 | A1 |
20110152812 | Hird et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
0 565 606 | Mar 1995 | EP |
2 460 645 | Jun 2012 | EP |
2 554 145 | Feb 2013 | EP |
WO 199516746 | Jun 1995 | WO |
WO 2000002727 | Jan 2000 | WO |
WO 2005035414 | Apr 2005 | WO |
WO 2006015141 | Feb 2006 | WO |
WO 2009083791 | Jul 2009 | WO |
WO 2009146307 | Dec 2009 | WO |
Entry |
---|
PCT/US2013/048583 PCT/International Search Report, dated Oct. 15, 2013. |
U.S. Appl. No. 13/929,854, filed Jun. 28, 2013, Mark Mason Hargett. |
Number | Date | Country | |
---|---|---|---|
20140005019 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61665938 | Jun 2012 | US |