The present invention relates generally to rotary dryer systems. More particularly, the present invention relates to a rotary dryer for use in an asphalt plant said dryer having flights with a conic section-shaped notch.
With initial reference to
As the drum 10 rotates in direction “D” (shown in
Showering of aggregate material is critical to maximizing the efficiency of heat transfer from the heated air draft to the aggregate material for drying that aggregate material effectively. The density or thickness of the veil of aggregate material may vary across the width of the drum based on a number of factors, including the type and particle size of aggregate material being processed, the volume of aggregate material within the drum, and the speed of rotation of the drum, etc. Ideally, the curtain will span the width of the interior of the drum, including particularly the center of the drum, where the highest energy content of the heated air is typically located.
Attempts have been made to improve the distribution of aggregate material within the drum by modifying the number and arrangement of flights within the drum. Additionally, certain design changes have been made to the shape of the individual flights themselves in order to vary their performance. For example, with reference to
What is needed, therefore, is a rotary dryer design having flights that produce a consistent and well-distributed veil of aggregate material throughout the drum for a range of operating conditions, including for various aggregate material mixes, processing volumes, and processing rates.
Notes on Construction
The use of the terms “a”, “an”, “the” and similar terms in the context of describing the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising”, “having”, “including” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The terms “substantially”, “generally” and other words of degree are relative modifiers intended to indicate permissible variation from the characteristic so modified. The use of such terms in describing a physical or functional characteristic of the invention is not intended to limit such characteristic to the absolute value which the term modifies, but rather to provide an approximation of the value of such physical or functional characteristic.
Terms concerning attachments, coupling and the like, such as “connected” and “interconnected”, refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both moveable and rigid attachments or relationships, unless specified herein or clearly indicated by context. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship.
The use of any and all examples or exemplary language (e.g., “such as” and “preferably”) herein is intended merely to better illuminate the invention and the preferred embodiment thereof, and not to place a limitation on the scope of the invention. Nothing in the specification should be construed as indicating any element as essential to the practice of the invention unless so stated with specificity.
The above and other needs are met by a dryer adapted for use in an asphalt plant. The dryer includes a drum having an inner wall and a flight having a proximal end connecting the flight to the inner wall of the drum and a distal end that is spaced apart from the proximal end. A first profile extends from the proximal end to the distal end of the flight and defines a flight shape. A notch is formed in the distal end of the flight, which notch includes a notch shape that is defined by a second profile. The second profile has a length L, a center point, and a portion that substantially approximates a conic section. In certain embodiments of the invention, the conic section portion of the second profile is disposed at approximately the center point of the second profile. In some embodiments, at least a portion of the first profile substantially also approximates a conic section. In certain preferred embodiments, the dryer includes a plurality of substantially identical flights connected to the inner wall of the drum and arranged with their proximal ends substantially parallel to each other.
The flight has a flight depth D1, measured along a surface of the flight between the proximal end and the distal end and the notch has a notch depth D2 that is measured along the surface of the flight from the distal end. In certain embodiments, notch depth D2 is approximately 20% to approximately 80% of the flight depth D1. In alternative embodiments, notch depth D2 is approximately 30% to approximately 60% of the flight depth D1. In other embodiments, notch depth D2 is approximately 50% of the flight depth D1. In some embodiments, notch depth D2 varies along the length L of the second profile and is greatest at the center point of the second profile. In some embodiments, at least a portion of the first profile is curved.
In other embodiments, the dryer includes a drum having an inner wall and a flight having a proximal end connecting the flight to the inner wall of the drum and a distal end that is spaced apart from the proximal end. A first profile extends from the proximal end to the distal end and defines a flight shape of the flight that includes a portion that substantially approximates a conic section. A notch is formed in the distal end of the flight having a notch shape that is defined by a second profile, the second profile having a length with a center point. In certain embodiments, the first profile is defined by a spline comprising two or more sections, including at least one curved section, wherein each section has two ends and a shape that is defined by a polynomial function, said sections being joined together at adjacent ends. In some embodiments, at least a portion of the first profile substantially approximates a conic section.
The present invention also provides a method for optimizing dryer performance. In a first step of the method, a design for a dryer that is adapted for use in an asphalt plant is provided. The dryer includes a drum having an inner wall and a flight having a proximal end connecting the flight to the inner wall of the drum and a distal end that is spaced apart from the proximal end. A first profile extends from the proximal end to the distal end and defines a shape of the flight. A notch is formed in the distal end of the flight. The notch has a notch shape that is defined by a second profile, the second profile having a length with a center point. A conic section-shaped portion is provided in at least one of the first profile or the second profile of the flight. The conic section-shaped portion is modeled by an intersection of a cone with a plane intersecting the cone.
Next, the method includes the step of adjusting at least one of the first profile and the second profile to optimize performance of the flight. In certain embodiments, the adjustment step includes adjusting the shape of the substantially conic section-shaped section by modifying an angle of intersection α measured between a flat bottom of the cone and the plane intersecting the cone. In certain embodiments of the method, the dryer also includes a flight depth D1, measured along a surface of the flight between the proximal end and the distal end and a notch formed in the distal end of the flight, with the notch having a notch depth D2 that is measured along a surface of the flight. In those cases, the adjustment step may include adjusting the second profile to modify the notch depth as a percentage of the flight depth. For example, in certain cases, the notch depth is modified such that it is approximately 20% to approximately 80% of the flight depth.
In another embodiment of the invention, a dryer apparatus is provided that includes a substantially curved flight configured for use in a dryer in an asphalt plant. Also provided is a notch formed in the flight that has a notch center and that is defined by a continuous curve. In some embodiments, the continuous curve includes a conic section located approximately at the notch center. In certain embodiments, the curved flight has a flight depth and the notch has a notch depth that is 20-80% of the flight depth.
In order to facilitate an understanding of the invention, the preferred embodiments of the invention, as well as the best mode known by the inventor for carrying out the invention, are illustrated in the drawings, and a detailed description thereof follows. It is not intended, however, that the invention be limited to the particular embodiments described or to use in connection with the apparatus illustrated herein. Therefore, the scope of the invention contemplated by the inventor includes all equivalents of the subject matter described herein, as well as various modifications and alternative embodiments such as would ordinarily occur to one skilled in the art to which the invention relates. The inventor expects skilled artisans to employ such variations as seem to them appropriate, including the practice of the invention otherwise than as specifically described herein. In addition, any combination of the elements and components of the invention described herein in any possible variation is encompassed by the invention, unless otherwise indicated herein or clearly excluded by context.
The presently preferred embodiments of the invention are illustrated in the accompanying drawings, in which like reference numerals represent like parts throughout, and in which:
This description of the preferred embodiments of the invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description of this invention. The drawings are not necessarily to scale, and certain features of the invention may be shown exaggerated in scale or in somewhat schematic form in the interest of clarity and conciseness.
With reference now to
With reference now to
Flight 200 has a proximal end 202 that connects the flight to an inner wall of the drum of a rotary dryer and a distal end 204 that is spaced apart from the proximal end. A first profile 206 extends through the flight 200, from the proximal end 202 to the distal end 204, and defines the shape or profile of the flight (when viewed from one side, as in
In the illustrated embodiment, first profile 206 includes at least one curved portion and comprises a partial substantially parabolic overall shape (when viewed from one side, as in
A notch 208 is formed in the flight 200 and has a length L with a center point 210. The shape of the notch 208 is defined by a second profile 212 that extends through the flight along the length L of the notch. In certain preferred embodiments, a portion of the second profile 212 at least substantially approximates a conic section or a portion thereof. The conic section of the second profile 212 may be located at any position along the length L of the notch 208. In a preferred embodiment, the conic section of the second profile 212 is disposed at approximately the center point 210 of the notch 208. However, as discussed above, a V-shaped notch tends to produce a relatively thin veil of aggregate material on the uphill side of the drum and a comparatively thicker veil of aggregate material on downhill side of the drum. For that reason, as the term is used herein, “conic section” specifically excludes the V-shape formed when angle of intersection α (
Referring now to
With reference to
Although this description contains many specifics, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments thereof, as well as the best mode contemplated by the inventor of carrying out the invention. The invention, as described and claimed herein, is susceptible to various modifications and adaptations as would be appreciated by those having ordinary skill in the art to which the invention relates.
This application claims the benefit of U.S. Provisional Patent Application No. 62/924,220, filed on Oct. 22, 2019 and entitled ROTARY DRYER HAVING NOTCHED FLIGHTS, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3407511 | Camm | Oct 1968 | A |
3910756 | Henning | Oct 1975 | A |
4094628 | Rasmussen | Jun 1978 | A |
4172701 | Bernt | Oct 1979 | A |
4558525 | Duske | Dec 1985 | A |
5083382 | Brashears | Jan 1992 | A |
5302118 | Renegar et al. | Apr 1994 | A |
5378083 | Swanson | Jan 1995 | A |
5515620 | Butler | May 1996 | A |
5746006 | Duske | May 1998 | A |
9835374 | Swanson | Dec 2017 | B2 |
Entry |
---|
International Search Report of counterpart PCT Application No. PCT/US2020/012017, filed Jan. 2, 2020. |
Number | Date | Country | |
---|---|---|---|
20210115629 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62924220 | Oct 2019 | US |