Rotary electric part superior in click feeling

Information

  • Patent Grant
  • 6310535
  • Patent Number
    6,310,535
  • Date Filed
    Tuesday, February 27, 2001
    23 years ago
  • Date Issued
    Tuesday, October 30, 2001
    22 years ago
Abstract
In a click structure of a rotary electric part according to the present invention, a click member and a biasing member are formed as separate members, so the resilience of the biasing member is not affected by the heat generated during molding; besides, the spring span of the biasing member can be made long, thus ensuring a satisfactory resilience over a long period. The rotary electric part. Long-term durability, good click feeling and reduced noise are also characteristic features of the rotary electric part of the invention.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a rotary electric part with click for use in a vehicular air conditioner for example.




2. Description of the Prior Art




The structure of a conventional rotary electric part with click will now be described with reference to

FIGS. 32 and 33

. A rotary electric part


21


has a rotary shaft


22


with a knob (not shown) attached to one end thereof and which causes the rotary electric part


21


to rotate, a metallic bearing


23


which supports the rotary shaft


22


rotatably, and a click mechanism


24


disposed within the bearing


23


to impart a click feeling to the rotary shaft


22


.




The click mechanism


24


is formed in a generally disc shape and is made up of a rotary disc


25


which is rotatable together with the rotary shaft


22


, a click member


26


which engages an outer circumference portion of the rotary disc


25


, and a metallic spring plate


27


supported at both ends thereof by the bearing


23


and which imparts an elastic force to the click member


26


, the elastic force acting toward the rotary disc


25


.




On the outer circumference portion of the rotary disc


25


are formed a plurality of concaves and convexes


25




a


continuously at predetermined spaced positions, and on one side of the rotary disc


25


are formed a plurality of patterns


25




b


which are arranged in synchronism with the concaves and convexes


25




a.






The click member


26


is integrally formed centrally of the spring plate


27


by outsert molding of a synthetic resin and has a semi-cylindrical portion


26




a


which comes into abutment with the concaves and convexes


25




a


formed on the outer circumference portion of the rotary disc


25


.




Both end portions


27




a


and


27




b


of the spring plate


27


come into abutment against shoulder portions


23




b


of a recess


23




a


formed in the bearing


23


to urge the click member


26


elastically in a direction in which the click member is put in pressure contact with the outer circumference portion of the rotary disc


25


. The click member


26


is positioned within a concave portion


23




c


formed in the bearing


23


and is adapted to move while being guided by a pair of side walls of the concave portion


23




c.






In the rotary electric part


21


having such a construction, when an operator operates the rotary shaft


22


for rotation, the rotary disc


25


rotates integrally with the rotary shaft and the semi-cylindrical portion


26




a


of the click member


26


slides on the outer circumference portion of the rotary disc


25


.




At this time, since the click member


26


is urged elastically by the spring plate


27


in a direction in which it comes into pressure contact with the outer circumference portion of the rotary disc


25


, the operating force required for rotation of the rotary shaft


22


varies as the semicylindrical portion


26




a


engages and disengages from the concaves and convexes


25




a


successively, whereby the operator comes to have a click feeling through the rotary shaft


22


.




While the click member


26


moves following the concaves and convexes


25




a


, the spring plate


27


repeats deflection, so that both end portions


27




a


and


27




b


of the spring plate slide on the shoulder portions


23




b


of the metallic bearing


23


and induce a vibrational shock between them and the shoulder portions, generating a loud noise.




With rotation of the rotary disc


25


, the patterns


25




b


come into sliding contact with fixed contact pieces (not shown) to effect change-over of contacts.




In the conventional rotary electric part, since the click member


26


and the spring plate


27


are formed integrally by a forming work, the resilience of the spring plate


27


may be impaired due to heat generated during the formation or the length of the click member


26


obstructs taking a long spring span of the spring plate


27


.




Moreover, since the click member


26


is guided by only a pair of side walls of the concave portion


23




c


, the click member


26


wobbles largely in the rotational direction of the rotary disc


25


at the time of engagement with and disengagement from the concaves and convexes


25




a


, thus resulting in that the click feeling becomes worse.




Further, since both end portions


27




a


and


27




b


of the spring plate


27


with the click members


26


secured thereto for engagement with and disengagement from the concaves and convexes


25




a


come into abutment against the shoulder portions


23




b


of the metallic bearing


23


, the spring plate


27


repeats deflection while the click member


26


moves following the concaves and convexes


25




a


. Consequently, both end portions


27




a


and


27




b


of the spring plate


27


slide on the shoulder portions


23




b


of the metallic bearing


23


and induce a vibrational shock between them and the shoulder portions


23




b


, producing a loud noise.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention to provide a rotary electric part capable of withstanding a long-term use without impairment in the resilience of a biasing member used, affording a good click feeling, and reduced in noise.




According to the first means adopted by the invention for solving the above-mentioned problems there is provided a rotary electric part comprising a rotary member having a plurality of concaves and convexes, a click member for engagement with and disengagement from the concaves and convexes, a biasing member for urging the click member elastically in a direction in which the click member comes into pressure contact with the concaves and convexes, and a holding member for holding the biasing member, the click member coming into engagement with and disengagement from the concaves and convexes with rotation of the rotary member and creating a click feeling, wherein the click member and the biasing member are formed as separate members, the click member has a body for engagement with and disengagement from the concaves and convexes and also has a convex portion which is integral with the body in a direction perpendicular to a moving direction of the body, the body of the click member is guided by side walls of a concave portion formed in the holding member, and the convex portion is guided by a concave groove.




According to the second means for solution adopted by the invention there is provided, in combination with the first means, a rotary electric part wherein the convex portion of the click member is formed at a rear portion of the body on the side opposite to a front portion of the body which comes into engagement with and disengagement from the concaves and convexes.




According to the third means for solution adopted by the invention there is provided, in combination with the second means, a rotary electric part wherein the convex portion of the click member is formed so as to project at least partially from an end of the rear portion of the body.




According to the fourth means for solution adopted by the invention there is provided, in combination with the first means, a rotary electric part wherein the front portion of the body of the click member is formed to have a width larger than the width of the rear portion of the body and is guided by the side walls of the concave portion, and an end of the rear portion smaller in width is urged by the biasing member.




According to the fifth means for solution adopted by the invention there is provided, in combination with the fourth means, a rotary electric part wherein an end of the front portion of the body in the click member is formed as an arcuate surface having a radius larger than that of the rear portion of the body, while an end of the rear portion is formed as an arcuate surface having a radius smaller than that of the front portion.




According to the sixth means for solution adopted by the invention there is provided, in combination with the first means, a rotary electric part wherein the click member and the holding member are formed of synthetic resin.




According to the seventh means for solution adopted by the invention there is provided, in combination with the first means, a rotary electric part wherein the biasing member is formed by a metallic plate spring.




According to the eighth means for solution adopted by the invention there is provided, in combination with the first means, a rotary electric part wherein the concaves and convexes are formed on an outer circumference portion of the rotary member, the holding member is constituted by a housing, and the click member is held grippingly between the housing and the rotary member.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a plan view of a click structure of a rotary electric part embodying the present invention;





FIG. 2

is a side view thereof;





FIG. 3

is a bottom view thereof;





FIG. 4

is a sectional view taken on line


4





4


in

FIG. 1

;





FIG. 5

is a sectional view taken on line


5





5


in

FIG. 1

;





FIG. 6

is a sectional view taken on line


6





6


in

FIG. 5

;





FIG. 7

is an explanatory diagram illustrating the operation of the click structure;





FIG. 8

is a sectional view taken on line


8





8


in

FIG. 7

;





FIG. 9

is an exploded perspective view of the click structure;





FIG. 10

is a plan view of a case used in the click structure;





FIG. 11

is a bottom view of the case;





FIG. 12

is a sectional view taken on line


12





12


in

FIG. 10

;





FIG. 13

is a plan view of a shaft member used in the click structure;





FIG. 14

is a front view of the shaft member;





FIG. 15

is a bottom view of the shaft member;





FIG. 16

is a sectional view taken on line


16





16


in

FIG. 13

;





FIG. 17

is a plan view of a rotor used in the click structure;





FIG. 18

is a front view of the rotor;





FIG. 19

is a bottom view of the rotor;





FIG. 20

is a sectional view taken on line


20





20


in

FIG. 17

;





FIG. 21

is a plan view of an insulating substrate used in the click structure;





FIG. 22

is a front view of the insulating substrate;





FIG. 23

is a plan view of a housing used in the click structure;





FIG. 24

is a bottom view of the housing;





FIG. 25

is a side view of the housing;





FIG. 26

is a sectional view taken on line


26





26


in

FIG. 24

;





FIG. 27

is a plan view of a click member used in the click structure;





FIG. 28

is a side view of the click member;





FIG. 29

is a front view of a mounting plate used in the click structure;





FIG. 30

is a bottom view of the mounting plate;





FIG. 31

is a sectional view taken on line


31





31


in

FIG. 30

;





FIG. 32

is a rear view of a click structure of a conventional rotary electric part; and





FIG. 33

is a perspective view of a spring plate and an engaging member both used in the conventional click structure.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The construction of the rotary electric part embodying the present invention will now be described with reference to

FIGS. 1

to


31


. As shown particularly in FIG.


9


and

FIGS. 10

to


12


, a case


1


, which is formed by molding a synthetic resin, comprises a flat plate-like wall portion


1




a


formed in a generally horseshoe shape by both an arcuate portion and a generally rectangular portion, a side wall


1




b


erected upright from an outer periphery of the wall portion


1




a


exclusive of a part thereof, a cylindrical support portion


1




d


formed along an inner periphery of the wall portion


1




a


and having a through hole


1




c


, a plurality of snap leg portions le formed on a free end side of the support portion


1




d


and with retaining pawls positioned on the through hole


1




c


side, and ribs


1




f


formed by a combination of arcuate ribs and radial ribs on the wall portion


1




a


located between the side wall


1




b


and the support portion


1




d.






The case


1


has a receptacle portion


1




g


formed in a generally rectangular space of the wall portion


1




a


, a plurality of projections


1




h


formed on the wall portion


1




a


positioned in the receptacle portion


1




g


, and a positioning convex portion


1




j


formed on the exterior of the wall portion


1




a


. In the case


1


, the portions surrounded with the ribs


1




f


(hatching portions in the figure) are formed thin. By forming such thin-walled portions, not only the material cost is reduced, but also sink after formation is diminished to improve the dimensional accuracy.




As shown particularly in FIG.


9


and

FIGS. 13

to


16


, a shaft member


2


, which is formed by molding a synthetic resin, has a cylindrical shoulder portion


2




a


formed at an axially intermediate position of an outer periphery of the shaft member and extending radially, a plurality (three or more) of first snap leg portions


2




b


formed on one axial end side with the shoulder portion


2




a


as a boundary and having retaining pawls positioned outside, a plurality of second snap leg portions


2




c


formed on the axially opposite side with the shoulder portion


2




a


as a boundary at positions different from the first snap leg portions


2




b


, the second snap leg portions


2




c


having retaining pawls positioned outside, and stepped portions


2




g


formed at one end of the shaft member


2


.




The cylindrical support portion


1




d


of the case


1


is inserted into the cylindrical interior of the shaft member


2


, which shaft member is rotatable with a support portion


1




d


as a shaft.




In this case, the axially extending first snap leg portions


2




b


are opposed in proximity to an outer peripheral surface of the support portion


1




d.






A rotary member


3


comprises a rotor


4


formed by molding a synthetic resin and an insulating substrate


5


combined with the rotor


4


.




The rotor


4


and the insulating substrate


5


may be formed integrally by molding a synthetic resin.




As shown in FIG.


9


and

FIGS. 17

to


20


, the rotor


4


comprises a cylindrical portion


4




a


, a flange portion


4




b


formed at an axially intermediate position of an outer periphery of the cylindrical portion


4




a


and extending radially, a fan-shaped stopper portion


4




c


further projecting from the flange portion


4




b


, a concave-convex portion


4




d


comprising plural concaves and convexes and formed on an outer circumference of the cylindrical portion


4




a


of a larger diameter located on one side with the flange portion


4




b


as a boundary, a plurality of slots


4




e


formed axially in the cylindrical portion


4




a


of a smaller diameter located on the opposite side with the flange portion


4




b


as a boundary, a protrusion


4




f


formed at a position where the flange portion


4




b


and the stopper portion


4




c


overlap each other, and arcuate stepped portions


4




g


formed on both sides of the slots


4




e


in the interior of the cylindrical portion.




As shown particularly in

FIG. 9

, the insulating substrate


5


is formed in the shape of a ring and has a large central hole


5




a


and a small hole


5




b


formed in an outer periphery of the substrate. On one side of the insulating substrate


5


is formed a conductive pattern


6


which is, for example, a code pattern of a conductor.




The cylindrical portion


4




a


of a smaller diameter located on the opposite side of the rotor


4


is inserted through the hole


5




a


of the insulating substrate


5


and the protrusion


4




f


is fitted in the hole


5




b


. In this state, on the side free of the conductive pattern


6


the insulating substrate


5


is superimposed on one sides of the flange portion


4




b


and the stopper portion


4




c.






At this time, the concave-convex portion of the rotor


4


is positioned inside the contour of the insulating substrate


5


.




In this way the insulating substrate


5


is superimposed on the flange portion


4




b


, the cylindrical portion


4




a


is inserted through the hole


5




a


, the protrusion


4




f


is inserted through the hole


5




b


, and thus the rotor


4


and the insulating substrate


5


are established their position in the plate surface direction. After the rotary member


3


is thus assembled, the shaft member


2


is inserted into the cylindrical portion


4




a


of the rotor


4


, the first snap leg portions


2




b


pass through the slots


4




e


and are engaged with the insulating substrate


5


(snap-fastened to the substrate on the side where the conductive pattern


6


is formed), and the rotary member


3


is combined with the shaft member


2


and can rotate together with the shaft member.




At this time, the stepped portions


2




g


of the shaft member


2


come into abutment against the stepped portions


4




g


of the rotor


4


and the rotary member


3


is held grippingly by both the stepped portions


2




g


and the first snap leg portions


2




b.






With the shaft member


2


mounted to the case


1


, the insulating substrate


5


, on its side where the conductive pattern


6


is formed, is in close proximity to the ribs


1




f.






As is seen from

FIG. 4

or

FIG. 5

, the snap leg portions


2




b


are formed at a rather lower position so as to form a slight clearance between them and the support portion


1




d.






Since the clearance is a slight clearance, even if the snap leg portions


2




b


are deflected inwards, they come into abutment against the support portion


1




d


and are thereby prevented from being disengaged from the insulating substrate


5


.




A rectangular insulating substrate


7


is formed by molding a synthetic resin and, as shown particularly in

FIGS. 9

,


21


, and


22


, it has a plurality of holes


7




a


. In the insulating substrate


7


are embedded a plurality of contact pieces


8


having contact portions


8




a


and terminal portions


8




b


and each constituted by a metallic sheet.




As shown particularly in

FIG. 4

, with the projections


1




h


of the case


1


inserted into the holes


7




a


, the insulating substrate


7


is received in the receptacle portion


1




g


of the case


1


and upper ends of the projections


1




h


are heat-caulked, whereby the substrate


7


is secured to the case


1


.




When the insulating substrate


7


is thus secured to the case


1


, the contact portions


8




a


contact the conductive pattern


6


and the terminal portions


8




b


are projected to the exterior from the case


1


. As the insulating substrate


5


rotates with rotation of the shaft member


2


, the conductive pattern


6


comes into and out of contact with plural contact pieces


8


to generate pulses.




The conductive pattern


6


may be formed on the case


1


side and the contact pieces


8


may be provided on the rotary member


3


side.




In this way there is formed a rotary electric part. Although the rotary electric part of this embodiment is shown as an encoder, it may be a variable resistor for example.




As shown particularly in FIG.


9


and

FIGS. 23

to


26


, a housing


9


formed by molding a synthetic resin and constituting a holding member is substantially the same in shape as the case


1


. The housing


9


has an arcuate flat plate-like wall portion


9




a


, a generally rectangular wall portion


9




b


stepped from the wall portion


9




a


, a ring-like inner wall


9




d


erected along an inner periphery of the arcuate wall portion


9




a


and having a through hole


9




c


, and an outer wall


9




e


erected on outer peripheries of the arcuate wall portion


9




a


and the rectangular wall portion


9




b.






The housing


9


is further provided with a receptacle portion


9




f


formed by being surrounded with the inner and outer walls


9




d


,


9




e


in the position of the rectangular wall portion


9




b


, a recess


9




h


positioned within the receptacle portion


9




f


and having relatively wide side walls


9




g


, the recess


9




h


being formed by cutting off a portion of the concave inner wall


9




d


and by a pair of projections


9




m


which are formed at spaced positions and which constitute a stopper portion, an elongated concave groove


9




j


formed in the rectangular wall portion


9




b


on a line connecting the center of the through hole


9




c


with a middle part of the recess


9




h


, and a chevron-shaped shoulder portion


9




k


formed within the receptacle portion


9




f


and with the groove


9




j


being present at the top of the shoulder portion.




The cylindrical portion of the shaft member


2


is inserted into the central through hole


9




c


of the housing


9


and the shaft member


2


is rotatable with respect to the housing


9


.




The following description is now provided about how to assemble the housing


9


, the rotor


4


as the rotary member


3


and the insulating substrate


5


relative to the shaft member


2


. First, the shaft portion of the shaft member


2


on the side where the first snap leg portions


2




b


are present is inserted into the through hole


9




c


of the housing


9


and the housing is secured to the said shaft portion.




Next, the insulating substrate


5


is superimposed on the flange portion


4




b


of the rotor


4


to constitute the rotary member


3


as a combination of the rotor and the insulating substrate. The shaft portion of the shaft member


2


on the first snap leg portions


2




b


side is then inserted into the cylindrical portion


4




a


of the rotor


4


as a constituent of the rotary member


3


.




Further, the first snap leg portions


2




b


of the shaft member


2


pass through the slots


4




e


and are engaged with the insulating substrate


5


(snap-fastened to the side where the conductive pattern


6


is formed). The stepped portions


2




g


of the shaft member


2


come into abutment against the stepped portions


4




g


of the rotor


4


and the rotary member


3


is held grippingly by both stepped portions


2




g


and first snap leg portions


2




b.






At this time, the housing


9


covers one side of the rotary member


3


and one end of the housing strikes against and is retained by the shoulder portion


2




a


of the shaft member


2


, whereby the housing


9


is prevented from coming off the shaft member


2


. In this way the housing


9


, rotor


4


and insulating substrate


5


are mounted and assembled onto the shaft member


2


.




In this assembled state, the flange portion


4




b


and the fan-shaped stopper portion


4




c


of the rotor


4


are lapped on the inner surface of the wall portion


9




a


of the housing


9


.




As the rotor is rotated by the shaft member


2


relative to the housing


9


which is in a fixed state, a fan-shaped end of the stopper portion


4




c


strikes against an end


9




n


of a projection


9




m


to stop the rotation of the rotor


4


and of the shaft member


2


.




The shaft member


2


with the housing


9


, rotor


4


and insulating substrate


5


mounted thereon is fitted on the support portion


1




d


of the case


1


so that the external forms of the arcuate and rectangular wall portions


9




a


,


9




b


of the housing


9


are in conformity with the external forms of the arcuate and rectangular portions of the case


1


.




As shown particularly in

FIGS. 27 and 28

, a click member


10


, which is formed by molding a synthetic resin, comprises a body


10




a


and a convex portion


10




b


formed upright from the body portion


10




a.






In the body


10




a


, an end of a front portion


10




c


is formed as an arcuate surface


10




e


having a radius larger than that of a rear portion


10




d


, and an end of the rear portion


10




d


is formed as an arcuate surface


10




f


having a radius smaller than that of the front portion


10




c


. The front portion


10




c


is wider than the rear portion


10




d.






On the rear portion


10




d


side the convex portion


10




b


is projected upright from one side of the body


10




a


so as to partially protrude (overhang) from the end of the rear portion


10




d.






The click member


10


thus constructed is disposed within the receptacle portion


9




f


of the housing


9


so that the front portion


10




c


is positioned within the recess


9




h


and both sides thereof are supported by the side walls


9




g


. Further, the convex portion


10


is fitted in the groove


9




j


. The click member


10


, which is mounted in such a state, is movable radially while being guided by both side walls


9




g


and groove


9




j.






A biasing member


11


is formed separately from the click member


10


, using a spring member such as a metallic plate spring or piano wire. As shown particularly in

FIG. 6

, the biasing member


11


is disposed in the receptacle portion


9




f


of the housing


9


, and with its both end portions abutted against the shoulder portion


9




k


, a central part of the biasing member is in abutment against the arcuate surface


10




f


located at an end of the rear side


10




d


of the click member


10


, urging the click member toward the center of the through hole


9




c.






The front portion


10




c


of the click member


10


attached movably to the housing


9


is brought into elastic pressure contact with the concave-convex portion


4




d


of the rotor


4


by means of the biasing member


11


, and with rotation of the rotor


4


the click member


10


is engaged with and disengaged from the concave-convex portion


4




d


and generates a click feeling. Thus, a click mechanism is constituted.




Further, in the click member


10


, one side of the body


10




a


is placed on the housing


9


and the flange portion


4




b


of the rotor


4


comes into abutment against a part on the opposite side of the front portion


10




c


of the body


10




a


. Thus, both sides of the click member


10


are held grippingly by the housing


9


and the rotor


4


.




As shown particularly in FIG.


9


and

FIGS. 29

to


31


, a mounting plate


12


, which is a metallic plate, comprises a flat plate portion


12




b


having a hole


12




a


, a plurality of mounting legs


12




c


bent from a peripheral edge of the hole


12




a


, a leg portion


12




d


of a large width bent from one end of the flat plate portion


12




b


in the direction opposite to the mounting legs


12




c


, and a leg portion


12




e


of a small width bent from the opposite end of the flat plate portion


12


b in the direction opposite to the mounting legs


12




c.






The flat plate portion


12




b


of the mounting plate


12


is put on the wall portion


1




a


of the case


1


, the leg portion


12




d


of a large width is positioned outside the rectangular portion of the case


1


, allowing the case


1


and the housing


9


to be embraced by a pair of the leg portions


12




d


and


12




e


, and thereafter tip ends of the leg portions


12




d


and


12




e


are bent at a right angle toward the wall portions


9




a


and


9




b


of the housing


9


.




As a result, the housing


9


and the shaft member


2


are mounted to the case


1


by the mounting plate


12


.




As shown in

FIGS. 4 and 5

, the rotary electric part thus constructed is put on a printed circuit board and the convex portion


1




j


of the case


1


is inserted into a hole (not shown) of the printed circuit board, whereby the rotary electric part is established its position relative to the printed circuit board. Further, the terminal portions


8




b


of the contact pieces


8


and the mounting legs


12




c


of the mounting plate


12


are fitted in the printed circuit board and soldered. In this way, mounting of the rotary electric part and wiring are performed for the printed circuit board


13


.




On the printed circuit board


13


positioned within the through hole


1




c


of the case


1


is disposed a push-button switch though not shown.




Though not shown, either, a knob is attached to the shaft member


2


. With one end of the knob abutted against the shoulder portion


2




a


, the second snap leg portions


2




c


are engaged with the knob, allowing the knob to be held grippingly by both the shoulder portion


2




a


and the second snap leg portions


2




c.






The operation of the rotary electric part having the above construction will now be described. First, when the shaft member


2


is rotated, it rotates with the support portion


1




d


of the case as a shaft together with the rotor


4


and the insulating substrate


5


as constituents of the rotary member


3


.




With rotation of the rotor


4


, the front portion of the click member


10


positioned in a valley of the concave-convex portion


4




d


is pushed out backward by a crest of the concave-convex portion


4




d


against the resilience of the biasing member


11


.




At this time, the front portion


10




c


of the click member


10


is guided by the side walls


9




g


of the recess


9




h


, while the convex portion


10




b


is guided by the groove


9




j


, and the click member


10


moves radially, as shown in

FIGS. 7 and 8

.




During this radial movement the click member


10


does not wobble so much in the circumferential direction (rotational direction) because it is supported by the side walls


9




g


and the groove


9




j.






With a further rotation of the shaft member


2


, the click member


10


falls into a valley of the concave-convex portion


4




d


. In this way the click member


10


is engaged with and disengaged from the concave-convex portion


4




d


, so that the rotation of the shaft member


2


is given a click feeling.




In this embodiment, since the arcuate surface


10




f


against which the biasing member


11


comes into abutment is disposed between a rear end of the convex portion


10




b


and the front portion


10




c


, the click member


10


is difficult to tilt and can be moved radially in a stable manner. Besides, since the biasing member


11


can be disposed at a position close to the center, its radial size can be reduced.




The rotation of the shaft member


2


is stopped upon abutment of the stopper portion


4




c


of the rotor


4


against the ends


9




n


of the projections


9




m


of the housing


9


. As the shaft member


2


rotates, the conductive pattern


6


also rotates together with the insulating substrate


5


, whereby the contact pieces


8


come into and out of contact with the conductive pattern


6


and generate pulses.




As a result, the temperature of an air conditioner or air volume is adjusted.




Although in the above embodiment the concave-convex portion


4




d


of the rotor


4


is formed on the outer circumference portion (a surface parallel to the axial direction), there may be adopted a modification wherein the concave-convex portion


4




d


is formed on a surface perpendicular to the axial direction of the rotor


4


and the click member


10


is pressed elastically by the biasing member


11


so as to become engaged with and disengaged from the concave-convex portion


4




d.






Although in the above embodiment the click member


10


is held by a single holding member


9


, it may be held by two holding members


9


.




In the rotary electric part of the present invention, since the click member


10


and the biasing member


11


are formed as separate members, there is no fear that the resilience of the biasing member may be affected by the heat generated during molding. Besides, the spring span of the biasing member


11


can be made longer than in the prior art and thus a satisfactory resilience is ensured over a long period.




Since the body


10




a


of the click member


10


is guided by the side walls


9




g


of the recess


9




h


formed in the holding member


9


and the convex portion


10




b


moves while being guided by the concave groove


9




j


, the click member


10


is guided at two positions during its movement and hence it wobbles less in the circumferential direction (rotational direction) than in the prior art, affording a good click feeling.




Since the convex portion


10




b


of the click member


10


is formed at the rear portion


10




d


of the body on the side opposite to the front portion


10




c


of the body which engages and disengages from the concave-convex portion


4




d


, it is possible to take long the distance between the front portion


10




c


supported by the side walls


9




g


and the convex portion


10




b


supported by the groove


9




j


, so that that the click member


10


wobbles less and can move stably.




Since the convex portion


10




b


of the click member


10


is formed so that at least a part thereof projects from an end of the rear portion


10




d


of the body


1




a


, the distance between the front portion


10




c


supported by the side walls


9




g


and the convex portion


10




b


supported by the groove


9




j


can be made longer, so that the click member


10


wobbles less and can move stably.




Further, in the click member


10


, the front portion


10




c


of the body


10




a


is formed wider than the rear portion


10




d


and is guided by the side walls


9




g


of the recess


9




h


, and the an end of the rear portion smaller in width is urged by the biasing member


11


. Consequently, the area of sliding contact of the body


10




a


with the side walls


9




g


can be reduced. Even when the click member


10


tilts, it can move smoothly without being caught on the side walls


9




g.






Since an end of the front portion


10




c


of the body


10




a


is formed as an arcuate surface


10




e


larger in radius than the rear portion


10




d


and an end of the rear portion


10




d


is formed as an arcuate surface


10




f


smaller in radius than the front portion


10




c


, the front arcuate surface


10




e


can be smoothly engaged with and disengaged from the concave-convex portion


4




d


and the area of contact of the rear arcuate surface


10




f


with the biasing member


11


can be made small, so that the click member


10


can be urged uniformly by the biasing member


11


, affording a stable click feeling.




Since the holding member


9


is formed of synthetic resin and the metallic biasing member


11


is held by the resinous holding member


9


, the noise caused by sliding and vibration of the biasing member


11


relative to the holding member


9


at the time of clicking is extremely low.




Further, since the click member


10


is formed of synthetic resin, the rotary member


3


can be smoothly engaged with and disengaged from the concave-convex portion


4




d


, affording a good click feeling.




Since the biasing member


11


is formed by a metallic plate spring, a push-in work can be done by utilizing the width of the plate spring, so that the work for acommodating the biasing member


11


into the holding member


9


becomes easier and there can be attained a superior asemblability.




Further, the concave-convex portion


4


d is formed on the outer circumference of the rotary member


3


, the holding member


9


is constituted by the housing, and the click member


10


is held grippingly between the housing and the rotary member


3


. Consequently, the click member


10


can be held firmly and can move stably.



Claims
  • 1. A rotary electric part comprising:a rotary member having a plurality of concaves and convexes; a click member for engagement with and disengagement from the concaves and convexes; a biasing member for urging the click member elastically in a direction in which the click member comes into pressure contact with the concaves and convexes; and a holding member for holding the biasing member, the click member coming into engagement with and disengagement from the concaves and convexes with rotation of the rotary member and creating a click feeling, wherein the click member and the biasing member are formed as separate members, the click member has a body for engagement with and disengagement from the concaves and convexes and also has a convex portion which is integral with the body in a direction perpendicular to a moving direction of the body, the body of the click member is guided by side walls of a concave portion formed in the holding member, and the convex portion is guided by a concave groove.
  • 2. A rotary electric part according to claim 1, wherein the convex portion of the click member is formed at a rear portion of the body on the side opposite to a front portion of the body which comes into engagement with and disengagement from the concaves and convexes.
  • 3. A rotary electric part according to claim 2, wherein the convex portion of the click member is formed so as to project at least partially from an end of the rear portion of the body.
  • 4. A rotary electric part according to claim 2, wherein the front portion of the body of the click member is formed to have a width larger than the width of the rear portion of the body and is guided by the side walls of the concave portion, and an end of the rear portion smaller in width is urged by the biasing member.
  • 5. A rotary electric part according to claim 4, wherein an end of the front portion of the body in the click member is formed as an arcuate surface having a radius larger than that of the rear portion of the body, while an end of the rear portion is formed as an arcuate surface having a radius smaller than that of the front portion.
  • 6. A rotary electric part according to claim 1, wherein the click member and the holding member are formed of synthetic resin.
  • 7. A rotary electric part according to claim 1, wherein the biasing member is formed by a metallic plate spring.
  • 8. A rotary electric part according to claim 1, wherein the concaves and convexes are formed on an outer circumference portion of the rotary member, the holding member is constituted by a housing, and the click member is held grippingly between the housing and the rotary member.
Priority Claims (1)
Number Date Country Kind
12-060364 Mar 2000 JP
US Referenced Citations (6)
Number Name Date Kind
3300594 Paine Jan 1967
4145585 Iwasaki Mar 1979
4504706 Watanabe et al. Mar 1985
4894494 Rosl et al. Jan 1990
5546067 Schmidt et al. Aug 1996
6028502 McSwiggen Feb 2000
Foreign Referenced Citations (1)
Number Date Country
HEI 9-219133 Aug 1997 JP