This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2020-163285 filed on Sep. 29, 2020, the contents of which are incorporated herein by reference.
The present invention relates to a rotary electric machine equipped with a stator including an electromagnetic coil, and a rotor including permanent magnets.
As is well known, a rotary electric machine is equipped with a stator that is positioned and fixed, and a rotor that rotates relatively with respect to the stator. An electromagnetic coil is provided in slots that are formed in the stator, in a manner so as to straddle over respective teeth portions. On the other hand, permanent magnets are retained on the rotor. In a motor, accompanying energization or supply of current to the electromagnetic coil, the electromagnetic coil is brought into a magnetic state, and an alternating magnetic field is formed. Repulsive forces or attractive forces are generated by the alternating magnetic field and the magnetic fields generated by the permanent magnets, whereby the rotor is rotated. In the case of an electric generator, by applying a rotational biasing force to the rotor, an induced current is generated in the electromagnetic coil.
In this type of rotary electric machine, as described in JP 2006-262603 A, JP 2007-028734 A, and JP 2016-152771 A, it is considered to arrange the permanent magnets that are provided on the rotor in a Halbach array. More specifically, the permanent magnets are provided in an array in which main magnets the magnetic fields of which are directed outward or inward in radial directions of the stator, and sub-magnets the magnetic fields of which are directed in a clockwise or counterclockwise manner in circumferential directions of the stator are arranged alongside one another in the circumferential direction. In this case, since the magnetic flux density becomes large, it is anticipated that efficiency will be improved in particular with a rotary electric machine that is small in scale.
When a Halbach array is adopted, the amount of magnetic flux from the main magnets becomes large. In the case that the stator is incapable of sufficiently receiving such an amount of magnetic flux, a so-called leakage flux (leakage of magnetic flux) occurs. The leakage of magnetic flux becomes a cause of generation of heat. Further, in the case that the rotary electric machine is used as an electric generator, an improvement in the amount of generated electrical power is hindered. In the foregoing manner, the leakage of magnetic flux leads to various inconveniences.
A principal object of the present invention is to provide a rotary electric machine in which a Halbach array is adopted to thereby arrange permanent magnets.
Another object of the present invention is to provide a rotary electric machine in which teeth portions thereof are capable of sufficiently receiving a magnetic flux.
Still another object of the present invention is to provide a rotary electric machine in which leakage of magnetic flux can be reduced.
According to an embodiment of the present invention, there is provided a rotary electric machine, including:
a stator including a yoke portion configured in an annular shape, and a plurality of teeth portions configured to protrude from a circumferential edge part of the yoke portion in a radial direction of the yoke portion, and in which an electromagnetic coil is provided in slots formed between adjacent ones of the teeth portions; and
a rotor configured to retain a plurality of permanent magnets facing toward the teeth portions,
wherein the plurality of permanent magnets are configured to include a same number of a first magnet in which a magnetic field thereof is oriented in a radially outward direction of the yoke portion, a second magnet adjacent to the first magnet and in which a magnetic field thereof is oriented in a clockwise direction of the yoke portion, a third magnet adjacent to the first magnet and in which a magnetic field thereof is oriented in a counterclockwise direction of the yoke portion, and a fourth magnet adjacent to the third magnet and in which a magnetic field thereof is oriented in a radially inward direction of the yoke portion,
the teeth portions each include a base portion configured to protrude from an inner circumferential edge part of the yoke portion in the radially inward direction of the yoke portion, a flange portion disposed in closer proximity to the rotor than the base portion, and configured to be wider than the base portion, and an expanding portion interposed between the base portion and the flange portion, and configured to become wider in an expanding manner from the base portion toward the flange portion,
an angle of intersection between the base portion and the expanding portion is 108° to 130°, and
a distance from an inner circumferential side end part to an outer circumferential side end part of the flange portion is 0.2 mm to 2.0 mm.
In the present invention, the plurality of permanent magnets are arranged in a manner so as to form a Halbach array. Therefore, the amount of magnetic flux directed from the rotor (the permanent magnets) toward the stator (the electromagnetic coil) increases, and therefore, torque is enhanced.
In addition, in the teeth portions constituting the stator, the angle of intersection of the expanding portions with respect to the base portions, and the thickness of the flange portions and the like are set within a predetermined range. By setting the shape of the teeth portions in this manner, the flange portions in particular are capable of sufficiently receiving the magnetic flux of the permanent magnets. Accordingly, leakage of magnetic flux is reduced. As a result, interlinked magnetic flux and eddy currents of the electromagnetic coil are reduced. Therefore, it is possible to suppress generation of heat.
The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings, in which a preferred embodiment of the present invention is shown by way of illustrative example.
A preferred embodiment of a rotary electric machine according to the present invention will be presented and described in detail below with reference to the accompanying drawings.
The stator 12 includes a stator core 20 and an electromagnetic coil 22. Among these elements, the stator core 20 is constituted, for example, by stacking magnetic bodies such as electromagnetic steel plates or the like. On the other hand, the electromagnetic coil 22 is constituted, for example, by winding a wire material made of copper around teeth portions 24 which are a part of the stator core 20.
At first, a description will be given concerning the stator 12. The stator core 20 is made up from a yoke portion 26 having an annular shape, and a plurality of the teeth portions 24 that protrude inwardly in a radial direction of the yoke portion 26 from an inner circumferential edge part of the yoke portion 26. In this case, an outer diameter of the stator core 20 (two times a distance X from a center O to the outer circumferential edge of the yoke portion 26) is set to 100 mm to 200 mm, and typically, to roughly 115 mm to 130 mm. The outer diameter is smaller in comparison with that of a general rotary electric machine 10. Stated otherwise, the rotary electric machine 10 according to the present embodiment is small in scale.
Slots 30 are formed between adjacent ones of the teeth portions 24. From the fact that the rotary electric machine 10 is a three-phase electric generator, the number of the slots 30 is typically set to a multiple of three. More specifically, the number of the slots 30, for example, is 3, 6, 12, 18, 24, 30, 36, 48 (3 slots, 6 slots, 12 slots, 18 slots, 24 slots, 30 slots, 36 slots, 48 slots) and the like. In the example shown in
As shown in detail in
The expanding portion 36 expands in a manner so as to gradually widen from the base portion 32 toward the flange portion 34, or stated otherwise, narrows in a tapered shape from the flange portion 34 toward the base portion 32. For this reason, the expanding portion 36 has a first inclined side 42a and a second inclined side 42b. The first inclined side 42a intersects at an angle of intersection θ with respect to the first parallel side 40a of the base portion 32. Further, the angle of intersection of the second inclined side 42b with respect to the second parallel side 40b is also θ. The angle of intersection θ is set to 108° to 130°, and more preferably, lies within a range of 120° to 125°. By setting the angle of intersection θ to lie within such a range, it is possible to reduce insofar as possible a total amount of copper loss and iron loss in the stator 12.
Moreover, a first virtual straight line LN1 drawn from an intersection P1 between the first parallel side 40a and the first inclined side 42a to an intersection P2 between the second parallel side 40b and the second inclined side 42b indicates an inner circumferential side end part of the base portion 32 as well as an outer circumferential side end part of the expanding portion 36.
A first radially directed side 44a and a second radially directed side 44b of the flange portion 34 are connected to the first inclined side 42a and the second inclined side 42b. The first radially directed side 44a and the second radially directed side 44b have a substantially linear shape, and extend mutually in parallel with each other. Hereinafter, a separation distance W2 between the first radially directed side 44a and the second radially directed side 44b is also referred to as a width W2 of the flange portion 34. It goes without saying that the width W2 of the flange portion 34 is greater than the width W1 of the base portion 32.
The width W2 is set in a manner so that, for example, a separation distance G between adjacent ones of the flange portions 34 is greater than a diameter DM of the wire material constituting the electromagnetic coil 22. Along therewith, a magnetic flux saturation at the flange portions 34 is reduced, and the magnetic flux received by the base portions 32 is increased. Accordingly, it is possible to achieve an enhancement in the torque. Further, as the material (electromagnetic steel plates or the like) of the stator core 20, it becomes possible to select magnetic bodies whose saturation magnetic flux density thereof is small. Therefore, it is possible to achieve a reduction in cost.
An outer circumferential side end part of the first radially directed side 44a (an inner circumferential side end part of the first inclined side 42a) is an intersection P3 between the first inclined side 42a and the first radially directed side 44a. Similarly, an outer circumferential side end part of the second radially directed side 44b (an inner circumferential side end part of the second inclined side 42b) is an intersection P4 between the second inclined side 42b and the second radially directed side 44b. A second virtual straight line LN2 drawn from the intersection P3 to the intersection P4 indicates an inner circumferential side end part of the expanding portion 36 as well as an outer circumferential side end part of the flange portion 34. Further, a third virtual straight line LN3 drawn from an inner circumferential side end part of the first radially directed side 44a to an inner circumferential side end part of the second radially directed side 44b is an inner circumferential side end part of the flange portion 34. According to the present embodiment, a distance T1 from the inner circumferential side end part to the outer circumferential side end part of the flange portion 34 defines the thickness of the flange portion 34. More specifically, the thickness T1 of the flange portion 34 is equivalent to the separation distance between the second virtual straight line LN2 and the third virtual straight line LN3.
The thickness T1 of the flange portion 34 is preferably set within a range of 0.2 mm to 2.0 mm, and more preferably, within a range of 0.3 mm to 1.1 mm. By setting the thickness T1 to lie within such a range, it is possible to reduce insofar as possible a total amount of copper loss and iron loss in the stator 12.
The distance from a connected location of the base portions 32 with the inner circumferential edge part of the yoke portion 26, to the inner circumferential side end part of the flange portions 34 is defined as a total length LO of the teeth portions 24 (see
According to the present embodiment, as noted previously, the electromagnetic coil 22 is constituted by the wire material which is made up from a metal conductor such as copper or the like being wound around the teeth portions 24. Although distributed winding is a preferable form of winding, concentrated winding may also be used. In the example shown in
As shown in
In this instance, if the offset amount OF is less than 5% of the total length LO of the teeth portions 24, by such an amount, the number of times at which the electromagnetic coil 22 is wound becomes larger in quantity. In particularly, the volume of the electromagnetic coil 22 becomes large. Accordingly, since the amount of magnetic flux received from the permanent magnets of the rotor 14 becomes large in quantity, a concern arises in that the amount of heat generated by the electromagnetic coil 22 increases. Further, the amount of copper loss increases. On the other hand, if the offset amount OF is in excess of 11%, although the copper loss is small, since the exposed area of the base portions 32 becomes large, the iron loss becomes large and the amount of generated heat becomes high. Further, since the volume thereof becomes smaller as the number of times at which the electromagnetic coil 22 is wound becomes fewer, the output of the electromagnetic coil 22 is reduced.
Moreover, when the total length LO of the teeth portions 24 is 40 mm to 45 mm, the specific distance from the inner circumferential side end part of the base portion 32 (the outer circumferential side end part of the expanding portion 36), and namely, the first virtual straight line LN1, to the distal end position on the inner circumferential side of the electromagnetic coil 22 is on the order of 1 to 3 mm.
A description will now be given concerning the rotor 14. As shown in
As can be understood from
The first magnet 50a to the fourth magnet 50b are arranged in such order alongside one another in a circumferential clockwise direction of the rotor 14. In this case, four combinations (sets) of one group of the first magnet 50a to the fourth magnet 50b are formed along the circumferential direction, thereby forming a Halbach array. Hereinafter, in the case it is unnecessary to distinguish between the first magnet 50a and the fourth magnet 50b, and the second magnet 52a and the third magnet 52b, the first magnet 50a and the fourth magnet 50b may be collectively referred to as “main magnets,” and the second magnet 52a and the third magnet 52b may be collectively referred to as “sub-magnets”.
In this case, the numbers of the first magnet 50a, the second magnet 52a, the third magnet 52b, and the fourth magnet 50b are four, respectively. More specifically, the rotor 14 retains the same number of the first magnets 50a to the fourth magnets 50b.
According to the present embodiment, a number of groups is regarded as a number of sets, and two times the number of sets is regarded as a number of poles. More specifically, a combination of one of the main magnets in which the direction of the magnetic field is in a radial direction of the rotor 14 and the stator core 20, and one of the sub-magnets adjacent to the main magnet and in which the direction of the magnetic field is in a circumferential direction of the rotor 14 and the stator core 20 is counted as one pole. Accordingly, in the rotary electric machine 10 shown in
As shown in
S14:S23=1:0.2 to 1:1 (A)
In the case that the foregoing condition is satisfied, a central angle α formed by a first radius 54a drawn at one end (on a side in the counterclockwise direction), and a second radius 54b drawn at another end (on a side in the clockwise direction) in the circumferential direction of the main magnets is expressed by a following formula (1). It is a matter of course that the center O, which is the starting point of the first radius 54a and the second radius 54b, is the center of rotation of the rotor 14.
(360/number of poles)×½≤α≤(360/number of poles)×⅚ (1)
In the rotary electric machine 10 illustrated in
On the other hand, a central angle θ formed by a third radius 56a drawn at one end (on a side in the counterclockwise direction), and a fourth radius 56b drawn at another end (on a side in the clockwise direction) in the circumferential direction of the sub-magnets is expressed by a following formula (2).
(360/number of poles)×⅙≤β≤(360/number of poles)×½ (2)
When the number of poles is eight, the central angle β is obtained by substituting 8 for the “number of poles” in the formula (2). More specifically, in this case, the central angle β lies within a range of 7.5° to 22.5°.
The first magnets 50a to the fourth magnets 50b face toward the base portions 32 via the flange portions 34 of the teeth portions 24. In the example shown in
Moreover, the average number of the base portions 32 facing toward one of the main magnets, and the average number of the base portions 32 facing toward one of the sub-magnets is set corresponding to the number of poles. For example, when the number of poles is 10 or 12, the average number of the base portions is preferably set to 1.5 to 2.5, and 0.5 to 1.5, respectively. Further, when the number of poles is two, the average number of the base portions is preferably set to 1.5 to 20, and 0.5 to 12, respectively.
More specifically, in the case that the number of poles is 2 to 12, preferably, the average number of the base portions 32 facing toward one of the main magnets, and preferably, the average number of the base portions 32 facing toward one of the sub-magnets lie within a range of 1.5 to 20, and 0.5 to 12, respectively.
The first magnets 50a to the fourth magnets 50b which are configured in the manner described above are retained by the rotor 14 in a manner so that the adjacent magnets are placed in contact with each other.
The rotor 14 includes a rotating shaft 58. The rotating shaft 58 is connected to a non-illustrated rotation biasing mechanism, and rotates under a biasing action of the rotation biasing mechanism. Of course, in following relation to such rotation, the first magnets 50a to the fourth magnets 50b move in a circling manner.
The rotary electric machine 10 according to the present embodiment is constructed basically as described above. Next, a description will be given concerning operations and advantageous effects thereof.
In the case that the rotary electric machine 10 is used as an electric generator, the rotating shaft 58 is rotated by the rotation biasing mechanism. Along therewith, the first magnets 50a to the fourth magnets 50b move in a circling manner around the inner circumferential side of a virtual circle formed by connecting the inner circumferential side ends of the flange portions 34. Furthermore, due to such circling motion, an induced current is generated in the electromagnetic coil 22. By taking out the induced current to the exterior of the rotary electric machine 10, the induced current can be used as a power source for driving predetermined machinery or equipment.
In the foregoing manner, the first magnets 50a to the fourth magnets 50b are arranged alongside one another in a manner so that the adjacent magnets are placed in contact with each other. Therefore, the number and individual volumes of the first magnets 50a to the fourth magnets 50b can be maximized. In addition, in this case, since the Halbach array is formed by repeating the arrangement of the first magnets 50a to the fourth magnets 50b in the circumferential direction, the magnetic field strength from the rotor 14 (the first magnets 50a to the fourth magnets 50b) toward the stator 12 (the electromagnetic coil 22) becomes large. Moreover, the total surface area of the main magnets or the individual central angles α, and the total surface area of the sub-magnets or the individual central angles β are set appropriately. Combined with the aforementioned points, as shown in
In addition, the average number of the base portions 32 facing toward one of the main magnets (the first magnets 50a or the fourth magnets 50b), and the average number of the base portions 32 facing toward one of the sub-magnets (the second magnets 52a or the third magnets 52b) are set appropriately. More specifically, in the example shown in
Furthermore, in the teeth portions 24, the angle of intersection θ between the base portions 32 and the expanding portions 36 and the thickness T1 of the flange portions 34, and the offset amount OF of the electromagnetic coil 22 with respect to the teeth portions 24 are set appropriately. Therefore, since the total value of the iron loss and the copper loss in the stator 12 can be reduced insofar as possible, it is possible to suppress generation of heat in the stator 12.
Further, by appropriately setting the offset amount OF, it is possible to increase the output as an electric generator while reducing leakage of magnetic flux. Consequently, for example, it is possible to prevent the teeth portions 24 and the electromagnetic coil 22 from causing a local rise in temperature. Accordingly, deterioration of the material (the electromagnetic steel plates or the like) of the stator core 20 or the material (copper or the like) of the electromagnetic coil 22 due to such a rise in temperature is suppressed.
Additionally, in this case, there is no need to form slits or provide any members in the interior of the rotary electric machine 10. Accordingly, it is possible to obtain the rotary electric machine 10 by means of a simple operation, and the rotary electric machine 10 can be made smaller in scale and lightweight. In addition, a rise in cost is avoided.
In the foregoing manner, according to the present embodiment, it is possible to cause an enhancement in torque while suppressing generation of heat in the rotary electric machine 10, and furthermore, it is possible to improve the amount of power generated when used as an electric generator.
The present invention is not particularly limited to the above-described embodiment, and various modifications can be adopted therein without departing from the essence and gist of the present invention.
For example, instead of winding a wire material around the teeth portions 24, the electromagnetic coil 22 may be configured by inserting leg portions made of a metal conductor and having a substantially U-shape into the slots 30, as shown in FIG. 1 of JP 2020-039207 A.
Further, the rotary electric machine 10 may be made to function as a motor. In this case, an alternating current may be applied to the electromagnetic coil 22 from an external power source.
(1) Central Angle α of Main Magnets, Central Angle β of Sub-Magnets
The average torque was determined by way of simulation, in relation to a rotary electric machine having 8 poles and 48 slots, wherein the central angle α formed by the main magnets differed from each other. For purposes of comparison, the average torque was also calculated for a 48-slot rotary electric machine that was not equipped with sub-magnets and in which eight main magnets were arranged only along the circumferential direction (i.e., a Halbach array was not formed). The results are shown in
From
Further, when an 8-pole rotary electric machine in which the central angle α of one of the main magnets is 22.5° to 37.5°, and the central angle β of one of the sub-magnets is 22.5° to 7.5° is viewed in plan, a ratio of the total surface area of the eight main magnets S14 to the total surface area of the eight sub-magnets S23 is S14:S23=1:1 to 1:0.2.
Moreover, when the number of poles is increased or decreased, the number (or the number of sets) of the main magnets and the sub-magnets increases or decreases, and therefore, the preferable range for the central angles α and β differs depending on the number of poles. In this case as well, the ratio of the total surface area of all the main magnets S14 to the total surface area of all the sub-magnets S23 should preferably lie within a range of S14:S23=1:1 to 1:0.2. On the basis of the aforementioned features, the following formulas (1) and (2) are derived.
(360/number of poles)×½≤α≤(360/number of poles)×⅚ (1)
(360/number of poles)×⅙≤β≤(360/number of poles)×½ (2)
(2) Average Number of Base Portions Facing Toward Main Magnets and Sub-Magnets
As noted previously, the number of the slots 30 is set to be a multiple of three. On the other hand, the number of poles is a multiple of two, and typically, is an even number between 2 and 12. In
From
From
(3) Angle of Intersection θ Between First Parallel Side 40a and First Inclined Side 42a (Second Parallel Side 40b and Second Inclined Side 42b)
In an 8-pole 48-slot rotary electric machine, the specific iron loss and the specific copper loss when the angle of intersection θ shown in
From
With reference to
(4) Thickness T1 of Flange Portions 34
In an 8-pole 48-slot rotary electric machine, the specific iron loss, the specific copper loss, and the total percentage thereof when the offset amount OF is set to 2 mm, and the thickness T1 (see
More specifically, in the case of the specific iron loss and the specific copper loss, the vertical axis in
As can be recognized from
(5) Offset Amount OF
In an 8-pole 48-slot rotary electric machine, the iron loss, the copper loss, and the total percentage thereof when the offset amount OF of the electromagnetic coil 22 was changed in various ways were obtained by way of simulation.
From
Number | Date | Country | Kind |
---|---|---|---|
2020-163285 | Sep 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1500834 | MacMillan | Jul 1924 | A |
1524558 | Kincaid | Jan 1925 | A |
2175915 | Potter | Oct 1939 | A |
2333538 | Liwschitz | Nov 1943 | A |
2370458 | Goran | Feb 1945 | A |
3027474 | Rosenberry, Jr. | Mar 1962 | A |
3488532 | Anderson | Jan 1970 | A |
3621315 | Dalmo | Nov 1971 | A |
3688141 | Maslennikov | Aug 1972 | A |
3778652 | Endress | Dec 1973 | A |
3832583 | Chang | Aug 1974 | A |
4462467 | Weingartner | Jul 1984 | A |
5045742 | Armstrong | Sep 1991 | A |
5182483 | Hibino | Jan 1993 | A |
6362552 | Jeppesen | Mar 2002 | B1 |
8344581 | Yabe | Jan 2013 | B2 |
9800100 | Nakano | Oct 2017 | B2 |
9825508 | Kainuma | Nov 2017 | B2 |
10910892 | Hirotani | Feb 2021 | B2 |
11201529 | Asano | Dec 2021 | B2 |
20010017492 | Tajima | Aug 2001 | A1 |
20040135441 | Groening | Jul 2004 | A1 |
20040183393 | Suzuki | Sep 2004 | A1 |
20040207285 | Lee | Oct 2004 | A1 |
20050040721 | Kusase et al. | Feb 2005 | A1 |
20050110361 | Blouin | May 2005 | A1 |
20060071573 | Fujita | Apr 2006 | A1 |
20060290225 | Mipo | Dec 2006 | A1 |
20070024249 | Dooley | Feb 2007 | A1 |
20070075604 | Hsu | Apr 2007 | A1 |
20080129136 | Abe | Jun 2008 | A1 |
20080203846 | Hoemann | Aug 2008 | A1 |
20090079289 | Lang | Mar 2009 | A1 |
20090085421 | Saito | Apr 2009 | A1 |
20090251021 | Atarashi | Oct 2009 | A1 |
20100019626 | Stout | Jan 2010 | A1 |
20100026008 | Sawahata | Feb 2010 | A1 |
20100026132 | Ooiwa | Feb 2010 | A1 |
20100045134 | Ciampolini | Feb 2010 | A1 |
20100052464 | Yu | Mar 2010 | A1 |
20100090557 | El-Refaie | Apr 2010 | A1 |
20100141075 | Atarashi | Jun 2010 | A1 |
20100253174 | Yabe | Oct 2010 | A1 |
20110140562 | Kato | Jun 2011 | A1 |
20110175482 | Savagian | Jul 2011 | A1 |
20110198962 | Tang | Aug 2011 | A1 |
20110309707 | Kato | Dec 2011 | A1 |
20120007463 | Taniguchi | Jan 2012 | A1 |
20120019096 | Taniguchi | Jan 2012 | A1 |
20120074797 | Petter | Mar 2012 | A1 |
20120104895 | Ramu | May 2012 | A1 |
20120112592 | Yamada | May 2012 | A1 |
20120293034 | Stabenow | Nov 2012 | A1 |
20130033144 | Alfermann | Feb 2013 | A1 |
20130169097 | Saban | Jul 2013 | A1 |
20130169099 | Saban | Jul 2013 | A1 |
20130199249 | In | Aug 2013 | A1 |
20140028146 | Sugimoto | Jan 2014 | A1 |
20140125186 | Takahashi | May 2014 | A1 |
20140145547 | Nakano | May 2014 | A1 |
20140159534 | Taniguchi | Jun 2014 | A1 |
20140184009 | Taniguchi | Jul 2014 | A1 |
20150001984 | Bradfield | Jan 2015 | A1 |
20150084457 | Lang | Mar 2015 | A1 |
20160164387 | Komatsu | Jun 2016 | A1 |
20160172918 | Hirotani | Jun 2016 | A1 |
20160218571 | Kusase | Jul 2016 | A1 |
20160241095 | Randria et al. | Aug 2016 | A1 |
20170040853 | Totaro | Feb 2017 | A1 |
20170237324 | Terasawa | Aug 2017 | A1 |
20180115202 | Hirotani | Apr 2018 | A1 |
20180212501 | Mayor | Jul 2018 | A1 |
20180226846 | Tsuiki | Aug 2018 | A1 |
20190036393 | Channapatana | Jan 2019 | A1 |
20190097474 | Hirotani | Mar 2019 | A1 |
20190229573 | Zhao et al. | Jul 2019 | A1 |
20190372416 | Anghel | Dec 2019 | A1 |
20200076281 | Yoshida et al. | Mar 2020 | A1 |
20200106311 | Naito | Apr 2020 | A1 |
20200106312 | Taniguchi | Apr 2020 | A1 |
20200119630 | Asano | Apr 2020 | A1 |
20200212734 | Du | Jul 2020 | A1 |
20200358329 | Fukuda | Nov 2020 | A1 |
20200373803 | Stoll | Nov 2020 | A1 |
20210135524 | Porcher | May 2021 | A1 |
20210218301 | Kitao | Jul 2021 | A1 |
20210242732 | Soma | Aug 2021 | A1 |
20220014056 | Pickett | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
103166406 | Jun 2013 | CN |
2006-262603 | Sep 2006 | JP |
2007-028734 | Feb 2007 | JP |
2016-152771 | Aug 2016 | JP |
2020-039207 | Mar 2020 | JP |
2020102354 | May 2020 | WO |
Entry |
---|
Chinese Office Action for Chinese Patent Application No. 202111151031.3 dated May 18, 2023. |
Number | Date | Country | |
---|---|---|---|
20220103033 A1 | Mar 2022 | US |