Not Applicable
1. Field of Invention
This invention pertains to a rotary engine with multiple planetary rotors orbiting inside the engine housing. More particularly, this invention pertains to facilitating combustion in such a rotary engine.
2. Description of the Related Art
One type of rotary engine has a main rotor with circular cutouts. Inside each circular cutout is a planetary rotor that orbits the center of rotation of the main rotor. The planetary rotor has faces that sequentially cycle through intake, compression, combustion, and exhaust. Such rotary engines are disclosed in U.S. Pat. Nos. 6,932,047; 7,044,102; 7,350,501; and in patent application Ser. No. 12/041,753, hereby all incorporated by reference. Other rotary engines include those such as the Wankel engine. These engines operate with a different configuration than described herein and experience different problems. In particular, the Wankel-type engines operate with a rotor mounted on an eccentric with the rotor moving within a two-lobed cavity.
The compression and combustion cycles occur sequentially as a face of the planetary rotor passes through top dead center (TDC). At TDC, a face of the planetary rotor defines a trailing volume and a leading volume, with the two volumes divided by a bridge protruding from the housing. The trailing volume contains the compressed gas from the compression cycle. The leading volume becomes the combustion chamber as the planetary rotor continues its orbit past TDC. Isolating the trailing and leading volumes when the planetary rotor passes TDC is difficult.
In order to ensure complete and efficient combustion, it is known to introduce turbulence in the fuel air mixture in a combustion chamber. The configuration of the rotary engine is such that difficulties are encountered in attempting to maintain isolation when needed and to also introduce turbulence when desired.
In the rotary engine, it is desirable to introduce or inject fuel near TDC. At this position, the leading volume is small because of the proximity of the planetary rotor face and the engine housing. It is desirable to keep the leading volume small at the beginning of the combustion cycle and it is desirable to avoid having the injected fuel impinge upon or wet the face of the planetary rotor.
According to one embodiment of the present invention, a planetary rotor has a multi-faceted face that engages a bridge during the transition from the compression cycle to the combustion cycle with the bridge and face forming a dynamic seal. In this way, the trailing volume is isolated from the leading volume as the face of the planetary rotor passes through top dead center (TDC).
In one such embodiment, the planetary rotor face has at least two sections. The first, leading section is an arcuate surface that provides clearance between the rotor face and the trailing edge of the bridge as the planetary rotor orbits in the rotary engine. The second, mid-section is adjacent the bridge with the planetary rotor near TDC and maintains an air gap sufficiently small to form a dynamic seal.
According to another embodiment of the present invention, a planetary rotor has a face engaging a bridge during the transition from the compression cycle to the combustion cycle such that the bridge and face have a gap that allows gas flow from the trailing volume to the leading volume and the gap is sufficiently small to quench flame propagation from the leading volume to the trailing volume. In this way, turbulence is introduced into the leading volume of a rotary engine during the period that the fuel is introduced into the leading volume without encouraging flame propagation from the leading volume to the trailing volume.
In one such embodiment, the face of the planetary rotor has channels or grooves positioned to increase gas flow during selected portions of the combustion cycle, with the channels or grooves facilitating turbulence in the leading volume by allowing compressed gas from the trailing volume to flow into the leading volume.
According to another embodiment of the present invention, the face of the planetary rotor opposite a fuel injector has a pocket. In this way, the fuel cloud is able to expand without impinging or wetting the face of the planetary rotor. In one such embodiment, the pocket has a configuration and shape to accommodate the fanning of the injected fuel as the planetary rotor orbits past the injector. The shape avoids wetting the face of the planetary rotor and the surface of the pocket.
The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which:
An apparatus for facilitating combustion in a rotary internal combustion engine 100 is disclosed. The illustrated engine 100 is a planetary piston rotary engine, such as that disclosed in U.S. Pat. Nos. 6,932,047 and 7,044,102, and in patent application Ser. No. 11/382,972, all incorporated by reference. In various embodiments, the rotary internal combustion engine 100 includes either compression ignition or spark ignition and includes fuel injection or other forms of introducing fuel into the engine 100.
The internal cavity 124 is defined by three lobes 112. Each pair of adjacent lobes 112 is joined at a bridge 114. The main rotor 108 rotates clockwise 122 on the main shaft 110 inside the housing cavity 124. The main rotor 108 has three circular cutouts 126 that each contain one planetary rotor 106. The main rotor 108 also has three sections of outer rim 128 that engage the bridge 114 during selected positions of the main rotor 108 as the rotor 108 rotates inside the cavity 124.
The planetary rotors 106 have three tips 130. The surface between adjacent tips define a face 116 of the planetary rotor 106. The planetary rotors 106 orbit in the clockwise direction 122 around the main shaft 110 inside the cutouts 126 of the main rotor 108. As the planetary rotors 106 orbit, the rotors 106 do not rotate about their shaft 120, but maintain a stationary position. That is, the face 116 of the planetary rotor 106 that faces upwards in
In the illustrated embodiment, the rotary internal combustion engine 100 has three fuel injectors 102, one for each lobe 112. In one such embodiment, the fuel injectors 102 are part of a high-pressure common rail direct injection system that provides fuel for combustion in the engine 100. In other embodiments, the rotary internal combustion engine 100 receives fuel delivered through low pressure fuel injectors, from a carburetor, or by port injection. In various embodiments, fuel ignition occurs through compression or spark plug ignition. The fuel for the rotary internal combustion engine 100 ranges, in various embodiments, from heavy fuels to gasoline to ethanol to various flammable gases, for example, hydrogen gas.
In the illustrated embodiment, the face 116 of the planetary rotor 106 that is opposite the fuel injector 102 when fuel is injected has a pocket 208. In this way, the fuel cloud is able to expand without impinging or wetting the face 116 of the planetary rotor 106. The leading surface 206 includes a depression, or combustion pocket, 208. In the illustrated embodiment, the combustion pocket 208 has a triangular configuration with rounded corners when seen in a top view of the face 116. In other embodiments, the combustion pocket 208 is positioned so as to accommodate the position of the planetary rotor 106 when firing or ignition of the fuel is desired. For example, the trailing corner of the pocket 208 is positioned in the center section 204 to accommodate a fuel injector nozzle 302 at a position closer to the center of the bridge 114 than illustrated in
In one embodiment, the center section 204 of the face 116 is a flat surface. In one such embodiment, the flat surface of the center section 204 is parallel to the flat surface of the bridge 114 as the planetary rotor 106 orbits within the cavity 124. In other embodiments, the center section 204 of the face 116 includes one or more curved surfaces. In one such embodiment, the surface of the center section 204 has a large radius such that the gap between the bridge 114 and the center section 204 is substantially constant as the planetary rotor 106 orbits past the bridge 114.
In the illustrated embodiment, the combustion pocket 208 is deep at the leading end 208-L to accommodate the expanding fuel cloud 304. The pocket 208 is shallow at the trailing end 208-T to minimize the volume of the combustion chamber while still allowing space for the fuel cloud 304 as the planetary rotor 106 orbits. The planetary rotor 106, and the pocket 208, move relative to the fuel injector nozzle 302 as the rotor 106 orbits. The triangular outline of the pocket 208, as seen on the arcuate surface 206 of the planetary rotor face 116, accommodates the fan-shaped fuel cloud 304, which is narrowest and thinnest where the fuel exits the nozzle 302. The shape and location of the pocket 208 is related to the location and position of the fuel injector nozzle 302, as well as the direction and shape of the fuel cloud 304 from the nozzle 304.
One embodiment of the tip seals 118 are identified in
The leading seal 118-L has a deeper throat, or gap, 308-L than the throat, or gap, 308-T of the trailing seal 118-T. Accordingly, the leading tab 306-L is longer than the trailing tab 306-T. The longer leading tab 306-L and deeper gap 308-L allows the tab 306-L to flex or deform at a position close to the center of the tip of the planetary rotor 106. The shorter trailing tab 306-T and the shallower gap 308-T allows the tab 306-T to flex or deform at a position closer to the corner of the tip of the planetary rotor 106.
The pushing of the leading seal 118-L has a tendency to cause the leading tab 306-L to flex or deform without undue stress on the tab 306-L. That is, the leading seal 118-L moving along the lobe 112 tends to push or force the tab 306-L toward the planetary rotor 106, thereby tending to close the gap 308-L. The pulling of the shorter trailing seal 118-T has a tendency to push or force the trailing tab 306-T away from the planetary rotor 106, which, if the trailing tab 306-T were longer, would result in a longer lever arm and greater stress on the connection of the trailing tab 306-T to the planetary rotor 106.
In the illustrated embodiment, the tip seal 118 of the planetary rotor 106 includes a tab 306 that is separated from the body of the rotor 106 by a gap 308. The tab 306 resiliently moves when the tab 306 contacts a lobe 112. When the planetary rotor 106 orbits the main shaft 110, at least one tip seal 118 is in contact with a lobe 112. The resilience of the tab 306 accommodates manufacturing tolerances, thermal expansion, and irregularities in the surface of the lobe 112. The gap 308 is on the side of the tab 306 that is subject to high pressure, for example, when the trailing tip seal 118-T defines a portion of the compression chamber 408 or the leading tip seal 118-L defines a portion of the combustion chamber 410, as illustrated in
The figures illustrate the planetary rotor 106 relative to TDC. Top dead center (TDC) is defined as the position of the planetary rotor 106 where the radial bridge center 404 is aligned, or coincides, with the radial planetary rotor center 402. That is, TDC is the position of the planetary rotor 106 in relation to the bridge 114 where the illustrated lines labeled 402, 404, 408 coincide. In other words, at TDC a line passes through the center of the bridge 114, the center of the planetary rotor 106, and the center of the main rotor 108.
The radial bridge center 404 is illustrated as a line passing through the center of rotation of the main shaft 110 and the center of the bridge 114. The radial planetary rotor center 402 is illustrated as a line passing through the center of rotation of the main shaft 110 and the center axis 210 of the planetary rotor 106. The center 408 of the planetary rotor face 116 is illustrated as a line passing through the center of one face 116 of the planetary rotor 106 and the center axis 210 of the planetary rotor 106. As the planetary rotor 106 orbits, the center 408 of the planetary rotor face 116 approaches the radial bridge center 404 BTDC, coincides with the radial bridge center 404 at TDC, and moves away from radial bridge center 404 ATDC.
In the configuration illustrated in
Compressed gas flows from the compression chamber 408 to the combustion chamber 410 through the slot, or gap, between the bridge 114 and the face 116 of the planetary rotor 106. The gap between the bridge 114 and the leading arcuate surface 206 of the face 116 also includes a portion of the combustion pocket 208.
The compression chamber 408 is defined by the surface of the trailing lobe 112-T, the face 116 of the planetary rotor 106, the bridge 114, and one tip seal 118-T. The compression chamber 408 continues decreasing in volume while the combustion chamber 410 increases in volume. Compressed gas continues to flow from the compression chamber 408 to the combustion chamber 410 through the slot, or gap, between the bridge 114 and the face 116 of the planetary rotor 106. The gap between the bridge 114 and the leading arcuate surface 206 of the face 116 also includes a decreasing portion of the combustion pocket 208. The flow from the compression chamber 408 to the combustion chamber 410, because of the slot and combustion pocket 208, causes turbulent flow in the combustion chamber 410.
The compression chamber 408 is now defined by the surface of the trailing lobe 112-T, the face 116 of the planetary rotor 106, and one tip seal 118-T. The compression chamber 408 continues decreasing in volume while the combustion chamber 410 increases in volume.
The center section 204 of the face 116 of the planetary rotor 106 moves adjacent to the surface of the bridge 114. In the illustrated embodiment, the center section 204 is parallel with the surface of bridge 114. Without combustion in the combustion chamber 410, compressed gas continues to flow from the compression chamber 408 to the combustion chamber 410 through the slot, or gap, between the bridge 114 and the face 116 of the planetary rotor 106. The gap between the bridge 114 and the leading arcuate surface 206 of the face 116 also includes a small portion of the combustion pocket 208. The flow from the compression chamber 408 to the combustion chamber 410, because of the slot and combustion pocket 208, continues to cause turbulent flow in the combustion chamber 410.
Injection and combustion of fuel is based on various factors. In a reciprocating piston engine, a negative torque is generated when fuel is combusted before TDC. In the illustrated embodiment, a positive torque is generated when combustion occurs in the combustion chamber 410 with the planetary rotor 106 approaching TDC. Although the illustrated embodiment shows the planetary rotor 106 at the six degrees BTDC position, combustion can be initiated at other positions of the planetary rotor 106, depending upon engine requirements and power needs. The combustion of the fuel in the combustion chamber 410 causes a force to be applied to the face 116 of the planetary rotor 106. That force is represented by the illustrated force vector 602. The force vector 602 on the planetary rotor 106 is aligned generally with the direction 122 of rotation of the main rotor 108 and the direction of orbit of the planetary rotor 106. That is, the moment arm created by the force vector 602 serves to move the main rotor 108 in the direction 122 of rotation.
In one embodiment, the fuel is introduced initially into the combustion chamber 410 with a short burst from the fuel injector 102 at around six degrees BTDC. The initial burst of fuel from the fuel injector 102 is followed by other bursts of fuel and, between the bursts, compressed gas from the compression chamber 408 flows into the combustion chamber 410 with jet flow, thereby creating turbulence in the combustion chamber 410 and promoting more efficient combustion of the fuel.
In other embodiments, the fuel is introduced into the engine 100 by mixing with the intake air, such as with a carburetor. In various embodiments, the fuel mixture is ignited by one or more ignition sources, for example, spark plugs, laser energy, or injection of an externally ignited combustible mass, or by compression of the fuel mixture
The center section 204 of the face 116 of the planetary rotor 106 is aligned with the surface of the bridge 114 and forms a small gap between the center section 204 and the bridge 114. Compressed gas continues to flow from the compression chamber 408 to the combustion chamber 410 through the slot, or gap, between the bridge 114 and the face 116 of the planetary rotor 106. The flow of compressed gas from the compression chamber 408 into the combustion chamber 410 continues only as long at the pressure in the compression chamber is greater than that in the combustion chamber 410. After combustion begins, the narrow gap between the center 408 of the planetary rotor face 116 and the radial bridge center 404 is sufficient to quench the flame front and prevents the propagation of the combustion flame from the combustion chamber 410 into the compression chamber 408.
The face 116 of the planetary rotor 106 engages the bridge 114 during the transition from the compression cycle to the combustion cycle such that the bridge 114 and face 116 have a gap that allows gas flow from the trailing volume 408 to the leading volume 410 and the gap is sufficiently small to quench flame propagation from the leading volume 410 to the trailing volume 408. In this way, turbulence is introduced into the leading volume 410 of a rotary engine 100 during the period that the fuel is introduced into the leading volume 410 without encouraging flame propagation from the leading volume 410 to the trailing volume 408.
At this position, combustion in the combustion chamber 410 results in a force vector 602 that applies ever greater force/torque for causing the main rotor 108 to rotate.
As the planetary rotor 106 orbits, the main rotor 108 rotates at the same speed. The planetary rotor 106 moves within the circular cutout 126 of the main rotor 108.
In the illustrated embodiment, the outer rim 128 does not contact the surface of the bridge 114, but the outer rim 128 moves past the bridge 114 with a very small air gap between the two surfaces 128, 114. The gap between the two surfaces 128, 124 is small enough that the pressure of the combustion gases in the combustion chamber 410 is not sufficient to cause an appreciable amount of combustion gases to exit the combustion chamber 410 through the gap.
In the illustrated embodiment, two passages 1902-A are positioned on one side of the face 116 and connect the trailing arcuate surface 202 with the leading arcuate surface 206 across the center section 204. Because the passages 1902 are positioned asymmetrically, the flow of high pressure gas into the combustion chamber 410 creates turbulence in the combustion chamber 410, which aids in the mixing of the fuel cloud 304 in the combustion chamber 410, which aids in the combustion of that fuel cloud 304. In another embodiment, the passages 1902 connect to the combustion pocket 208. The size, depth, and position of the passages 1902 are determined by the amount and timing of gas flow from the compression chamber 408 to the combustion chamber 410 desired for operation of the engine 100.
The passages 1902-A illustrated in
The various components of the rotary internal combustion engine 100 perform various functions. The function of sealing the connection between the planetary rotor 106 and the lobes 112 is implemented, in one embodiment, by the tip seals 118. In one embodiment, the tip seals 118 include a resilient tab 306 that rides against the surface of the lobe 112 to contain compressed gases. Under the tab 306 is a gap 308 that is exposed to high pressure, which forces the tab 306 away from the gap 308 and against the surface of the lobe 112.
The function of sealing the connection between the lobe 112 and the main rotor 108 is implemented, in one embodiment, by the surface of the bridge 114 engaging the outer rim 128 of the main rotor 108, which creates a dynamic seal, not a mechanical seal. The surface of the bridge 114 and the outer rim 128 are separated by a small air gap. The air gap is not sufficiently large to allow an appreciable amount of high pressure gas to flow through the air gap.
The function of creating turbulent flow conditions in the combustion chamber 410 is implemented, in one embodiment, by the bridge 114 engaging the face 116 of the planetary rotor 106, which causes a narrow slot to be formed between the bridge 114 and the face 116. When the pressure in the compression chamber 408 is sufficiently higher than the pressure in the combustion chamber 410, the compressed gas inside the compression chamber 408 flows through the narrow slot into the combustion chamber 410. The jet flow from the narrow slot creates a turbulent condition inside the combustion chamber 410. In another embodiment, passages 1902-A, 1902-B in the face 116 of the planetary rotor 106′, 106″ allow the compressed gas inside the compression chamber 408 to flow past the bridge 114 into the combustion chamber 410 in an asymmetrical manner, thereby creating turbulence in the combustion chamber 410.
The function of avoiding impingement of fuel is implemented, in one embodiment, by the combustion pocket 208, which is a depression in the face 116 of the planetary rotor 106. The face 116 has a leading surface 206, which is one defining surface of the combustion chamber 410. In one embodiment, the combustion pocket 208 has a triangular shape that corresponds to the fan-shaped fuel cloud 304 emitted by the fuel injector nozzle 302.
From the foregoing description, it will be recognized by those skilled in the art that combustion chamber elements for a rotary internal combustion engine 100 have been provided. The engine 100 includes lobes 112 joined with bridges 114 that protrude into a cavity 124 in the engine housing 104. Inside the cavity 124 is a main rotor 108 that includes circular cutouts 126. Inside each circular cutout 126 is a planetary rotor 106 that has faces 116 positioned about the circumference of the planetary rotor 106. The faces 116, the lobes 112, and the bridges 114 sequentially define a compression chamber 408 and a combustion chamber 410. As combustion proceeds and the main rotor 108 rotates, an outer rim 128 of the main rotor 108 forms a seal with the bridge 114 to further contain the combustion gases.
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.
This application claims the benefit of U.S. Provisional Application No. 60/914,444, filed Apr. 27, 2007.
Number | Name | Date | Kind |
---|---|---|---|
525121 | Shepard | Aug 1894 | A |
2863425 | Breelle | Dec 1958 | A |
2920814 | Breelle | Jan 1960 | A |
3196848 | Bensinger | Jul 1965 | A |
3249095 | Hamada | May 1966 | A |
3297005 | Lamm | Jan 1967 | A |
3584607 | Yamamoto | Jun 1971 | A |
3606602 | Hamada et al. | Sep 1971 | A |
3696796 | Gavrun | Oct 1972 | A |
3716989 | Moreira | Feb 1973 | A |
3739753 | Burley et al. | Jun 1973 | A |
3782341 | Eells | Jan 1974 | A |
3820513 | Buettner | Jun 1974 | A |
3929106 | Scott | Dec 1975 | A |
3976035 | Mitchell | Aug 1976 | A |
4023535 | Ishikawa | May 1977 | A |
4085712 | Myers et al. | Apr 1978 | A |
4100911 | Kromer | Jul 1978 | A |
4793304 | Eiermann | Dec 1988 | A |
6932047 | Watkins et al. | Aug 2005 | B2 |
7044102 | Watkins et al. | May 2006 | B2 |
7350501 | Watkins et al. | Apr 2008 | B2 |
7500461 | Baier et al. | Mar 2009 | B2 |
20060191510 | Watkins et al. | Aug 2006 | A1 |
20070119408 | Kang | May 2007 | A1 |
20080029059 | Isbrecht | Feb 2008 | A1 |
20080141972 | Morrison et al. | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080267805 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60914444 | Apr 2007 | US |