Information
-
Patent Grant
-
6740022
-
Patent Number
6,740,022
-
Date Filed
Wednesday, January 8, 200321 years ago
-
Date Issued
Tuesday, May 25, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Kim; Eugene
- Harmon; Christopher R
Agents
-
CPC
-
US Classifications
Field of Search
US
- 493 424
- 493 425
- 493 426
- 493 3
- 493 23
- 493 24
- 493 34
- 493 454
-
International Classifications
-
Abstract
A rotary drum of the folding device includes a reference portion having a rotating shaft and a basic body rotated integrally with the rotating shaft an adjusted portion able to be rotated integrally with the reference portion and arranged so as to be displaced with respect to the reference portion; an adjusting operation mechanism having a driving source for displacing the adjusted portion with respect to the reference portion, a power source arranged in the reference portion, a control board additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine for wirelessly transmitting an operation signal to the control board; and an adjusting transmission mechanism for transmitting a movement of the driving source to the adjusted portion; wherein electric power is supplied from the power source to the driving source, and the driving source is operated by a wireless signal from the adjusting operation mechanism.
Description
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
Japan Priority Application 2000-240778, filed Aug. 9, 2000 including the specification, drawings, claims and abstract, is incorporated herein by reference in its entirety. This application is a Division of U.S. application Ser. No. 09/906,736, filed Jul. 18, 2001 U.S. Pat. No. 6,511,409, incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
This invention relates to a rotary drum of a folding device of a rotary press having an adjusting mechanism necessary to make an adjustment during, e.g., a gripper drum of able to adjust the distance between a fixing side and an open-close side of a gripper mechanism, and a folding drum able to adjust an outside diameter of the drum.
BACKGROUND OF THE INVENTION
The construction of a folding device is complicated and its failure probability is high. Further, since electric power and a control signal are supplied by mechanical contact, sparks and noises are caused and a fire is caused and an error in operation of a control circuit is caused.
A gripper drum able to adjust the distance between a fixing side and an open-close side of a gripper mechanism is arranged in a device shown in Japanese Patent No. 2848982 (prior art 1).
In the prior art 1, two drum portions are arranged on the same axis as a shaft of the gripper drum and can be rotated around this shaft. The open-close side of the gripper mechanism is arranged in one of these two drum portions, and the fixing side of the gripper mechanism is arranged in the other. A spur gear is arranged in the shaft of the gripper drum, and a helical gear is arranged in one drum portion. These gears are individually engaged with each other. The shaft of the gripper drum and one drum portion can be integrally rotated through gears integrally rotated. The integrally rotated gears are moved in parallel with their rotation central line. Thus, one drum portion is connected to a portion around the shaft of the gripper drum by the action of a torsion angle of the helical gear such that this one drum portion can be angularly displaced. The other drum portion is arranged in a disk integrated with the shaft of the gripper drum, and is integrally and rotatably connected to the shaft of the gripper drum and the one drum portion through a gear group arranged between the one drum portion and the other drum portion. The other drum portion is also connected to a portion around the shaft of the gripper drum in a direction reverse to the one drum portion so as to be angularly displaced in accordance with thee angular displacement around the shaft of the gripper drum of the one drum portion.
Helical gears having torsion in directions reverse to each other are separately arranged in accordance with the spur gear formed in the shaft of the gripper drum in the one drum portion and the other drum portion. These, i.e., the spur gear arranged in the shaft of the gripper drum, and the helical gear arranged in the one drum portion and the helical gear arranged in the other drum portion are individually engaged with each other. The shaft of the gripper drum and the two drum portions can be integrally rotated through gears integrally rotated. Further, the integrally rotated gears are moved in parallel with their rotation central axis. The two drum portions are connected by this movement to each other around the shaft of the gripper drum so as to be angularly displaced in directions reverse to each other by the action of a torsion angle of the helical gear.
A folding drum able to adjust its outside diameter is known in Japanese Patent No. 2788321 (prior art 2). In a device described in the prior art 2, an outer circumferential face of the folding drum having plural folding mechanisms in equal divisional positions is divided into two portions between two adjacent folding mechanisms. A portion adjacent to an upstream side of the folding mechanisms in a rotating direction of the folding drum among these two divided portions is rotatably supported with an axis parallel to that of the folding drum as a center. A rear end portion of this outer circumferential portion is movably arranged toward a radial outer side by an adjusting device as an eccentric shaft. The remaining outer circumferential portion is fixedly arranged.
In a state in which the rotation of the folding drum is stopped, the diameter of the folding drum is adjusted by individually rotating the eccentric shaft by a tool. A gear is attached to an end portion of the eccentric shaft, and a rack portion engaged with this gear is arranged. Further, an adjusting ring having a rotation center common to the folding drum and able to be rotated with respect to the folding drum is arranged. The adjusting ring is rotated with respect to the folding drum by an electric motor having this adjusting ring within the folding drum, and the respective eccentric shafts of the plural folding mechanisms are simultaneously rotated so that the outside diameter of the folding drum is adjusted.
The devices shown in the prior arts 1 and 2 have the following problems to be solved. In the device shown in the prior art 1, the two drum portions can be simultaneously rotated as if these two drum portions were integrated with the shaft of the gripper drum. Further, it is necessary to arrange a relatively large gear having the same pitch circle diameter in the gripper drum shaft and the two drum portions so as to angularly displace the rotating two drum portions around the gripper drum shaft from an outer side of the gripper drum in directions reverse to each other. Furthermore, it is necessary to arrange plural gears individually engaged with these gears and integrally rotated around the same rotation center, and arrange a mechanism for displacing these plural gears along their rotation center line while these plural gears are rotated. Therefore, the device construction becomes complicated, and failure probability is increased. Further, maintenance is complicated since many parts are assembled into a narrow space between the gripper drum and a frame. Furthermore, the number of parts is large, and processing and assembly are complicated so that a relatively large number of processes are required, and manufacturing cost is high.
The device disclosed in the prior art 2 solves the problems caused by complication of the construction of the prior art 1 and a large number of parts. However, in the construction adjusted by a manual work using a tool, it is necessary to stop the rotation of the folding drum every adjustment, and working efficiency is extremely low. In the construction for operating the adjusting mechanism by the electric motor arranged within the folding drum, it is difficult to supply electric power to the electric motor and supply a control signal to the electric motor so that there is a fear that no accurate adjustment is made. Namely, in the construction for operating the adjusting mechanism shown in the prior art 2 by the electric motor arranged within the folding drum, there is no special device for supplying electric power to the electric motor arranged within the folding drum of a rotating body and supplying the control signal. Accordingly, it is considered that these electric power and control signal are supplied by using a general slip ring. However, this slip ring is used to supply electric power and the control signal by mechanical contact using a brush. Therefore, there are many cases in which sparks and noises are caused. Accordingly, there is a fear of generation of a fire and an error in operation of a control circuit is caused. Further, the slip ring is low in durability of the mechanical contact using the brush. One slip ring for high speed rotation sold at a market is about 300 r.p.m., and has only 20000 thousand rotations in durability. Accordingly when this slip ring is used in the folding device of the rotary press, it is necessary to exchange or maintain the slip ring every half a year in an operation in which the folding device is operated for six hours per one day. Therefore, in the meantime, the operation of the folding device is stopped so that working efficiency is reduced.
SUMMARY OF THE INVENTION
To solve the above problems, the present invention proposes a rotary drum of a folding device comprising a reference portion having a rotating shaft and a basic body rotated integrally with the rotating shaft; an adjusted portion able to be rotated integrally with the reference portion and arranged so as to be displaced with respect to the reference portion; an adjusting operation mechanism having a driving source for displacing the adjusted portion with respect to the reference portion, a power source arranged in the reference portion, a control board additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine for wirelessly transmitting an operation signal to the control board; and an adjusting transmission mechanism for transmitting a movement of the driving source to the adjusted portion; wherein electric power is supplied from the power source to the driving source, and the driving source is operated by a wireless signal from the adjusting operation mechanism.
The present invention also provides a rotary drum of a folding device comprising a reference portion having a rotating shaft and a basic body rotated integrally with the rotating shaft; an adjusted portion able to be rotated integrally with the reference portion and arranged so as to be displaced with respect to the reference portion, and having a shaft arranged in the basic body and displaced by a torsion spring in one direction, an eccentric portion arranged in the shaft, a block member arranged rotatably with respect to the eccentric portion, and an outer circumferential member spanned between a pair of block members; an adjusting operation mechanism having an electric motor as a driving source for displacing the adjusted portion with respect to the reference portion, a power source arranged in the reference portion, a control board additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine for wirelessly transmitting an operation signal to the control board; and an adjusting transmission mechanism having a worm arranged in an output shaft of the electric motor to transmit a movement of the electric motor to the adjusted portion, a worm wheel engaged with the worm and attached so as to be rotated integrally with the rotating shaft, a first gear able to be rotated with respect to the rotating shaft and attached to the electric motor, and a second gear engaged with the first gear and attached so as to be rotated integrally with the shaft; wherein electric power is supplied from the power source to the electric motor, and the electric motor is operated by a wireless signal from the adjusting operation mechanism.
Further, the present invention provides a rotary drum of a folding device comprising a reference portion having a rotating shaft and a basic body rotated integrally with the rotating shaft; an adjusted portion able to be rotated integrally with the reference portion and arranged so as to be displaced with respect to the reference portion, and having pairs of first and second side plates arranged rotatably with respect to the basic body on both sides of the basic body, a third side plate attached to the other side of the basic body from outer sides of these first and second side plates and able to be rotated integrally with the basic body, an adjusting shaft rotatably arranged in the basic body and the third side plate, a first eccentric cam attached through a first slip member movable only in a radial direction of the first side plate in a position of the adjusting shaft corresponding to the first side plate, a second eccentric cam attached through a second slip member movable only in a radial direction of the second side plate in a position of the adjusting shaft corresponding to the second side plate, an angular displacement shaft able to be angularly displaced and spanned between the first side plates, a displacing member attached to the angular displacement shaft, and a fixing member fixedly arranged so as to be opposed to the displacing member between the second side plates; an adjusting operation mechanism having an electric motor attached to the third side plate as a driving source for displacing the adjusted portion with respect to the reference portion, a power source arranged in the reference portion, a control board additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine for wirelessly transmitting an operation signal to the control board; an adjusting transmission mechanism having a worm arranged in an output shaft of the electric motor to transmit a movement of the electric motor to the adjusted portion, and a worm wheel engaged with the worm and attached so as to be rotated integrally with the adjusting shaft; wherein electric power is supplied from the power source to the electric motor, and the electric motor is operated by a wireless signal from the adjusting operation mechanism.
In the above rotating drum of the folding device, the power source can be constructed by a generator constructed by a magnet externally fixed and a winding portion surrounding the magnet in a state close to a peripheral portion of the magnet such that the winding portion can be rotated together with the reference portion. The power source can be also constructed by a rotary transformer in which a coil is wound around each cut iron core portion, and one side is set to a fixing winding portion externally fixed and able to supply electric power from the exterior, and the other side is a rotation winding portion able to be rotated together with the reference portion.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a cross-sectional view schematically taken along an arrow I—I of
FIG. 2
in parallel therewith in a first embodiment mode of a rotary drum of a folding device in the present invention.
FIG. 2
is a cross-sectional view taken along an arrow II—II of FIG.
1
.
FIG. 3
is a cross-sectional view schematically taken along an arrow III—III of
FIG. 4
in parallel therewith in a second embodiment mode of the rotary drum of the folding device of the present invention.
FIG. 4
is a partial sectional view taken along an arrow IV—IV of FIG.
3
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A first embodiment mode of a rotary drum of a folding device in the present invention will be explained on the basis of
FIGS. 1 and 2
.
FIG. 1
is a cross-sectional view schematically taken along an arrow I—I of
FIG. 2
in parallel therewith.
FIG. 2
is a cross-sectional view taken along an arrow II—II of
FIG. 1. A
second embodiment mode of the rotary drum of the folding device of this invention will be explained on the basis of
FIGS. 3 and 4
.
FIG. 3
is a cross-sectional view schematically taken along an arrow III—III of
FIG. 4
in parallel therewith.
FIG. 4
is a partial sectional view taken along an arrow IV—IV of FIG.
3
.
First, the first embodiment mode of this invention will be explained on the basis of
FIGS. 1 and 2
. A folding drum
1
as a rotary drum has a reference portion, an adjusted portion, an adjusting operation mechanism, and an adjusting transmission mechanism. The reference portion has a basic body
10
and a rotating shaft
11
. The adjusted portion has shafts
14
a
,
14
b
able to be rotated integrally with the reference portion and arranged in the basic body
10
so as to be displaced with respect to the reference portion. The adjusted portion also has an eccentric portion
15
, a block member
16
, an outer circumferential member
17
and a torsion spring
18
. The adjusting operation mechanism has an electric motor
31
as a driving source for displacing the adjusted portion with respect to the reference portion, a generator
34
as a power source arranged in the reference portion, a control board
32
additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine
33
for wirelessly transmitting an operation signal to the control board
32
. The adjusting transmission mechanism has a warm (i.e., worm)
19
, a warm (i.e., worm) wheel
20
, a first gear
21
and a second gear
22
to transmit a movement of the electric motor
31
to the adjusted portion.
The basic body
10
is formed between side plates
12
a
and
12
b
arranged on both axial sides of the basic body
10
such that plural grooves
13
parallel to the rotating shaft
11
are opened to an outer circumferential face of the basic body
10
. In this embodiment mode, the number of grooves
13
is set to three. In each of the three grooves
13
, a pair of shafts
14
a
,
14
b
are supported between both the side plates
12
a
and
12
b
and are also supported by an intermediate support plate
12
c
so as to be angularly displaced. One end of each of the shafts
14
a
,
14
b
is projected outward from the side plate
12
a
. A rotatable second gear
22
is arranged in a projecting portion of each of the shafts
14
a
,
14
b
projected outward from the side plate
12
a
, and is angularly displaced integrally with each of the shafts
14
a
,
14
b
. The eccentric portion
15
is arranged between the intermediate support portion
12
c
of each of the shafts
14
a
,
14
b
and each of both the side plates
12
a
,
12
b
so as to be angularly displaced integrally with the shafts
14
a
,
14
b.
Plural block members
16
are arranged in the eccentric portion
15
of each of the shafts
14
a
,
14
b
so as to be rotated with respect to the eccentric portion
15
. In this embodiment mode, the number of block members
16
arranged in the eccentric portion
15
of each of the shafts
14
a
,
14
b
is set to six. Each of the block members
16
is relatively arranged with respect to the pair of shafts
14
a
,
14
b
. An outer circumferential portion is spanned between the pair of corresponding block members
16
and
16
. Each outer circumferential member
17
has an outer circumferential face approximately aligned with a columnar outer circumferential face of the basic body
10
in a state in which the outer circumferential member
17
is attached to the pair of block members
16
,
16
.
A torsion spring
18
is attached to each of the shafts
14
a
,
14
b
and gives biasing force for displacing each of these shafts in one direction at any time. Further, in a state in which the second gear
22
arranged in an end portion of each of the shafts
14
a
,
14
b
projected onto an outer side of the side plate
12
a
is engaged with the first gear
21
, rotating phases of the two shafts
14
a
,
14
b
every pair are set to be approximately in conformity with each other. The height of an arc outer circumferential face of the outer circumferential member
17
attached to three pairs of the shafts
14
a
,
14
b
through the block member
16
is approximately conformed to that of the columnar outer circumferential face of the basic body
10
.
The reference portion is constructed by the basic body
10
having the columnar outer circumferential face and the rotating shaft
11
rotated integrally with the basic body. The worm wheel
20
and the first gear
21
are attached to the rotating shaft
11
. The worm wheel
20
is rotated integrally with the rotating shaft
11
and is set to an origin of the adjusting transmission mechanism. The first gear
21
can be rotated with respect to the rotating shaft
11
and constitutes one portion of the adjusting transmission mechanism. The worm wheel
20
and the first gear
21
are sequentially arranged from a frame Fa side. The rotating shaft
11
is rotatably supported by frames Fa, Fb, and a driven gear
2
is attached to one side of the rotating shaft
11
projected outward from the frame Fb. The rotating shaft
11
is rotated by driving force from an unillustrated driving means through the driven gear
2
.
The electric motor
31
as a driving source is attached to a side face of the first gear
21
opposed to the frame Fa. The control board
32
able to wirelessly transmit and receive signals is additionally arranged in the electric motor
31
, and is operated on the basis of a control signal from the external wireless operation machine
33
as one portion of the adjusting operation mechanism
3
. For example, the electric motor
31
has a speed reduction function, and uses a type having a feedback function in which a rotating amount can be fed back to the wireless operation machine
33
through the control board
32
additionally arranged.
The worm
19
constituting the adjusting transmission mechanism is attached to an output shaft of the electric motor
31
, and is engaged with the worm wheel
20
. Since the worm
19
is engaged with the worm wheel
20
, the first gear
21
can be rotated integrally with the rotating shaft
11
through the electric motor
31
, the worm
19
and the worm wheel
20
.
The adjusting operation mechanism
3
has the electric motor
31
as a driving source, the control board
32
additionally arranged in the electric motor
31
and having a wireless transmitting and receiving function, the wireless operation machine
33
operated by a wireless operation signal from the exterior, and the generator
34
operated by rotating the folding drum
1
as a rotary drum.
The generator
34
has a columnar magnet
36
fixed to the frame Fa through a sleeve S and a support case
37
so as to have the same center line as a rotation center line of the rotating shaft
11
. The generator
34
also has a winding portion
35
attached to the rotating shaft
11
as the reference portion of the rotary drum through the support member
38
, and rotated integrally with the rotating shaft
11
around the same center line as the rotating shaft
11
. The winding portion
35
surrounds a peripheral portion of the magnet
36
. Electric power is generated in the winding portion
35
by rotating the winding portion
35
around the magnet
36
as the rotating shaft
11
is rotated.
In
FIGS. 1 and 2
, the generator
34
can be also replaced by a transformer, e.g., a rotary transformer, etc. When the generator
34
is replaced by the rotary transformer, a primary coil side is set to a fixing winding portion externally fixed, and is arranged such that electric power can be supplied from the exterior to this primary coil side. A secondary coil side is arranged as a rotation winding portion able to be rotated together with the rotating shaft. When electric power is supplied to the primary coil side constructed in this way, electric power determined by winding numbers of both the coils is obtained in the secondary coil irrespective of the rotation of the rotating shaft
11
.
In this embodiment mode, the electric motor
31
is a pulse motor with a speed reduction gear. The electric motor
31
is operated by the wireless operation machine
33
having a wireless transmitting and receiving function for operating the electric motor
31
through the control board
32
. A radio wave is generally utilized as a wireless communication medium between the wireless operation machine
33
and the control board
32
, but various kinds of communication means such as an ultrasonic wave, light, etc. can be also used.
The folding drum
1
has a paper holding mechanism, a folding blade driving mechanism, a timing adjusting mechanism, etc. although such mechanisms are not illustrated. The paper holding mechanism holds overlapped paper as a folded object to introduce this paper onto the outer circumferential face of the folding drum
1
. The folding blade driving mechanism pushes up a folding portion of the overlapped paper by a folding blade projected from the outer circumferential face of the folding drum
1
. The timing adjusting mechanism adjusts operation timings of these mechanisms.
An operation of the rotary drum in the first embodiment mode of this invention will next be explained. The folding drum
1
as the rotary drum is rotated by the driven gear
2
rotated by an unillustrated driving means, and folds overlapped paper in cooperation with an adjacent drum such as a gripper drum, etc. In this operation, the worm wheel
20
attached to the rotating shaft
11
is rotated in alignment with the basic body
10
. The first gear
21
rotatably attached to the rotating shaft
11
is connected to the electric motor
31
attached to a side face of the first gear
21
, the worm
19
attached to the output shaft of the electric motor
31
, and the worm wheel
20
engaged with the worm
19
. Accordingly, the first gear
21
is rotated at the same angular velocity as the worm wheel
20
, i.e., is rotated integrally with the rotating shaft
11
. Further, since the second gear
22
engaged with the first gear
21
is attached to the basic body
10
rotated at the same angular velocity as the first gear
21
, no second gear
22
itself is rotated, and no shafts
14
a
,
14
b
attached to the second gear
22
are rotated.
In this state, when it is necessary to adjust an outside diameter of the folding drum
1
in accordance with a thickness of the overlapped paper folded by the folding drum
1
, the adjustment is made by the adjusting operation mechanism
3
as follows. Namely, a predetermined desirable operation signal is first wirelessly transmitted to the control board
32
of the electric motor
31
using the wireless operation machine
33
. The control board
32
receiving the operation signal outputs an operation signal for controlling an operation of the electric motor
31
to the electric motor
31
in accordance with the received operation signal. The electric motor
31
is rotated in accordance with the operation signal. The electric motor
31
outputs a feedback signal proportional to an operating amount of the electric motor
31
by an unillustrated attached rotary encoder. This feedback signal is converted by the control board
32
to a signal relating to a rotating amount of the electric motor
31
, and is wirelessly transmitted by the control board
32
, and is used to notify the rotating amount of the electric motor
31
to an operator through the wireless operation machine
33
.
Electric power for operating the electric motor
31
and the control board
32
is supplied from the generator
34
or a transformer (rotary transformer) additionally arranged in the folding drum
1
. Namely, the magnet
36
fixed to the frame Fa is surrounded through the support case
37
and the sleeve S in the generator
34
, and the winding portion
35
fixed to an end portion of the rotating shaft
11
through the support member
38
is rotated as the rotating shaft
11
is rotated. Thus, an electric current flows through the winding portion
35
moving across a magnetic line. This electric current is supplied to the control board
32
and the electric motor
31
by a conductive lead
39
, and is used as electric power for operating the control board
32
and the electric motor
31
. When the electric motor
31
is rotated, the worm
19
attached to the output shaft of the electric motor
31
is rotated and begins to rotate the worm wheel
20
engaged with this worm
19
. However, the worm wheel
20
is attached to the rotating shaft
11
so as not to be rotated. In contrast to this, the electric motor
31
attaching the worm
19
thereto can be rotated with respect to the rotating shaft
11
through the first gear
21
. Therefore, the worm
19
, the electric motor
31
and the first gear
21
are rotated and displaced integrally with the rotating shaft
11
. While the worm
19
, etc. are rotated and displaced, the worm
19
is engaged with the worm wheel
20
and is displaced along a circumferential face of the worm wheel
20
.
When the first gear
21
is rotated and displaced with respect to the rotating shaft
11
, a rotating phase of the first gear
21
is changed with respect to the rotation of the basic body
10
. Thus, plural second gears
22
engaged with the first gear
21
are simultaneously angularly displaced with respect to the basic body
10
, and plural shafts
14
a
,
14
b
attached to the second gears
22
are angularly displaced. When the shafts
14
a
,
14
b
are angularly displaced, the block member
16
is moved in a radial direction of the basic body
10
by an angular displacement action of the eccentric portion
15
arranged integrally with the shafts
14
a
,
14
b
. Therefore, the outer circumferential member
17
attached to the block member
5
is also moved in the radial direction of the basic body
10
. The outside diameter of the folding drum
1
is adjusted by this movement of the outer circumferential member
17
in the radial direction.
Next, a second embodiment mode of this invention will be explained on the basis of
FIGS. 3 and 4
. In the second embodiment mode, the rotary drum is a gripper drum
4
, and the adjusted portion is a distance adjusting mechanism of a gripper plate
50
and a gripper jaw
51
.
The gripper drum
4
as the rotary drum has a reference
15
portion, an adjusted portion, an adjusting operation mechanism and an adjusting transmission mechanism. The reference portion has a basic body
40
and a rotating shaft
41
. The adjusted portion has a pair of first side plates
42
a
,
42
b
and a pair of second side plates
43
a
,
43
b
. The pair of first side plates
42
a
,
42
b
and the pair of second side plates
43
a
,
43
b
can be rotated integrally with the reference portion, and are arranged so as to be angularly displaced with respect to the reference portion, and can be arranged on both sides of the basic body
40
so as to be rotated with respect to the basic body
40
. The adjusted portion also has a third side plate
44
attached to the other side of the basic body
40
from outer sides of these first and second side plates and able to be rotated integrally with the basic body
40
. The adjusted portion also has first eccentric cams
45
a
,
45
b
, first slip members
46
a
,
46
b
, second eccentric cams
47
a
,
47
b
, second slid members
48
a
,
48
b
, an adjusting shaft
49
, a gripper plate
50
as a displacing member, and a gripper jaw
51
as a fixing member. The adjusting operation mechanism has an electric motor
31
as a driving source for displacing the adjusted portion with respect to the reference portion, a generator
34
as a power source arranged in the reference portion, a control board
32
additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine
33
for wirelessly transmitting an operation signal to the control board
32
. The adjusting transmission mechanism transmits a movement of the electric motor
31
to the adjusted portion, and has a worm
53
and a worm wheel
54
.
The reference portion of the gripper drum
4
as the rotary drum is constructed by the basic body
40
and the rotating shaft
41
rotated integrally with the basic body
40
. The basic body
40
has a columnar outer circumferential face and a flange portion
40
a
in a side face portion in a rotating axis direction. The rotating shaft
41
is rotatably supported by frames Fa, Fb. A driven gear
5
is attached to one side of the rotating shaft
41
projected outward from the frame Fb. The rotating shaft
41
is rotated by driving force from an unillustrated driving means through the driven gear
5
.
The electric motor
31
as a driving source is attached to a side face of the third side plate
44
opposed to the frame Fb. The control board
32
able to wirelessly transmit and receive signals is additionally arranged in the electric motor
31
, and the electric motor
31
is operated on the basis of an operation signal from the external wireless operation machine
33
as the adjusting operation mechanism
3
. For example, the electric motor
31
has a speed reduction function and uses a type having a feedback function in which a rotating amount can be fed back to the wireless operation machine
33
through the control board
32
additionally arranged.
The worm
53
as one portion of the adjusting transmission mechanism is attached to the output shaft of the electric motor
31
, and is engaged with the worm wheel
54
projected from the third side plate
44
. The worm wheel
54
is fixed to an end portion of the adjusting shaft
49
.
The respective distances between the first side plates
42
a
,
42
b
and the second side plates
43
a
,
43
b
as adjusted portions are constantly maintained by unillustrated suitable stays. A gripper plate shaft
52
attached to the gripper plate
50
as a displacing member is spanned between the first side plates
42
a
and
42
b
. The gripper plate shaft
52
as an angular displacement shaft is supported such that this gripper plate shaft
52
is angularly displaced. The gripper jaw
51
as a fixing member is fixed between the second side plates
43
a
and
43
b
such that the gripper jaw
51
is opposed to the gripper plate
50
. One end of an arm
55
is fixed to an end portion of the gripper plate shaft
52
extending through the first side plate
42
a
on one side. A cam follower
56
is rotatably attached to the other end of the arm
55
through a pin parallel, to the gripper plate shaft
52
. The cam follower
56
is attached such that the cam follower
56
follows a groove cam
57
arranged in a sleeve S. Torsion springs
58
a
,
58
b
are attached between the gripper plate shaft
52
and the first side plates
42
a
,
42
b
, and prevents a free displacement of the gripper plate shaft
52
due to a play caused by errors in processing, assembly, etc.
The adjusting shaft
49
is rotatably supported between the basic body
40
and a flange portion
40
a
arranged on one side of the basic body
40
. The first eccentric cams
45
a
,
45
b
coming in close contact with the first side plates
42
a
,
42
b
are arranged in the adjusting shaft
49
in positions corresponding to the first side plates
42
a
,
42
b
through the first slip members
46
a
,
46
b
movable only in a radial direction of the gripper drum
4
. The second eccentric cams
47
a
,
47
b
coming in close contact with the second side plates
43
a
,
43
b
are arranged in the adjusting shaft
49
in positions corresponding to the second side plates
43
a
,
43
b
through the second slip members
48
a
,
48
b
movable only in the radial direction of the gripper drum
4
. The first eccentric cams
45
a
,
45
b
are eccentrically arranged by the same size in the same direction with respect to a center of the adjusting shaft
49
. The second eccentric cams
47
a
,
47
b
are eccentrically arranged by the same size as the first eccentric cams
45
a
,
45
b
in a direction reverse to that of the first eccentric cams
45
a
,
45
b
with respect to the center of the adjusting shaft
49
.
Accordingly, when the adjusting shaft
49
is rotated, the first side plates
42
a
,
42
b
and the second side plates
43
a
,
43
b
are angularly displaced in directions reverse to each other around a center of the rotating shaft
41
, and the distance between the gripper plate
50
and the gripper jaw
51
can be adjusted in accordance with the thickness of paper to be gripped. Further, the worm wheel
54
engaged with the worm
19
attached to the output shaft of the electric motor
31
is rotatably attached integrally with the adjusting shaft
49
at the other end of the adjusting shaft
49
from which the third side plate
44
is projected.
The adjusting operation mechanism
3
has the electric motor
31
as a driving source, the control board
32
having a wireless transmitting and receiving function additionally arranged in the electric motor
31
, the wireless operation machine
33
operated by a wireless operation signal from the exterior, and the generator
34
operated by rotating the gripper drum
4
as the rotary drum.
The generator
34
has a columnar magnet
36
and a winding portion
35
. The magnet
36
is fixed to the frame Fa so as to have the same center line as a rotation center line of the rotating shaft
11
through the sleeve S and the support case
37
. The wiring portion
35
is attached to the rotating shaft
11
as a reference portion of the rotary drum through the support member
38
. The winding portion
35
is rotated integrally with the rotating shaft
11
around the same center line as the rotating shaft
11
. The winding portion
35
surrounds a peripheral portion of the magnet
36
. Electric power is generated in the winding portion
35
by rotating the winding portion
35
around the magnet
36
as the rotating shaft
11
is rotated.
In
FIGS. 3 and 4
, the generator
34
can be also replaced by a transformer, e.g., a rotary transformer, etc. When the generator
34
is replaced by the rotary transformer, a primary coil side is set to a fixing winding portion externally fixed, and is arranged such that electric power can be supplied from the exterior to this primary coil side. A secondary coil side is arranged as a rotation winding portion able to be rotated together with the rotating shaft. When electric power is supplied to the primary coil side constructed in this way, electric power determined by winding numbers of both the coils is obtained in the secondary coil irrespective of the rotation of the rotating shaft
11
.
In this embodiment mode, the electric motor
31
is a pulse motor with a speed reduction gear. The electric motor
31
is operated by the wireless operation machine
33
having a wireless transmitting and receiving function for operating the electric motor
31
through the control board
32
. A radio wave is generally utilized as a wireless communication medium between the wireless operation machine
33
and the control board
32
, but various kinds of communication means such as an ultrasonic wave, light, etc. can be also used.
In addition to the above mechanisms, a timing adjustment mechanism for adjusting operation timing of the gripper plate
50
, etc. are arranged in the gripper drum
4
although this arrangement is not illustrated.
An operation of the rotary drum in the second embodiment mode of this invention will next be explained. The gripper drum
4
is rotated by the driven gear
5
rotated by an unillustrated driving means, and folds overlapped paper in cooperation with an adjacent drum such as a folding drum, etc. In this operation, when the rotating shaft
41
is rotated, the basic body
40
and the third side plate
44
forming the reference portion together with the rotating shaft
41
are integrally rotated. The first side plates
42
a
,
42
b
rotatably attached to the basic body
40
are connected to the basic body
40
through the first slip members
46
a
,
46
b
, the first eccentric cams
45
a
,
45
b
coming in close contact with the first side plates
42
a
,
42
b
through the first slip members
46
a
,
46
b
, the adjusting shaft
49
attaching the first eccentric cams
45
a
,
45
b
thereto, the worm wheel
54
attached to the other end of the adjusting shaft
49
, the worm
53
engaged with this worm wheel
54
, the electric motor
31
having the output shaft attached to the worm
53
and attached to the third side plate
44
, and the third plate
44
. The second side plates
43
a
,
43
b
rotatably attached to the basic body
40
are connected to the basic body
40
through the second slip members
48
a
,
48
b
, the second eccentric cams
47
a
,
47
b
coming in close contact with the second side plates
43
a
,
43
b
through the second slip members
48
a
,
48
b
, the adjusting shaft
49
attaching the second eccentric cams
47
a
,
47
b
thereto, the worm wheel
54
attached to the other end of the adjusting shaft
49
, the worm
53
engaged with this worm wheel
54
, the electric motor
31
having the output shaft attached to the worm
53
and attached to the third side plate
44
, and the third side plate
44
. Accordingly, the first side plates
42
a
,
42
b
, the second side plates
43
a
,
43
b
, and the respective constructional members for connecting these side plates to the basic body
40
are rotated integrally with the reference portion at the same speed as the basic body
40
.
In this state, when it is necessary to adjust the distance between the gripper plate
50
and the gripper jaw
51
of the gripper drum
4
in accordance with the thickness of the overlapped paper to be folded, the adjustment is made by the adjusting operation mechanism
3
as follows. Namely, a predetermined desirable operation signal is first wirelessly transmitted to the control board
32
of the electric motor
31
using the wireless operation machine
33
. The control board
32
receiving the operation signal outputs an operation signal for controlling an operation of the electric motor
31
to the electric motor
31
in accordance with the received operation signal. The electric motor
31
is rotated in accordance with the operation signal. The electric motor
31
outputs a feedback signal proportional to an operating amount of the electric motor
31
by an unillustrated attached rotary encoder. This feedback signal is converted by the control board
32
to a signal relating to a rotating amount of the electric motor
31
, and is wirelessly transmitted by the control board
32
, and is used to notify the rotating amount of the electric motor
31
to an operator through the wireless operation machine
33
.
Electric power for operating the electric motor
31
and the control board
32
is supplied from the generator
34
or a transformer (rotary transformer) additionally arranged in the folding drum
1
. Namely, the magnet
36
fixed to the frame Fa is surrounded through the support case
37
and the sleeve S in the generator
34
, and the winding portion
35
fixed to an end portion of the rotating shaft
11
through the support member
38
is rotated as the rotating shaft
11
is rotated. Thus, an electric current flows through the winding portion
35
moving across a magnetic line. This electric current is supplied to the control board
32
and the electric motor
31
by a conductive lead
39
, and is used as electric power for operating the control board
32
and the electric motor
31
. When electric power is supplied from the exterior to a primary coil in the transformer (rotary transformer), electric power determined by a ratio of winding numbers of the primary coil and a secondary coil is obtained on the secondary coil side, and is supplied to the control board
32
and the electric motor
31
by a conductive lead connected to the secondary coil, and is used as electric power for operating the control board
32
and the electric motor
31
.
When the electric motor
31
is rotated, the worm
53
attached to the output shaft of the electric motor
31
is rotated, and rotates the worm wheel
54
engaged with this worm
53
. Thus, the worm wheel
54
is angularly displaced with respect to the third side plate
44
, i.e., the basic body
40
so that the adjusting shaft
49
attaching the worm wheel
54
thereto is angularly displaced. When the adjusting shaft
49
is angularly displaced, the first eccentric cams
45
a
,
45
b
and the second eccentric cams
47
a
,
47
b
integrally attached to the adjusting shaft
49
are angularly displaced. Force in a direction perpendicular to a radial direction is then applied to the first side plates
42
a
,
42
b
through the first slip members
46
a
,
46
b
by the angular displacements of the first eccentric cams
45
a
,
45
b
. Further, force in a direction reverse to the direction of the force applied to the first side plates
42
a
,
42
b
is applied to the second side plates
43
a
,
43
b
through the second slip members
48
a
,
48
b
by the angular displacements of the second eccentric cams
47
a
,
47
b
. As a result, the first side plates
42
a
,
42
b
and the second side plates
43
a
,
43
b
are angularly displaced in directions reverse to each other around a rotation center of the basic body
40
, i.e., a rotation center of the rotating shaft
41
.
The distance between the gripper plate
50
and the gripper jaw
51
of the gripper drum
4
is adjusted by the simultaneous angular displacements of the first side plates
42
a
,
42
b
and the second side plates
43
a
,
43
b
in the directions reverse to each other. The gripper plate shaft
52
is displaced by rotating the first side plates
42
a
,
42
b
in accordance with the rotations of the first side plates
42
a
,
42
b
. Thus, the cam follower
56
attached to the gripper plate shaft
52
through the arm
55
is moved and displaced along the groove cam
57
. The gripper plate shaft
52
is angularly displaced by this displacement of the cam follower
56
through the arm
55
. The gripper plate
50
is slightly changed by this displacement of the cam follower
56
in timing of an open-close operation with respect to the gripper jaw
51
, but there is no influence on a gripper action.
This invention relates to the rotary drum of the folding device, and a driving source for operating an operating portion is arranged in the rotary drum so as to operate the adjusted portion arranged in the rotary drum during rotation, and its driving power source is arranged in the same rotary drum. Further, the driving source is operated by a wireless signal from the exterior of the rotary drum. Accordingly, it is not necessary to arrange a supply system in which there is a fear that sparks and noises causing a reduction in durability are generated by mechanical contact of a slip ring, etc. in each of the supply of electric power for operating and the supply of an operation signal from the rotary drum to the adjusting operation mechanism.
In this invention, it is possible to remove a relatively complicated mechanical construction for operating an adjusting portion of the rotary drum of the folding device from the exterior. Further, the rotary drum having the adjusted portion can be simply constructed by a small number of parts, and initial cost can be reduced.
Since the mechanism becomes simple, defects caused in the mechanism are reduced, and the mechanism is easily maintained so that the burden of a worker is reduced and running cost can be reduced. Further, since there is no system using the mechanical contact in the supply of electric power and the supply of the control signal to the driving source of the adjusting operation mechanism, no contact portion is mechanically worn and the generation of sparks and noises can be removed. Therefore, it is possible to reduce a machine stopping time for maintenance of a portion of the power supply and the supply of the operation signal and exchanging parts so that working efficiency can be greatly improved.
Claims
- 1. A rotary drum of a folding device comprising:a reference portion having a rotating shaft and a basic body rotated integrally with the rotating shaft; an adjusted portion able to be rotated integrally with the reference portion and arranged so as to be displaced with respect to the reference portion; an adjusting operation mechanism having a driving source for displacing the adjusted portion with respect to the reference portion, a power source arranged in the reference portion, a control board additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine for wirelessly transmitting an operation signal to the control board; and an adjusting transmission mechanism for transmitting a movement of the driving source to the adjusted portion; wherein the adjusting operation mechanism is configured to adjust a distance between a gripper plate and a gripper jaw, and wherein electric power is supplied from the power source to the driving source, and the driving source is operated by a wireless signal from the adjusting operation mechanism.
- 2. The rotary drum of the folding device as defined in claim 1, wherein the power source is a generator constructed by a magnet externally fixed and a winding portion surrounding the magnet in a state close to a peripheral portion of the magnet such that the winding portion can be rotated together with the reference portion.
- 3. The rotary drum of the folding device as defined in claim 1, wherein the power source is a rotary transformer in which a coil is wound around each cut iron core portion, and one side is set to a fixing winding portion externally fixed and able to supply electric power from the exterior, and the other side is a rotation winding portion able to be rotated together with the reference portion.
- 4. A rotary drum of a folding device comprising:a reference portion having a rotating shaft and a basic body rotated integrally with the rotating shaft; an adjusted portion able to be rotated integrally with the reference portion and arranged so as to be displaced with respect to the reference portion, and having pairs of first and second side plates arranged rotatably with respect to the basic body on both sides of the basic body, a third side plate attached to the other side of the basic body from outer sides of these first and second side plates and able to be rotated integrally with the basic body, an adjusting shaft rotatably arranged in the basic body and the third side plate, a first eccentric cam attached through a first slip member movable only in a radial direction of the first side plate in a position of the adjusting shaft corresponding to the first side plate, a second eccentric cam attached through a second slip member movable only in a radial direction of the second side plate in a position of the adjusting shaft corresponding to the second side plate, an angular displacement shaft able to be angularly displaced and spanned between the first side plates, a displacing member attached to the angular displacement shaft, and a fixing member fixedly arranged so as to be opposed to the displacing member between the second side plates; an adjusting operation mechanism having an electric motor attached to the third side plate as a driving source for displacing the adjusted portion with respect to the reference portion, a power source arranged in the reference portion, a control board additionally arranged in the driving source and having a wireless receiving function, and a wireless operation machine for wirelessly transmitting an operation signal to the control board; an adjusting transmission mechanism having a worm arranged in an output shaft of the electric motor to transmit a movement of the electric motor to the adjusted portion, and a worm wheel engaged with the worm, wherein the worm wheel is fixed on an end portion of the adjusting shaft; wherein electric power is supplied from the power source to the electric motor, and the electric motor is operated by a wireless signal from the adjusting operation mechanism.
- 5. The rotary drum of the folding device as defined in claim 4, wherein the power source is a generator constructed by a magnet externally fixed and a winding portion surrounding the magnet in a state close to a peripheral portion of the magnet such that the winding portion can be rotated together with the reference portion.
- 6. The rotary drum of the folding device as defined in claim 4, wherein the power source is a rotary transformer in which a coil is wound around each cut iron core portion, and one side is set to a fixing winding portion externally fixed and able to supply electric power from the exterior, and the other side is a rotation winding portion able to be rotated together with the reference portion.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-240778 |
Aug 2000 |
JP |
|
US Referenced Citations (7)
Foreign Referenced Citations (2)
Number |
Date |
Country |
2-788321 |
Jun 1998 |
JP |
2-848982 |
Nov 2001 |
JP |