This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. P2017-235719, filed on Dec. 8, 2017, and the entire contents of which are incorporated herein by reference.
The present invention relates to a rotary electric shaver.
A rotary electric shaver includes a main body in which a motor is built, a head unit having a plurality of blade units each having an outer blade which has a circular shaving surface on an outer side, and an inner blade which is in sliding contact with on an inner surface of the outer blade, and a driving power transmission mechanism transmitting driving power from the motor to rotate the inner blade, and has a structure in which the head unit is connected to a connecting portion disposed in the main body.
In the related art, with respect to a connection structure of the head unit in the rotary electric shaver, there is known a configuration in which a compression spring is inserted through a connecting shaft of the connecting portion to cause the head unit to be movable upon pushing (PTL 1: JP-T-2016-514557). In addition, in a reciprocating-type electric shaver having a structure which has one blade unit having an outer blade having an inverted U-shape in cross section and an inner blade which is in sliding contact with a lower surface of the outer blade, there is known a configuration in which magnets which repulsively react with each other are inserted through a connecting shaft of a main body to cause the head unit to be movable upon pushing (PTL 2: JP-UM-A-1-82877).
As in PTL 1, in the configuration in which the compression spring is inserted through the connecting shaft of the connecting portion, in a case where the head unit and the main body close to each other while being coaxial with the connecting shaft, a pressing force is exerted in a direction compressing the compression spring. Therefore, a restoring force of the compression spring acts in a direction in which the head unit and the main body go away from each other while being coaxial with the connecting shaft.
However, in a case where the head unit is pressed against a skin surface at a position distant from the connecting shaft, almost no pressing force acts in a direction compressing the compression spring, so that the restoring force of the compression spring also hardly acts. Therefore, if the pressing force by a user is strong, the pressing force is transmitted to the skin surface as it is, and the outer blade strongly presses the skin surface, and if the pressing force by a user is weak, the pressing force is transmitted to the skin surface as it is, and the outer blade weakly presses the skin surface.
Normally, when the head unit is pressed against the skin surface, the user is not so conscious of whether or not it is at a position distant from the connecting shaft and pushes the head unit against the skin surface with a substantially constant force. Therefore, in a case of the configuration of PTL 1, for example, when a position close to an outer periphery of the head unit comes into contact with a portion of a jaw or the like where undulation (irregularity) of the skin surface is relatively large, there is a problem that a variation of a force with which the outer blade presses the skin surface increases and as a result, a followability of the outer blade to the skin surface deteriorates. The problem is a factor of hindering a sufficient deep shaving, as well as a factor of leaving some hairs unshaved. In this invention, examples of the hairs include beards, mustache, whisker, and the like.
In addition, even if the configuration in which magnets which repulsively react with each other are inserted through a connecting shaft of a main body to cause the head unit to be movable upon pushing as in PTL 2 is applied to PTL 1, the compression spring is merely replaced by the magnet. Therefore, if a position close to the outer periphery of the head unit comes into contact with a place where undulation (irregularity) of the skin surface is relatively large, the problem that the followability of the outer blade to the skin surface deteriorates cannot be solved.
The present invention is made in view of the above circumstances and an object of the invention is to provide a rotary electric shaver having a support structure in which a followability of an outer blade to a skin surface is enhanced as compared to the related art in a rotary electric shaver in which a plurality of blade units are disposed.
The present invention has been accomplished under the solutions as disclosed below.
A rotary electric shaver according to the present invention includes: a main body in which a motor and a first transmission mechanism that transmits a driving power of the motor are built, and a connecting portion is disposed; a head unit in which a plurality of blade units each having an outer blade having a circular shaving surface on an outer side, an inner blade being in sliding contact with an inner surface of the outer blade, and a driven shaft rotating the inner blade are disposed, and a second transmission mechanism that transmits a driving power of the first transmission mechanism to rotate the driven shaft is built, and which is connected to the connecting portion; and a drive shaft that transmits the driving power of the first transmission mechanism to the second transmission mechanism. The head unit has a first magnet disposed at a position corresponding to each of the blade units. The main body has a second magnet disposed at a position facing and repelling the first magnet.
According to the configuration, a support structure that floats the head unit from the main body and flexibly supports the head unit by a repulsive force between the first magnet disposed corresponding to each of the blade units and the second magnet disposed corresponding to the first magnet is provided. Since the repulsive force between the first magnet and the second magnet acts on each of the blade units, the head unit is not limited to a linear operation in an upward and downward direction such as the restoring force of the compression spring inserted through the connecting shaft of the connecting portion in the structure of the related art, and flexibly operates in any of upward, downward, rightward, leftward, frontward and rearward directions. Therefore, the support structure is provided in which a followability of the outer blade to a skin surface is enhanced as compared to the related art.
According to the invention, a rotary electric shaver having a support structure can be realized in which a followability of an outer blade to a skin surface is enhanced as compared to the related art in a rotary electric shaver in which a plurality of blade units are disposed.
Hereinafter, an embodiment of the invention will be described in detail with reference to the drawings. The embodiment is, for example, a rotary electric shaver 1 in which a plurality of blade units are disposed. Hereinafter, it may be simply referred to as the “electric shaver”. Moreover, in all drawings for explaining the embodiment, the same reference numerals are given to members having the same function and repetitive description thereof may be omitted in some cases.
As illustrated in
A front side of the main body 2 is an operation panel and a selection button for selecting an operation is provided. A motor 7, a power supply unit 91 that supplies electricity to the motor 7, and a control unit 92 that controls the motor 7 and the power supply unit 91 are built in the main body 2.
The head unit 4 is provided with a plurality of blade units 8 each having a cap-shaped outer blade 81 having a circular shaving surface on an outer side, an inner blade 82 being in sliding contact with an inner surface of the outer blade 81, and a driven shaft 85 rotating the inner blade 82. In the embodiment, three blade units 8 are disposed at equal intervals in a circumferential direction with respect to a center of the head unit 4 in a plan view. In addition, the head unit 4 includes an outer blade frame 41 that holds the blade unit 8 such that the blade unit 8 is capable of swing movement, and a blade setting base 42 which holds the outer blade frame 41.
As illustrated in
In the example illustrated in
As illustrated in
According to the configuration, a support structure that floats the head unit 4 from the main body 2 and flexibly supports the head unit 4 by a repulsive force between the first magnet 51 and the second magnet 52 is provided. Since the repulsive force between the first magnet 51 and the second magnet 52 acts on each of the blade units 8, the head unit 4 is not limited to a linear operation in an upward and downward direction as in the structure of the related art, and flexibly operates in any of upward, downward, rightward, leftward, frontward and rearward directions. Therefore, there is provided the support structure in which a followability of the outer blade 81 to a skin surface is enhanced as compared to the related art.
As illustrated in
In the embodiment, the first magnet 51 and the second magnet 52 are permanent magnets, and neodymium magnets, ferrite magnets, and other known magnets can be applied. For example, a high repulsive force can be obtained while reducing a space for mounting the magnets by making the first magnet 51 and the second magnet 52 neodymium magnets.
The invention is not limited to the above-described embodiment, and various modifications are possible without departing from the invention. For example, in the above-described embodiment, the first magnet 51 and the second magnet 52 adopt permanent magnets, but the invention is not limited thereto. It is possible to use an electromagnet for either or both of the first magnet 51 and the second magnet 52.
Further, for example, in the above-described embodiment, the configuration in which the three blade units 8 are disposed is described, but the invention is not limited thereto. There are cases where two blade units 8 are disposed or four or more blade units 8 are disposed.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-235719 | Dec 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7222428 | Koike | May 2007 | B2 |
8533960 | Barish | Sep 2013 | B1 |
20110173815 | Koike | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
20 2013 104680 | Nov 2013 | DE |
2 138 283 | Dec 2009 | EP |
2 246 159 | Nov 2010 | EP |
H1-82877 | Jun 1989 | JP |
2016-514557 | May 2016 | JP |
Entry |
---|
The extended European search report for the corresponding EP application 18210583.3 dated Apr. 25, 2019. |
Number | Date | Country | |
---|---|---|---|
20190176352 A1 | Jun 2019 | US |