The present invention relates to the field of rotary engines. More specifically, the present invention relates to the field of rotary engines having a lip seal.
The controlled expansion of gases forms the basis for the majority of non-electrical rotational engines in use today. These engines include reciprocating, rotary, and turbine engines, and may be driven by heat, such as with heat engines, or other forms of energy. Heat engines optionally use combustion, solar, geothermal, nuclear, and/or forms of thermal energy. Further, combustion-based heat engines optionally utilize either an internal or an external combustion system, which are further described infra.
Internal Combustion Engines
Internal combustion engines derive power from the combustion of a fuel within the engine itself. Typical internal combustion engines include reciprocating engines, rotary engines, and turbine engines.
Internal combustion reciprocating engines convert the expansion of burning gases, such as an air-fuel mixture, into the linear movement of pistons within cylinders. This linear movement is subsequently converted into rotational movement through connecting rods and a crankshaft. Examples of internal combustion reciprocating engines are the common automotive gasoline and diesel engines.
Internal combustion rotary engines use rotors and chambers to more directly convert the expansion of burning gases into rotational movement. An example of an internal combustion rotary engine is a Wankel engine, which utilizes a triangular rotor that revolves in a chamber, instead of pistons within cylinders. The Wankel engine has fewer moving parts and is generally smaller and lighter, for a given power output, than an equivalent internal combustion reciprocating engine.
Internal combustion turbine engines direct the expansion of burning gases against a turbine, which subsequently rotates. An example of an internal combustion turbine engine is a turboprop aircraft engine, in which the turbine is coupled to a propeller to provide motive power for the aircraft.
Internal combustion turbine engines are often used as thrust engines, where the expansion of the burning gases exit the engine in a controlled manner to produce thrust. An example of an internal combustion turbine/thrust engine is the turbofan aircraft engine, in which the rotation of the turbine is typically coupled back to a compressor, which increases the pressure of the air in the air-fuel mixture and increases the resultant thrust.
All internal combustion engines suffer from poor efficiency; only a small percentage of the potential energy is released during combustion as the combustion is invariably incomplete. Of energy released in combustion, only a small percentage is converted into rotational energy while the rest is dissipated as heat.
If the fuel used in an internal combustion engine is a typical hydrocarbon or hydrocarbon-based compound, such as gasoline, diesel oil, and/or jet fuel, then the partial combustion characteristic of internal combustion engines causes the release of a range of combustion by-product pollutants into the atmosphere via an engine exhaust. To reduce the quantity of pollutants, a support system including a catalytic converter and other apparatus is typically necessitated. Even with the support system, a significant quantity of pollutants are released into the atmosphere as a result of incomplete combustion when using an internal combustion engine.
Because internal combustion engines depend upon the rapid and explosive combustion of fuel within the engine itself, the engine must be engineered to withstand a considerable amount of heat and pressure. These are drawbacks that require a more robust and more complex engine compared to external combustion engines of similar power output.
External Combustion Engines
External combustion engines derive power from the combustion of a fuel in a combustion chamber separate from the engine. A Rankine-cycle engine typifies a modern external combustion engine. In a Rankine-cycle engine, fuel is burned in the combustion chamber and used to heat a liquid at substantially constant pressure. The liquid is vaporized to a gas, which is passed into the engine where it expands. The desired rotational energy and/or power is derived from the expansion energy of the gas. Typical external combustion engines also include reciprocating engines, rotary engines, and turbine engines, described infra.
External combustion reciprocating engines convert the expansion of heated gases into the linear movement of pistons within cylinders and the linear movement is subsequently converted into rotational movement through linkages. A conventional steam locomotive engine is used to illustrate functionality of an external combustion open-loop Rankine-cycle reciprocating engine. Fuel, such as wood, coal, or oil, is burned in a combustion chamber or firebox of the locomotive and is used to heat water at a substantially constant pressure. The water is vaporized to a gas or steam form and is passed into the cylinders. The expansion of the gas in the cylinders drives the pistons. Linkages or drive rods transform the piston movement into rotary power that is coupled to the wheels of a locomotive and is used to propel the locomotive down the track. The expanded gas is released into the atmosphere in the form of steam.
External combustion rotary engines use rotors and chambers instead of pistons, cylinders, and linkages to more directly convert the expansion of heated gases into rotational movement.
External combustion turbine engines direct the expansion of heated gases against a turbine, which then rotates. A modern nuclear power plant is an example of an external-combustion closed-loop Rankine-cycle turbine engine. Nuclear fuel is consumed in a combustion chamber known as a reactor and the resultant energy release is used to heat water. The water is vaporized to a gas, such as steam, which is directed against a turbine forcing rotation. The rotation of the turbine drives a generator to produce electricity. The expanded steam is then condensed back into water and is typically made available for reheating.
With proper design, external combustion engines are more efficient than corresponding internal combustion engines. Through the use of a combustion chamber, the fuel is more thoroughly consumed, releasing a greater percentage of the potential energy. Further, more thorough consumption means fewer combustion by-products with a corresponding reduction in pollutants.
Because external combustion engines do not themselves encompass the combustion of fuel, they are optionally engineered to operate at a lower pressure and a lower temperature than comparable internal combustion engines, which allows the use of less complex support systems, such as cooling and exhaust systems. The result is external combustion engines that are simpler and lighter for a given power output compared with internal combustion engines.
External Combustion Engine Types
Turbine Engines
Typical turbine engines operate at high rotational speeds. The high rotational speeds present several engineering challenges that typically result in specialized designs and materials, which adds to system complexity and cost. Further, to operate at low-to-moderate rotational speeds, turbine engines typically utilize a step-down transmission of some sort, which again adds to system complexity and cost.
Reciprocating Engines
Similarly, reciprocating engines require linkages to convert linear motion to rotary motion resulting in complex designs with many moving parts. In addition, the linear motion of the pistons and the motions of the linkages produce significant vibration, which results in a loss of efficiency and a decrease in engine life. To compensate, components are typically counterbalanced to reduce vibration, which again increases both design complexity and cost.
Heat Engines
Typical heat engines depend upon the diabatic expansion of a gas. That is, as the gas expands, it loses heat. This diabatic expansion represents a loss of energy.
Patents and patent applications related to the current invention are summarized here.
Rotary Engine Types
J. Faucett, “Improvement in Rotary Engines”, U.S. Pat. No. 122,713 (Jan. 16, 1872) describes a class of rotary steam engines using a revolving disk instead of a piston. Particularly, the engine uses a pair of oval concentrics secured to a single transverse shaft, each revolving within a separate steam chamber.
L. Kramer, “Sliding-Vane Rotary Fluid Displacement Machine”, U.S. Pat. No. 3,539,281 (Nov. 10, 1970) describes a sliding-vane rotary fluid displacement machine having a rotor carrying a plurality of sliding vanes that positively move outward as the rotor rotates. The rotor and vanes are surrounded by a cylinder that rotates with the rotor and vanes about an axis.
R. Hoffman, “Rotary Steam Engine”, U.S. Pat. No. 4,047,856 (Sep. 13, 1977) describes a unidirectional rotary steam power unit using a power fluid supplied through a hollow rotor and is conducted to working chambers using passages in walls of the housing controlled by seal means carried by the rotor.
D. Larson, “Rotary Internal Combustion Engine”, U.S. Pat. No. 4,178,900 (Dec. 18, 1979) describes a rotary internal combustion engine configured with a stator and two pairs of sockets. Wedges are affixed to each socket. Rotation of an inner rotor, the sides of the rotor defining a cam, allows pivoting of the wedges, which alters chamber sizes between the rotor and the stator.
J. Ramer, “Method for Operating a Rotary Engine”, U.S. Pat. No. 4,203,410 (May 20, 1980) describes a rotary engine having a pair of spaced coaxial rotors in a housing, each rotor rotating separate rotor chambers. An axially extending chamber in the housing communicates the rotor chambers.
F. Lowther, “Vehicle Braking and Kinetic Energy Recovery System”, U.S. Pat. No. 4,290,268 (Sep. 22, 1981) describes an auxiliary kinetic energy recovery system incorporating a rotary sliding vane engine and/or compressor, using compressed air or electrical energy recovered from the kinetic energy of the braking system, with controls including the regulation of the inlet aperture.
O. Rosaen, “Rotary Engine”, U.S. Pat. No. 4,353,337 (Oct. 12, 1982) describes a rotary internal combustion engine having an elliptically formed internal chamber, with a plurality of vane members slidably disposed within the rotor, constructed to ensure a sealing engagement between the vane member and the wall surface.
J. Herrero, et. al., “Rotary Electrohydraulic Device With Axially Sliding Vanes”, U.S. Pat. No. 4,492,541 (Jan. 8, 1985) describes a rotary electrohydraulic device applicable as a braking or slackening device.
O. Lien, “Rotary Engine”, U.S. Pat. No. 4,721,079 (Jan. 26, 1988) describes a rotary engine configured with rotors, forming opposite sides of the combustion chambers, rotated on an angled, non-rotatable shaft through which a straight power shaft passes.
K. Yang, “Rotary Engine”, U.S. Pat. No. 4,813,388 (Mar. 21, 1989) describes an engine having a pair of cylindrical hubs interleaved in a mesh type rotary engine, each of the cylindrical hubs defining combustion and expansion chambers.
A. Nardi, “Rotary Expander”, U.S. Pat. No. 5,039,290 (Aug. 13, 1991) describes a positive displacement single expansion steam engine having cylinder heads fixed to a wall of the engine, a rotatable power shaft having a plurality of nests, and a free-floating piston in each nest.
G. Testea, et. al., “Rotary Engine System”, U.S. Pat. No. 5,235,945 (Aug. 17, 1993) describes an internal combustion rotary engine having an offset rotor for rotation about an axis eccentric to a central axis of a cylindrical cavity that provides the working chambers of the engine.
R. Weatherston, “Two Rotor Sliding Vane Compressor”, U.S. Pat. No. 5,681,153 (Oct. 28, 1997) describes a two-rotor sliding member rotary compressor including an inner rotor, an outer rotor eccentric to the inner rotor, and at least three sliding members between the inner rotor and the outer rotor.
G. Round, et. al., “Rotary Engine and Method of Operation”, U.S. Pat. No. 5,720,251 (Feb. 24, 1998) describes a rotary engine having an inner rotor and an outer rotor with the outer rotor being offset from the inner rotor. The outer rotor is configured with inward projecting lobes forming seals with outward extending radial arms of the inner rotor, the lobes and arms forming chambers of the engine.
J. Klassen, “Rotary Positive Displacement Engine”, U.S. Pat. No. 5,755,196 (May 26, 1998) describes an engine having a pair of rotors both housed within a single housing, where each rotor is mounted on an axis extending through a center of the housing, where the rotors interlock with each other to define chambers, where a contact face of a first rotor is defined by rotation of a conical section of a second rotor of the two rotors, such that there is a constant linear contact between opposing vanes on the two rotors.
M. Ichieda, “Side Pressure Type Rotary Engine”, U.S. Pat. No. 5,794,583 (Aug. 18, 1998) describes a side pressure type rotary engine configured with a suction port and an exhaust port. A suction blocking element and exhaust blocking element are timed for movement and use in synchronization with rotor rotation to convert expansive forces into a rotational force.
R. Saint-Hilaire, et. al. “Quasiturbine Zero Vibration-Continuous Combustion Rotary Engine Compressor or Pump”, U.S. Pat. No. 6,164,263 (Dec. 26, 2000) describe a rotary engine using four degrees of freedom, where an assembly of four carriages, supporting pivots of four pivoting blades, forms a variable shape rotor.
J. Pelleja, “Rotary Internal Combustion Engine and Rotary Internal Combustion Engine Cycle”, U.S. Pat. No. 6,247,443 B1 (Jun. 19, 2001) describes an internal combustion rotary engine configured with a set of push rod vanes arranged in a staggered and radial arrangement relative to a drive shaft of the engine.
R. Pekau, “Variable Geometry Toroidal Engine”, U.S. Pat. No. 6,546,908 B1 (Apr. 15, 2003) describes a rotary engine including a single toroidal cylinder and a set of pistons on a rotating circular piston assembly where the pistons are mechanically extendable and retractable in synchronization with opening and closing of a disk valve.
M. King, “Variable Vane Rotary Engine”, U.S. Pat. No. 6,729,296 B2 (May 4, 2004) describes a rotary engine including: (1) a concentric stator sandwiched between a front wall and an aft wall enclosing a cylindrical inner space and (2) a network of combustors stationed about the periphery of the stator.
O. Al-Hawaj, “Supercharged Radial Vane Rotary Device”, U.S. Pat. No. 6,772,728 B2 (Aug. 10, 2004) describes two and four phase internal combustion engines having a doughnut shaped rotor assembly with an integrated axial pump portion.
M. Kight, “Bimodal Fan, Heat Exchanger and Bypass Air Supercharging for Piston or Rotary Driven Turbine”, U.S. Pat. No. 6,786,036 B2 (Sep. 7, 2004) describes a turbine for aircraft use where the turbine includes a heat exchanger with minimal drag for increasing the engine effectiveness through an enthalpy increase on the working fluid.
A. Regev, “Rotary Vane Motor”, U.S. Pat. No. 6,886,527 B2 (May 3, 2005) describes a rotary vane motor using a pair of second order elliptical gears for controlling movement of vanes and to define an intake stage, a compression stage, an expansion stage, and an exhaust stage of the motor.
S. Wang, “Rotary Engine with Vanes Rotatable by Compressed Gas Injected Thereon”, U.S. Pat. No. 7,845,332 B2 (Dec. 7, 2010) describes a planetary gear rotary engine for internal combustion, where a rotor rotates within an outer shell. With a given rotation of the rotor, vanes drive a power generating unit.
Ignition
E. Pangman, “Multiple Vane Rotary Internal Combustion Engine”, U.S. Pat. No. 5,277,158 (Jan. 11, 1994) describes a rotary engine having a fuel ignition system provided to more than one combustion chamber at a time by expanding gases passing through a plasma bleed-over groove. Further exhaust gases are removed by a secondary system using a venturi creating negative pressure.
End Plates
S. Smart, et. al., “Rotary Vane Pump With Floating Rotor Side Plates”, U.S. Pat. No. 4,804,317 (Feb. 14, 1989) describes a rotary vane pump having a rotor within a cavity, a pair of stationary wear plates on the sides of the cavity, carbon composite vanes riding in the rotor and a pair of carbon composite rotor side plates positioned between one side of the rotor and the stationary end plates, the vanes having sufficient width to extend into slots of both side plates to drive the side plates with the rotor during operation.
Rotors
F. Bellmer, “Multi-Chamber Rotary Vane Compressor”, U.S. Pat. No. 3,381,891 (May 7, 1968) describes a rotary sliding vane compressor having multiple compression chambers circumferentially spaced within the rotor housing with groups of chambers serially connected to provide pressure staging.
Y. Ishizuka, et. al., “Sliding Vane Compressor with End Face Inserts or Rotor”, U.S. Pat. No. 4,242,065 (Dec. 30, 1980) describes a sliding vane compressor having a rotor, the rotor having axial endfaces, which are juxtaposed. The axial rotor endfaces having a material of higher thermal coefficient of expansion than a material of the rotor itself, the thermal expansion of the endfaces used to set a spacing.
T. Edwards, “Non-Contact Rotary Vane Gas Expanding Apparatus”, U.S. Pat. No. 5,501,586 (Mar. 26, 1991) describes a non-contact rotary vane gas expanding apparatus having a stator housing, a rotor, a plurality of vanes in radial slots of the rotor, a plurality of gas receiving pockets in the rotor adjacent to the radial slots of the rotor, and formations in the stator housing to effectuate transfer of gas under pressure through the stator housing to the gas receiving pockets.
J. Minier, “Rotary Internal Combustion Engine”, U.S. Pat. No. 6,070,565 (Jun. 6, 2000) describes an internal combustion engine apparatus containing a slotted yoke positioned for controlling the sliding of vane blades.
Vanes
H. Kalen, et. al., “Rotary Machines of the Sliding Vane Type Having Interconnected Vane Slots”, U.S. Pat. No. 3,915,598 (Oct. 28, 1975) describe a rotary machine of the sliding-vane type having a stator housing and a rotor operatively mounted therein, the rotor having vane slots to accommodate sliding vanes with a series of channels in the rotor body interconnecting the vane slots.
R. Jenkins, et. al., “Rotary Engine”, U.S. Pat. No. 4,064,841 (Dec. 27, 1977) describes a rotary engine having a stator, an offset, a track in the rotor, and roller vanes running in the track, where each vane extends outward to separate the rotor/stator gap into chambers.
R. Roberts, et. al., “Rotary Sliding Vane Compressor with Magnetic Vane Retractor”, U.S. Pat. No. 4,132,512 (Jan. 2, 1979) describes a rotary sliding vane compressor having magnetic vane retractor means to control the pumping capacity of the compressor without the use of an on/off clutch in the drive system.
D. August, “Rotary Energy-Transmitting Mechanism”, U.S. Pat. No. 4,191,032 (Mar. 4, 1980) describes a rotary energy-transmitting device configured with a stator, an inner rotor, and vanes separating the stator and rotor into chambers, where the vanes each pivot on a rolling ball mechanism, the ball mechanisms substantially embedded in the rotor.
J. Taylor, “Rotary Internal Combustion Engine”, U.S. Pat. No. 4,515,123 (May 7, 1985) describes a rotary internal combustion engine, which provides spring-loaded vanes seated opposed within a cylindrical cavity in which a rotary transfer valve rotates on a shaft.
S. Sumikawa, et. al. “Sliding-vane Rotary Compressor for Automotive Air Conditioner”, U.S. Pat. No. 4,580,950 (Apr. 8, 1986) describe a sliding-vane rotary compressor utilizing a control valve constructed to actuate in immediate response to a change in pressure of a fluid to be compressed able to reduce the flow of the fluid when the engine rate is high.
W. Crittenden, “Rotary Internal Combustion engine”, U.S. Pat. No. 4,638,776 (Jan. 27, 1987) describes a rotary internal combustion engine utilizing a radial sliding vane on an inner surface of an eccentric circular chamber, and an arcuate transfer passage communicating between the chambers via slots in the rotors adjacent the vanes.
R. Wilks, “Rotary Piston Engine”, U.S. Pat. No. 4,817,567 (Apr. 4, 1989) describes a rotary piston engine having a pear-shaped piston, with a piston vane, and four spring-loaded vanes mounted for reciprocal movement.
J. Bishop, et. al., “Rotary Vane Pump With Carbon/Carbon Vanes”, U.S. Pat. No. 5,181,844 (Jan. 26, 1993) describes a rotary sliding vane pump having vanes fabricated from a carbon/carbon based material that is optionally teflon coated.
K. Pie, “Rotary Device with Vanes Composed of Vane Segments”, U.S. Pat. No. 5,224,850 (Jul. 6, 1993) describes a rotary engine having multipart vanes between an inner rotor and an outer housing, where each vane has end parts and an intermediate part. In a first embodiment, the intermediate part and end part have cooperating inclined ramp faces, such that an outwardly directed force applied to the vane or by a biasing spring causes the end parts to thrust laterally via a wedging action. In a second embodiment, the end parts and intermediate part are separated by wedging members, located in the intermediate portion, acting on the end parts.
S. Anderson, “Gas Compressor/Expander”, U.S. Pat. No. 5,379,736 (Jan. 10, 1995) describes an air compressor and gas expander having an inner rotor, an outer stator, and a set of vanes, where each vanes independently rotates, along an axis parallel to an axis of rotation of the rotor, to separate a space between the rotor and stator into chambers.
B. Mallen, et. al., “Sliding Vane Engine”, U.S. Pat. No. 5,524,587 (Jun. 11, 1996) describes a sliding vane engine including: a stator and a rotor in relative rotation and vanes containing pins that extend into a pin channel for controlling sliding motion of the vanes.
J. Penn, “Radial Vane Rotary Engine”, U.S. Pat. No. 5,540,199 (Jul. 30, 1996) describes a radial vane rotary engine having an inner space with a substantially constant distance between an inner cam and an outer stator, where a set of fixed length vanes separate the inner space into chambers. The inner rotating cam forces movement of each vane to contact the outer stator during each engine cycle.
L. Hedelin, “Sliding Vane Machine Having Vane Guides and Inlet Opening Regulation”, U.S. Pat. No. 5,558,511 (Sep. 24, 1996) describes a sliding vane machine with a cylindrical rotor placed in a housing, the rotor being rotatably mounted in the housing at one point and being provided with a number of vanes, where movement of the vanes is guided along a guide race in the housing.
K. Kirtley, et. al., “Rotary Vane Pump With Continuous Carbon Fiber Reinforced PolyEtherEtherKetone (PEEK) Vanes”, U.S. Pat. No. 6,364,646 B1 (Apr. 2, 2002) describes a rotary paddle pump with sliding vanes and a stationary side wall, where the vanes and side wall are fabricated using a continuous carbon-fiber reinforced polyetheretherketone material, having self-lubrication properties.
R. Davidow, “Steam-Powered Rotary Engine”, U.S. Pat. No. 6,565,310 B1 (May 20, 2003) describes a steam-powered rotary engine having a rotor arm assembly and an outer ring, where steam ejected from an outer end of the rotor arm assembly impacts at essentially right angle onto steps in the outer ring causing the rotor arm to rotate in a direction opposite the direction of travel of the exiting steam.
D. Renegar, “Flexible Vane Rotary Engine”, U.S. Pat. No. 6,659,065 B1 (Dec. 9, 2003) describes an internal combustion rotary engine comprising a rotor spinning in an oval cavity and flexible vanes, defining four chambers, that bend in response to cyclical variation in distance between the rotor and an inner wall of a housing of the rotary engine.
R. Saint-Hilaire, et. al., “Quasiturbine (Qurbine) Rotor with Central Annular Support and Ventilation”, U.S. Pat. No. 6,899,075 B2 (May 31, 2005) describe a quasiturbine having a rotor arrangement peripherally supported by four rolling carriages, the carriages taking the pressure load of pivoting blades forming the rotor and transferring the load to the opposite internal contoured housing wall. The pivoting blades each include wheel bearing rolling on annular tracks attached to the central area of the lateral side covers forming part of the stator casing.
T. Hamada, et. al. “Sliding Structure for Automotive Engine”, U.S. Pat. No. 7,255,083 (Aug. 14, 2007) describe an automotive engine having a sliding portion, such as a rotary vane, where the sliding portion has a hard carbon film formed on the base of the sliding portion.
S. MacMurray, “Single Cycle Elliptical Rotary Engine”, U.S. Pat. No. 7,395,805 B1 (Jul. 8, 2008) describes a rotary engine configured a rotor housing having a bisected, offset elliptical interior wall a rotor member disposed therein. Four vanes rotate with the rotor. The rotor vanes are forced out by a pressurized oxygen/fuel mixture entering behind the vanes through ports and the vanes are pushed back into the rotor due to narrowing elliptical walls of the housing.
W. Peitzke, et. al., “Multilobe Rotary Motion Asymmetric Compression/Expansion Engine”, U.S. Pat. No. 7,578,278 B2 (Aug. 25, 2009) describe a rotary engine with multiple pivotally mounted lobes desmodromically extendible and retractable from a rotor to trace asymmetric volumes for inlet and compression and for inlet and exhaust based on the contour of the engine case, which the lobes sealingly engage.
J. Rodgers, “Rotary Engine”, U.S. Pat. No. 7,713,042, B1 (May 11, 2010) describes a rotary engine configured to use compressed air or high pressure steam to produce power. The engine includes a rotor having three slotted piston, opposed inlet ports running through a central valve into the slotted pistons, and a casing having two exhaust ports.
Valves
T. Larson, “Rotary Engine”, U.S. Pat. No. 4,548,171 (Oct. 22, 1985) describes a rotary engine having a plurality of passages for intake, compression, expansion, and exhaust and valve means to selectively open and close the passages in a cycle of the engine.
S. Nagata, et. al., “Four Cycle Rotary Engine”, U.S. Pat. No. 5,937,820 (Aug. 17, 1999) describes a rotary engine configured with an oblong casing, a circular shaped rotor therein, vanes attached to the rotor, and inlet and outlet valves. Means for manipulating the inlet and outlet valves are housed in the rotor.
Seals
L. Keller, “Rotary Vane Device with Improved Seals”, U.S. Pat. No. 3,883,277 (May 13, 1975) describes an eccentric rotor vane device having a plurality of annularly related radial vanes, independently pivotal and rotatable about a vane axis, where seal means include a plurality of cylindrical rollers that serve as vane guides intermediate each pair of vanes, the cylindrical rollers adjacent each face of each respective lateral vane face so that the vane traverses radially inward and outward with the vanes lateral faces rolling on the rollers.
J. Wyman, “Rotary Motor”, U.S. Pat. No. 4,115,045 (Sep. 19, 1978) describes a rotary steam engine having a peripheral, circular casing with side walls defining an interior cylindrical section and a rotor adapted to rotate therein, where the rotor includes a series of spaced transverse lobes with spring-biased transverse seals adapted to engage the inner periphery of the casing and the casing having a series of spaced spring-biased transverse vanes adapted to engage the outer periphery seals and lobes of the rotor.
R. Rettew, “Rotary Vane Machine with Roller Seals for the Vanes”, U.S. Pat. No. 4,168,941 (Sep. 25, 1979) describes a rotary vane machine using tapered vanes. Rollers, which form seals are disposed in slots formed in a rotor wall opening on each side of the tapered vanes. The roller seals are spring biased against the vanes and centrifugal forces urge rollers against the vanes to form the seals.
F. Lowther, “Rotary Sliding Vane Device with Radial Bias Control”, U.S. Pat. No. 4,355,965 (Oct. 26, 1982) describes a rotary sliding vane device having vanes having longitudinal passages and axial passages therethrough for supplying lubrication and sealing fluid to the tip and axial end portions of the vane.
H. Banasiuk, “Floating Seal System for Rotary Devices”, U.S. Pat. No. 4,399,863 (Aug. 23, 1983) describes a floating seal system for rotary devices to reduce gas leakage around the rotary device. The peripheral seal bodies have a generally U-shaped cross-section with one of the legs secured to a support member and the other forms a contacting seal against the rotary device. A resilient flexible tube is positioned within a tubular channel to reduce gas leakage across the tubular channel and a spacer extends beyond the face of the floating channel to provide a desired clearance between the floating channel and the face of the rotary device.
C. David, “External Combustion Rotary Engine”, U.S. Pat. No. 4,760,701 (Aug. 2, 1988) describes an external combustion rotary engine configured to operate using compressed air in internal expansion chambers. A fraction of the compressed air is further compressed and used as an air pad cushion to isolate rotating engine components from fixed position engine components.
E. Slaughter, “Hinged Valved Rotary Engine with Separate Compression and Expansion Chambers”, U.S. Pat. No. 4,860,704 (Aug. 29, 1989) describes a hinge valved rotary engine where air is compressed by cooperation of a hinged compression valve that sealingly engages a compression rotor of the engine. Further, vanes expansion rotor lobe seals are forced into contact with the peripheral surface of the expansion chamber using springs.
C. Parme, “Seal Rings for the Roller on a Rotary Compressor”, U.S. Pat. No. 5,116,208 (May 26, 1992) describes a sliding vane rotary pump, including: a housing, a roller mounted in the cylindrical housing, and bearing plates for closing top and bottom ends of the cylindrical opening. A seal ring is disposed within a counterbored surface of each end of the cylindrical ring, the internal space is filled with a pressurized fluid supplied by the compressor, and the pressurized fluid exerts a bias force on the seal rings causing the seal rings to move outwardly from the ends of the roller to form a seal with the bearing plates.
J. Kolhouse, “Self-Sealing Water Pump Seal”, U.S. Pat. No. 5,336,047 (Aug. 9, 1994) describes a self-sealing water pump seal having a barrier after a primary seal, the barrier designed to become clogged over time with solids leaking past the primary seal, thereby forming a secondary seal.
O. Lien, “Rotary Engine Piston and Seal Assembly”, U.S. Pat. No. 5,419,691 (May 30, 1995) describes a rotary engine piston and seal assembly having a cube shaped piston and a pair of grooves running around all four sliding side surfaces of the piston. the grooves contain a series of segmented metal seal compressed against mating surfaces with seal springs.
T. Stoll, et. al., “Hinged Vane Rotary Pump”, U.S. Pat. No. 5,571,005 (Nov. 5, 1996) describes a hinged vane rotary pump including: a cylindrical chamber, a rotor eccentrically mounted within the chamber, and a plurality hinged vanes, where wear on the vane effectively moves to the center of the vane.
D. Andres, “Air Bearing Rotary Engine”, U.S. Pat. No. 5,571,244 (Nov. 5, 1996) describes a rotary engine including vanes having tip apertures supplied with pressurized fluid to provide air bearings between the vane tip and a casing of the stator housing.
J. Klassen, “Rotary Positive Displacement Engine”, U.S. Pat. No. 6,036,463 (Mar. 14, 2000) describes an engine having a pair of rotors both housed within a single housing, where each rotor is mounted on an axis extending through a center of the housing, where the rotors interlock with each other to define chambers, where a contact face of a first rotor is defined by rotation of a conical section of a second rotor of the two rotors, such that there is a constant linear contact between opposing vanes on the two rotors.
J. Klassen, “Rotary Engine and Method for Determining Engagement Surface Contours Therefor”, U.S. Pat. No. 6,739,852 B1 (May 25, 2004) describes a rotary engine configured with rotor surfaces that are mirror images of engine interior contours to form a seal and recesses for interrupting the seal at predetermined points in a rotational cycle of the engine.
J. Rodgers, “Rotary Engine”, U.S. Pat. No. 7,713,042 B1 (May 11, 2010) describes a rotary engine configured with pistons, where springs within each piston cause an angled tip of the piston to contact a rotary chamber edge upon start up.
B. Garcia, “Rotary Internal Combustion Engine”, U.S. patent application Ser. No. 2006/0102139 A1 (May 18, 2006) describes a rotary internal combustion engine having a coaxial stator, a rotor, and a transmission system, where the transmission system causes retraction movements of a first group of blades to transmit to a second group of blades forming a seal between the free edge of the blades and the inner surface of the engine.
Exhaust
W. Doerner, et. al., “Rotary Rankine Engine Powered Electric Generating Apparatus”, U.S. Pat. No. 3,950,950 (Apr. 20, 1976) describe a rotary closed Rankine cycle turbine engine powered electric generating apparatus having a single condenser and/or a primary and secondary condenser for condensing exhaust vapors.
D. Aden, et. al., “Sliding Vane Pump”, U.S. Pat. No. 6,497,557 B2 (Dec. 24, 2002) describes a sliding vane pump having a plurality of inlet ports, internal discharge ports, and at least two discharge ports where all of the fluid from one of the internal discharge ports exits through one of the external discharge ports.
J. Klassen, “Method for Determining Engagement Surface Contours for a Rotor of an Engine”, U.S. Pat. No. 6,634,873 B2 (Oct. 21, 2003) describes a rotary engine configured with rotor surfaces that are mirror images of engine interior contours to form a seal and recesses for interrupting the seal at predetermined points in a rotational cycle of the engine.
D. Patterson, et. al., “Combustion and Exhaust Heads for Fluid Turbine Engines”, U.S. Pat. No. 6,799,549 B1 (Oct. 5, 2004) describes an internal combustion rotary turbine engine including controls for opening and closing an exhaust valve during engine operation.
R. Gorski, “Gorski Rotary Engine”, U.S. Pat. No. 7,073,477 B2 (Jul. 11, 2006) describes a rotary engine configured with solid vanes extending from a rotor to an interior wall of the stator housing. A series of grooves in the interior wall permit the expanding exhaust gases to by-pass the vanes proximate the combustion chamber to engage the larger surface area of the vane protruding from the rotor.
H. Maeng, “Sliding Vane of Rotors”, U.S. Pat. No. 7,674,101 B2 (Mar. 9, 2010) describes a sliding vane extending through a rotor in diametrically opposed directions and rotating with the rotor. Diametrically opposed ends of the sliding vane include sealing slots. The sliding vane further includes two pairs of compression plates provided in plate sealing slots for sealing the edges of the vane, the compression plates activated using springs in the vane.
E. Carnahan, “External Heat Engine of the Rotary Vane Type and Compressor/Expander”, U.S. patent application Ser. No. US 2008/0041056 A1 (Feb. 21, 2008) describes a rotary engine using injected cool liquid into a compression section of the engine.
Cooling
G. Cann, “Rankine Cycle Engine”, U.S. Pat. No. 4,367,629 (Jan. 11, 1983) describes a Rankine cycle engine having a coolant disposed within rotor coolant passages that uses centrifugal force to accelerate movement of the coolant.
T. Maruyama, et. al. “Rotary Vane Compressor With Suction Port Adjustment”, U.S. Pat. No. 4,486,158 (Dec. 4, 1984) describe a sliding vane type rotary compressor with suction port adjustment, of which refrigerating capacity at the high speed operation is suppressed by making use of suction loss involved when refrigerant pressure in the vane chamber becomes lower than the pressure of the refrigerant supply source in the suction stroke of the compressor.
A. Ryska, et. al., “Two-Stage Rotary Vane Motor”, U.S. Pat. No. 6,086,347 (Jul. 11, 2000) describes a two-stage rotary vane motor having first and second fluid cooling chambers with independent inlets for receiving pressurized cryogen. One chamber is used for low cooling requirements and both chambers are used for high cooling requirements.
R. Ullyott, “Internal Cooling System for Rotary Engine”, U.S. Pat. No. 7,412,831 B2 (Aug. 19, 2008) describes a rotary combustion engine with self-cooling system, where the cooling system includes: a heat exchanging interface and a drive fan integrated on an output shaft of the rotary engine, the fan providing a flow of forced air over the heat exchanging interface.
Varying Loads
T. Alund, “Sliding Vane Machines”, U.S. Pat. No. 4,046,493 (Sep. 6, 1977) describes a sliding vane machine using a valve and pressure plates to control the working area of valves in the sliding vane machine.
Jet
A. Schlote, “Rotary Heat Engine”, U.S. Pat. No. 5,408,824 (Apr. 25, 1995) describes a jet-propelled rotary engine having a rotor rotating about an axis and at least one jet assembly secured to the rotor and adapted for combustion of a pressurized oxygen-fuel mixture.
Problem Statement
What is needed is an engine, pump, expander, and/or compressor that more efficiently converts fuel or energy into motion, work, power, stored energy, and/or force. For example, what is needed is an external combustion rotary heat engine that more efficiently converts about adiabatic expansive energy of the gases driving the engine into rotational power and/or energy for use in a variety of applications.
The invention comprises a rotary engine method and apparatus using a deformable lip seal to seal rotary engine chambers.
A more complete understanding of the present invention is derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures.
The invention comprises a rotary engine method and apparatus configured with at least one lip seal. A lip seal restricts fuel flow from a fuel compartment to a non-fuel compartment and/or fuel flow between fuel compartments, such as between a reference expansion chamber and any of an engine: rotor, vane, housing, and/or a leading or trailing expansion chamber. Types of lip seals include: vane lip seals, rotor lip seals, and rotor-vane slot lip seal. Generally, lip seals dynamically move or deform as a result of fuel movement or pressure to seal a junction between a sealing surface of the lip seal and a rotary engine component. For example, a vane lip seal sealing to the inner housing dynamically moves along the y-axis until an outer surface of the lip seal seals to the housing.
In another embodiment, the rotary engine method and apparatus uses an offset rotor. The rotary engine is preferably a component of an engine system using a recirculating liquid/vapor.
In yet another embodiment, an engine is described for operation on a fuel expanding about adiabatically in a power stroke of the engine. To aid the power stroke efficiency, the rotary engine contains one or more of a rotor configured to rotate in a stator, the rotor offset along both an x-axis and a y-axis relative to a center of the stator, a vane configured to span a distance between the rotor and the stator, where the inner wall of the stator further comprises at least one of: a first cut-out in the housing at the initiation of the power stroke, use of a build-up in the housing at the end of the power stroke, and/or use of a second cut-out in the housing at the completion of rotation of the rotor in the engine. The engine yields a cross-sectional area expanding during a portion of the power stroke at about the Fibonacci ratio.
For example, a rotary engine is provided for operation on a recirculating fuel expanding about adiabatically during a power cycle or power stroke of the rotary engine. To aid the power stroke efficiency, the rotary engine preferably contains one or more of:
The first-cut out allows an increased distance between a stator or the housing and the rotor, which yields an increased cross-sectional area of the expansion chamber, which yields increased power of the engine. The build-up allows an increased x-axis and y-axis offset of the double offset rotor relative to the center of the housing. More particularly, the vane reaches full extension before the six o'clock position to optimize power and without the build up at the six o'clock position the vane overextends potentially causing unit failure. The second cut-out allows room for a vane, having a vane tip, a vane wing, a vane wingtip, or a vane end not fully retractable into the rotor, to pass between the rotor and the stator at about the eleven o'clock position without restraint of movement.
In yet still another embodiment, a rotary engine is described including: (1) a rotor eccentrically located within a housing, the rotor configured with a plurality of rotor vane slots; (2) a first vane of a set of vanes separating an interior space between the rotor and the housing into at least a trailing chamber and a leading chamber, where the first vane slidingly engages a rotor vane slot; (3) a first conduit within the rotor configured to communicate a first flow between the trailing chamber and the rotor vane slot; and (4) a second conduit within the rotor configured to communicate a second flow between the trailing chamber and the first conduit. Optionally, a vane seal is affixed to the first vane or the rotor, where the vane seal is configured to valve the first conduit or a vane conduit, respectively.
In still yet another embodiment, a rotary engine is described having fuel paths that run through a portion of a rotor of the rotary engine, through a portion of a shaft, and/or through a vane of the rotary engine. The fuel paths are optionally opened and shut as a function of rotation of the rotor to enhance power provided by the engine. The valving that opens and/or shuts a fuel path operates to: (1) equalize pressure between an expansion chamber and a rotor-vane chamber and/or (2) to control a booster, which creates a pressure differential resulting in enhanced flow of fuel. The fuel paths, valves, seals, and boosters are further described, infra.
In yet another embodiment, a rotary engine or an external combustion rotary engine is described including: (1) a rotor located within a housing, the rotor configured with a plurality of rotor vane slots; (2) a vane separating an interior space between the rotor and the housing into at least a trailing chamber and a leading chamber, where the vane slidingly engages a rotor vane slot; (3) a first conduit within the rotor configured to communicate a first flow between the trailing chamber and the rotor vane slot; and (4) a lower trailing vane seal affixed to the vane, the lower trailing vane seal configured to valve the first conduit with rotation of the rotor. Optionally, a second conduit within the rotor is configured to communicate a second flow between the trailing chamber and the first conduit. Optionally, movement of the vane operates to directly valve one or more additional fuel flow paths as a function of rotation of the rotor.
In still another embodiment, a rotary engine is described including: (1) a rotor located within a housing, the rotor configured with a plurality of rotor vane slots; (2) a vane separating an interior space between the rotor and the housing into at least a trailing chamber and a leading chamber, where the vane slidingly engages a rotor vane slot; (3) a first passage through the vane, the first passage including a first exit port into the rotationally trailing chamber; and (4) a second exit port to the rotationally trailing chamber, where the first exit port and the second exit port connect to any of: (a) the first passage through the vane and (b) the first passage and a second passage through the vane, respectively. Optionally, one or more seals affixed to the vane and/or the rotor, valve the first passage, the second passage, a vane wingtip, and/or a conduit through the rotor.
In yet another embodiment, a vane or a vane component reduces chatter or vibration of a vane end against the inner wall of the housing of the rotary engine during operation of the engine, where chatter leads to unwanted opening and/or closing of the seal between an expansion chamber and a leading chamber. For example, the bearings bear the force of the vane against the inner wall of the rotary engine housing relieving centrifugal force, which facilitates the seals sealing the vane to the housing and additionally to provides a seal between the leading chamber and the expansion chamber of the rotary engine. Pressure build-up between the vane end and the inner wall of the housing, which results in unwanted engine chatter or chatter about the vane end proximate the housing, is reduced through the use of one or more pressure relief cuts, and optionally with a vane path booster element. The reduction of engine chatter increases engine power and/or efficiency. Further, the pressure relief aids in uninterrupted contact of the seals between the vane and inner housing of the rotary engine, which yields enhanced rotary engine efficiency.
In still another embodiment, a vane is carried with a rotor. The vane optionally includes: (1) a central vane axis extending radially outward along a y-axis, the y-axis comprising a line from a center of the rotor to a housing; and (2) a vane end intersecting the y-axis proximate an inner surface of the housing. Rotation of the rotor within the housing generates a centrifugal force of the vane toward the housing. The centrifugal force is primarily distributed and/or opposed with a first sealing element mounted on an end of the vane, such as a rigid support, ball bearing, and/or a roller bearing. The rigid structure of the first sealing element allows use of a second flexible sealing element mounted on the vane end. The second flexible sealing element performs as a seal between a trailing expansion chamber and a leading expansion chamber on opposite sides of the vane. The rigid seal and the flexible seal typically function independently of each other as separate constituents of the tip or end of a given vane. As the rigid sealing element resists the centrifugal force, the second sealing element is preferably designed to resist less than about ten percent of the outward centrifugal force of a given vane into the housing with rotation of the rotor in the housing.
In another embodiment, a rotary engine method and apparatus using a vane rotating with a rotor about a shaft in a rotary engine is described, where the vane has a vane end or vane tip including:
Further, fuels described maintain about adiabatic expansion to a high ratio of gas/liquid when maintained at a relatively constant temperature via use of a temperature controller for the expansion chambers. Expansive forces of the fuel acting on the rotor are aided by hydraulic forces, vortical forces, an about Fibonacci-ratio increase in volume in an expansion chamber during the power cycle or power stroke, sliding vanes, and/or swinging vanes between the rotor and housing. Herein, a power stroke refers to the stroke of a cyclic motor or engine which generates force.
In another embodiment, the invention comprises a rotary apparatus, such as an engine, method, and/or apparatus using a vane with at least one vane extension or vane wing rotating with a rotor about a shaft in a rotary engine. The vane extension or vane wing optionally includes: a curved outer surface, a curved inner surface, an aperture through the extension, and/or a curved tunnel passing through the wing. For example, the curved outer surface of the wing curves away from an inner wall of the engine housing as a function of distance away from the vane body. In a second example, the curved inner surface of the wing curves toward the inner wall of the engine housing as a function of distance from the vane body. In a third example fuel flows through the curved tunnel, aperture, or passageway thereby passing through the wing, which creates a partial negative pressure during engine operation that lifts an end or tip of the vane toward the housing while simultaneously reducing pressure between the vane end and the housing. The curved tunnel or passageway relieves pressure above the vane extension or vane wing thereby reducing possible chatter at the engine vane end/engine housing interface.
In another embodiment, a rotary engine is configured with elements having cap seals. A cap seal restricts fuel flow from a fuel compartment to a non-fuel compartment and/or fuel flow between fuel compartments, such as between a reference expansion chamber and any of an engine: rotor, vane, housing, and/or a leading or trailing expansion chamber. Types of caps include vane caps, rotor caps, and rotor-vane slot caps. For a given type of cap, optional sub-cap types exist. For example, types of vane caps include: vane-housing caps, vane-rotor-rotor caps, and vane-endplate caps. Generally, caps dynamically move or float to seal a junction between a sealing surface of the cap and a rotary engine component. For example, a vane cap sealing to the inner housing dynamically moves along the y-axis until an outer surface of the cap seals to the housing.
Means for providing cap sealing force to seal the cap against a rotary engine housing element comprise one or more of: a spring force, a magnetic force, a deformable seal force, and a fuel force. The dynamic caps ability to trace a noncircular path are particularly beneficial for use in a rotary engine having an offset rotor and with a non-circular inner rotary engine compartment having engine wall cut-outs and/or build-ups. Further, the dynamic sealing forces provide cap sealing forces over a range of temperatures and operating rotational engine speeds.
In still yet another embodiment, a rotary engine method and apparatus uses a swing vane and/or a telescoping swing vane. Preferably, three or more swing vanes are used in the rotary engine to separate expansion chambers of the rotary engine. A swing vane pivots about a pivot point on the rotor and/or about a separate pivot on the housing. Since, the swing vane pivots with rotation of the rotor in the rotary engine, the reach of the swing vane between the rotor and housing ranges from a narrow thickness or width of the swing vane to the longer length of the swing vane. The dynamic pivoting of the swing vane yields an expansion chamber separator ranging from the short width of the vane to the longer length of the vane, which allows use of an offset rotor in the rotary engine. Optionally, the swing vane additionally dynamically extends to reach the inner housing of the rotary engine. For example, an outer sliding swing vane portion of the swing vane slides along the inner pivoting portion of the swing vane to dynamically lengthen or shorten the length of the swing vane. The combination of the pivoting and the sliding of the vane allows for use with a double offset rotary engine having housing wall cut-outs and/or buildups, which allows greater volume of the expansion chamber during the power stroke of the rotary engine and corresponding increases in power and/or efficiency.
In another embodiment, the vanes reduce chatter or vibration of the vane-tips against the inner wall of the housing of the rotary engine during operation of the engine, where chatter leads to unwanted opening and closing of the seal between an expansion chamber and a leading chamber. For example, an actuator force forces the vane against the inner wall of the rotary engine housing thereby providing a seal between the leading chamber and expansion chamber of the rotary engine. The reduction of engine chatter increases engine power and/or efficiency. Further, pressure relief aids in uninterrupted contact of the seals between the vane and inner housing of the rotary engine, which yields enhanced rotary engine efficiency.
In yet still another embodiment, permutations and/or combinations of any of the rotary engine elements described herein are used to increase rotary engine efficiency.
Rotary Engine
Herein, rotary engine examples are used to explain the engine system 100 elements. However, the engine system 100 elements additionally apply in-part and/or in-whole to expander engines, heat engines, pumps, and/or compressors.
A rotary engine system uses power from an expansive force, such as from an internal or external combustion process, to produce an output energy, such as a rotational or electric force.
Referring now to
Still referring to
Referring now to
Rotors
Rotors of various configurations are used in the rotary engine 110. The rotor 320 is optionally offset in the x- and/or y-axes relative to a z-axis running along the length of the shaft 220. A rotor 320 offset in the x-axis and y-axis relative to a z-axis running along the length of the shaft 220 is referred to herein as a double offset rotor 440. The shaft 220 is optionally double walled or multi-walled. The rotor chamber face 442, also referred to as an outer edge of the rotor, or the rotor outer wall, of the double offset rotor 440 forming an inner wall of the expansion chambers is of any geometry. Examples of rotor configurations in terms of offsets and shapes are further described, infra. The examples are illustrative in nature and each element is optional and is optionally used in various permutations and/or combinations with other elements described herein.
Vanes
A vane or blade separates two chambers of a rotary engine. The vane optionally functions as a seal and/or valve. The vane itself optionally acts as a propeller, impeller, and/or an electromagnetic generator element.
Engines are illustratively represented herein with clock positions, with twelve o'clock being a top of an x-, y-plane cross-sectional view of the engine with the z-axis running along the length of the shaft of the engine. The twelve o'clock position is alternatively referred to as a zero degree position. Similarly twelve o'clock to three o'clock is alternatively referred to as zero degrees to ninety degrees and a full rotation around the clock covers three hundred sixty degrees. Those skilled in the art will immediately understand that any multi-axes illustration system is alternatively used and that rotating engine elements in this coordination system alters only the relative description of the elements without altering the elements themselves or function of the elements.
Referring now to
Still referring to
Still referring to
Single Offset Rotor
Still referring to
Double Offset Rotor
Referring now to
Still referring to
Still referring to
The net effect of using a double offset rotary engine 400 is increased efficiency and power in the power stroke, such as from about the twelve o'clock position to about the six o'clock position or through about 180 degrees, using the double offset rotary engine 400 compared to the single offset rotary engine 300. The double offset rotary engine design 400 reduces loss of efficiency, parasitic negative work, or power from the six o'clock to twelve o'clock positions relative to the single offset rotary engine 300.
Cutouts, Build-ups, and Vane Extension
Referring now to
Still referring to
d1<d2<d3 (eq. 1)
Still referring to
Referring now to
Method of Operation
For the purposes of this discussion, any of the single offset-rotary engine 300, double offset rotary engine 400, rotary engine having a cutout 500, rotary engine having a build-up 600, or a rotary engine having one or more elements described herein is applicable to use as the rotary engine 110 used in this example. Further, any housing 210, rotor 320, and vane 450 dividing the rotary engine 210 into expansion chambers is optionally used as in this example. For clarity, a reference expansion chamber is used to describe a current position of the expansion chambers. For example, the reference chamber rotates in a single rotation from the twelve o'clock position and sequentially through the one o'clock position, three o'clock position, five o'clock position, seven o'clock position, nine o'clock position, and eleven o'clock position before returning to the twelve o'clock position. The reference expansion chamber is alternatively referred to as a compression chamber from about a six o'clock to the twelve o'clock position. Alternately, the reference expansion chamber functions as a compression chamber or pump chamber.
Referring now to
Initially, a fuel and/or energy source is provided 710. The fuel is optionally from the external energy source 150. The energy source 150 is a source of: radiation, such as solar; vibration, such as an acoustical energy; and/or heat, such as convection. Optionally the fuel is from an external combustion chamber 154 or a waste heat source, such as from a power plant, or from the rotary engine 100.
Throughout operation process 700, a first parent task circulates the fuel 760 through a closed loop or an open loop. The closed loop cycles sequentially through: heating the fuel 720; injecting the fuel 730 into the rotary engine 110; expanding the fuel 742 in the reference expansion chamber; one or both of exerting an expansive force 743 on the double offset rotor 440 and exerting a vortical force 744 on the double offset rotor 440; rotating the rotor 746 to drive an external process, described infra; exhausting the fuel 748; condensing the fuel 750, and repeating the process of circulating the fuel 760. Preferably, the external energy source 150 provides the energy necessary in the heating the fuel step 720. Individual steps in the operation process are further described, infra.
Throughout the operation process 700, an optional second parent task maintains temperature 770 of at least one rotary engine 110 component. For example, a sensor senses engine temperature 772 and provides the temperature input to a controller of engine temperature 774. The controller directs or controls a heater 776 to heat the engine component. Preferably, the temperature controller 770 heats at least the first expansion chamber 335 to an operating temperature in excess of the vapor-point temperature of the fuel. Preferably, at least the first three expansion chambers 335, 345, 355 are maintained at an operating temperature exceeding the vapor-point of the fuel throughout operation of the rotary engine system 100. Preferably, the fluid heater 140 is simultaneously heating the fuel to a temperature proximate but less than the vapor-point temperature of fluid. Hence, when the fuel is injected through the injector 160 into the first expansion chamber 335, the fuel flash vaporizes exerting expansive force 743 and starts to rotate due to reference chamber geometry and rotation of the rotor to form the vortical force 744.
The fuel is optionally any fuel that expands into a vapor, gas, and/or gas-vapor mix where the expansion of the fuel releases energy used to drive the double offset rotor 440. The fuel is preferably a liquid component and/or a fluid that phase changes to a vapor phase at a very low temperature and has a significant vapor expansion characteristic. Fuels and energy sources are further described, infra.
In task 720, the fluid heater 140 preferably superheats the fuel to a temperature greater than or equal to a vapor-point temperature of the fuel. For example, if a plasmatic fluid is used as the fuel, the fluid heater 140 heats the plasmatic fluid to a temperature greater than or equal to a vapor-point temperature of the plasmatic fluid.
In a task 730, the injector 160 injects the heated fuel, via an inlet port 162, into the reference cell, which is the first expansion chamber 335 at time of fuel injection into the rotary engine 110. When the fuel is superheated, the fuel flash-vaporizes and expands 742, which exerts one of more forces on the double offset rotor 440. A first force is an expansive force 743 resultant from the phase change of the fuel from predominantly a liquid phase to substantially a vapor and/or gas phase. The expansive force acts on the double offset rotor 440 as described, supra, and is represented by force, F, in
When the fuel is introduced into the reference cell of the rotary engine 110, the fuel begins to expand hydraulically and/or about adiabatically in a task 740. The expansion of the fuel in the reference cell begins the power stroke or power cycle of the engine, described infra. In a task 746, the hydraulic and about adiabatic expansion of fuel exerts the expansive force 743 upon a leading vane 450 or upon the surface of the vane 450 proximate or bordering the reference cell in the direction of rotation 390 of the double offset rotor 440. Simultaneously, in a task 744, a vortex generator, generates a vortex 625 within the reference cell, which exerts a vortical force 744 upon the leading vane 450. The vortical force 744 adds to the expansive force 743 and contributes to rotation 390 of rotor 450 and shaft 220. Alternatively, either the expansive force 743 or vortical force 744 causes the leading vane 450 to move in the direction of rotation 390 and results in rotation of the rotor 746 and shaft 220. Examples of a vortex generator include: an aerodynamic fin, a vapor booster, a vane wingtip, expansion chamber geometry, valving, inlet port 162 orientation, an exhaust port booster, and/or power shaft injector inlet.
The about adiabatic expansion resulting in the expansive force 743 and the generation of a vortex resulting in the vortical force 744 continue throughout the power cycle of the rotary engine, which is nominally complete at about the six o'clock position of the reference cell. Thereafter, the reference cell decreases in volume, as in the first reduction chamber 365, second reduction chamber 375, and third reduction chamber 385. In a task 748, the fuel is exhausted or released 748 from the reference cell, such as through exhaust grooves cut through the housing 210, first end plate 212, and/or second end plate 214 at or about the seven o'clock to ten o'clock position and optionally at about a six, seven, eight, nine, or ten o'clock position. The exhausted fuel is optionally discarded in a non-circulating system. Preferably, the exhausted fuel is condensed 750 to liquid form in the condenser 120, optionally stored in the reservoir 130, and recirculated 760, as described supra.
Fuel
Fuel is optionally any liquid or liquid/solid mixture that expands into a vapor, vapor-solid, gas, gas-solid, gas-vapor, gas-liquid, gas-vapor-solid mix where the expansion of the fuel releases energy used to drive the double offset rotor 440. The fuel is preferably substantially a liquid component and/or a fluid that phase changes to a vapor phase at a very low temperature and has a significant vapor expansion characteristic. Additives into the fuel and/or mixtures of fuels include any permutation and/or combination of fuel elements described herein. A first example of a fuel is any fuel that both phase changes to a vapor at a very low temperature and has a significant vapor expansion characteristic for aid in driving the double offset rotor 440, such as a nitrogen and/or an ammonia based fuel. A second example of a fuel is a diamagnetic liquid fuel. A third example of a fuel is a liquid having a permeability of less than that of a vacuum and that has an induced magnetism in a direction opposite that of a ferromagnetic material. A fourth example of a fuel is a fluorocarbon, such as Fluorinert liquid FC-77® (3M, St. Paul, Minn.), 1,1,1,3,3-pentafluoropropane, and/or Genetron® 245fa (Honeywell, Morristown, N.J.). A fifth example of a fuel is a plasmatic fluid composed of a non-reactive liquid component to which a solid component is added. The solid component is optionally a particulate held in suspension within the liquid component. Preferably the liquid and solid components of the fuel have a low coefficient of vaporization and a high heat transfer characteristic making the plasmatic fluid suitable for use in a closed-loop engine with moderate operating temperatures, such as below about 400° C. (750° F.) at moderate pressures. The solid component is preferably a particulate paramagnetic substance having non-aligned magnetic moments of the atoms when placed in a magnetic field and that possess magnetization in direct proportion to the field strength. An example of a paramagnetic solid additive is powdered magnetite (Fe3O4) or a variation thereof. The plasmatic fluid optionally contains other components, such as an ester-based fuel lubricant, a seal lubricant, and/or an ionic salt. The plasmatic fluid preferably comprises a diamagnetic liquid in which a particulate paramagnetic solid is suspended as when the plasmatic fluid is vaporized the resulting vapor carries a paramagnetic charge, which sustains an ability to be affected by an electromagnetic field. That is, the gaseous form of the plasmatic fluid is a current carrying plasma and/or an electromagnetically responsive vapor fluid. The exothermic release of chemical energy of the fuel is optionally used as a source of power.
The fuel is optionally an electromagnetically responsive fluid and/or vapor. For example, the electromagnetically responsive fuel contains a salt and/or a paramagnetic material.
The engine system 100 is optionally run in either an open loop configuration or a closed loop configuration. In the open loop configuration, the fuel is consumed and/or wasted. In the closed loop system, the fuel is consumed and/or recirculated.
Power Stroke
The power stroke of the rotary engine 110 occurs when the fuel is expanding exerting the expansive force 743 and/or is exerting the vortical force 744. In a first example, the power stroke occurs from through about the first one hundred eighty degrees of rotation, such as from about the twelve o'clock position to the about six o'clock position. In a second example, the power stroke or a power cycle occurs through about 360 degrees of rotation. In a third example, the power stroke occurs from when the reference cell is in approximately the one o'clock position until when the reference cell is in approximately the six o'clock position. From the one o'clock to six o'clock position, the reference cell preferably continuously increases in volume. The increase in volume allows energy to be obtained from the combination of vapor hydraulics, adiabatic expansion forces 743, the vortical forces 744, and/or electromagnetic forces as greater surface areas on the leading vane are available for application of the applied force backed by simultaneously increasing volume of the reference cell. To maximize use of energy released by the vaporizing fuel, preferably the curvature of housing 210 relative to the rotor 450 results in a radial cross-sectional distance or a radial cross-sectional area that has a volume of space or cross-sectional area within the reference cell that increases at about a golden ratio, φ, as a function of radial angle. The golden ratio is defined as a ratio where the lesser is to the greater as the greater is to the sum of the lesser plus the greater, equation 2.
Assuming the lesser, a, to be unity, then the greater, b, becomes φ, as calculated in equations 3 to 5.
Using the quadratic formula, limited to the positive result, the golden ratio is about 1.618, which is the Fibonacci ratio, equation 6.
Hence, the cross-sectional area of the reference chamber as a function of rotation or the surface area of the leading vane 450 as a function of rotation is preferably controlled by geometry of the rotary engine 110 to increase at a ratio of about 1.4 to and more preferably to increase with a ratio of about 1.5 to 1.7, and still more preferably to increase at a ratio of about 1.618 through any of the power stroke from the one o'clock to about six o'clock position. The ratio is controlled by a combination of one or more of use of: the double offset rotor geometry 400, use of the first cut-out 510 in the housing 210, use of the build-up 610 in the housing 210, and/or use of the second cut-out 520 in the housing. Further, the fuels described maintain about adiabatic expansion to a high ratio of gas/liquid when maintained at a relatively constant temperature by the temperature controller 770.
Expansion Volume
Referring now to
FT≅F2−F1 (eq. 7)
The force calculation according to equation 7 is an approximation and is illustrative in nature. However, it is readily observed that the net turning force in a given expansion chamber is the difference in expansive force applied to the leading vane 453 and the trailing vane 451. Hence, the use of the any of: the single offset rotary engine 300, the double offset rotary engine 400, the first cutout 510, the build-up 610, and/or the second cutout 520, which allow a larger cross-section of the expansion chamber as a function of radial angle yields more net turning forces on the rotor 440. Referring still to
Referring still to
The overall volume of the expansion chamber 333 is increased by removing a portion of the rotor 440 to form the dug-out rotor. The increase in the overall volume of the expansion chamber using a dug-out rotor enhances rotational force of the rotary engine 110 and/or efficiency of the rotary engine.
Vane Seals/Valves
Seals
Referring now to
Fuel Routing/Valves
Still referring to
Referring now to
In an initial position of the rotor 440, such as for the first expansion chamber at about the two o'clock position, the first rotor conduit 1022 terminates at the lower trailing vane seal 1026, which prevents further expansion and/or flow of the fuel through the first rotor conduit 1022. Stated again, the lower trailing vane seal 1026 functions as a valve that is off or closed in the two o'clock position and on or open at a later position in the power stroke of the rotary engine 110, as described infra. The first rotor conduit 1022 optionally runs from any portion of the expansion chamber 333 to the rotor vane guide, but preferably runs from the expansion chamber dug-out volume 444 of the expansion chamber 333 to an entrance port either sealed by lower trailing vane seal 1026 or through an opening into the rotor vane guide or rotor-vane chamber 452 on an inner radial side of the vane 450, which is the side of the vane closest to the shaft 220. The cross-sectional geometry of the first rotor conduit 1022 is preferably circular, but is optionally of any geometry. An optional second rotor conduit 1024 runs from the expansion chamber to the first rotor conduit 1022. Preferably, the first rotor conduit 1022 includes a cross-sectional area at least twice that of a cross-sectional area of the second rotor conduit 1024. The intersection of the first rotor conduit 1022 and second rotor conduit 1024 is further described, infra.
As the rotor 440 rotates, such as to about the four o'clock position, the vane 450 extends toward the inner wall of the housing 430. As described supra, the lower trailing vane seal 1026 is preferably affixed to the vane 450 and hence moves, travels, translates, and/or slides with the vane. The extension of the vane 450 results in outward radial movement of the lower vane seals 1026, 1027. Outward radial movement of the lower trailing vane seal 1026 opens a pathway, such as opening of a valve, at the lower end of the first rotor conduit 1022 into the rotor-vane chamber 452 or the rotor guiding channel on the shaft 220 side of the vane 450. Upon opening of the lower trailing vane seal or valve 1026, the expanding fuel enters the rotor vane chamber 452 behind the vane and the expansive forces of the fuel aid centrifugal forces in the extension of the vane 450 toward the inner wall of the housing 430. The lower vane seals 1026, 1027 hinder and preferably stop flow of the expanding fuel about outer edges of the vane 450. As described supra, the upper trailing vane seal 1028 is preferably affixed to the rotor 440, which results in no movement of the upper vane seal 1028 with movement of the vane 450. The optional upper vane seals 1028, 1029 hinder and preferably prevent direct fuel expansion from the expansion chamber 333 into a region between the vane 450 and rotor 440.
As the rotor 440 continues to rotate, the vane 450 maintains an extended position keeping the lower trailing vane seal 1026 in an open position, which maintains an open aperture at the terminal end of the first rotor conduit 1022. As the rotor 440 continues to rotate, the inner wall 430 of the housing forces the vane 450 back into the rotor guide, which forces the lower trailing vane seal 1026 to close or seal the terminal aperture of the first rotor conduit 1022.
During a rotation cycle of the rotor 440, the first rotor conduit 1022 provides a pathway for the expanding fuel to push on the back or rotationally trailing side of the vane 450 during the power stroke. The moving lower trailing vane seal 1026 functions as a valve opening the first rotor conduit 1022 near the beginning of the power stroke and further functions as a valve closing the rotor conduit 1022 pathway near the end of the power stroke.
Concurrently, the upper trailing vane seal 1028 functions as a second valve. The upper trailing vane seal 1028 valves an end of the vane conduit 1025 proximate the expansion chamber 333. For example, at about the ten o'clock and twelve o'clock positions, the upper trailing vane seal 1028 functions as a closed valve to the vane conduit 1025. Similarly, in the about four o'clock and six o'clock positions, the upper trailing vane seal functions as an open valve to the vane conduit 1025.
Optionally, the expanding fuel is routed through at least a portion of the shaft 220 to the rotor-vane chamber 452 in the rotor guide on the inner radial side of the vane 450, as discussed infra.
Vane Conduits
Referring now to
Flow Booster
Referring now to
Branching Vane Conduits
Referring now to
Multiple Fuel Lines
Referring now to
Vanes
Referring now to
Vane Axis
The vanes 450 rotate with the rotor 440 about a rotation point and/or about the shaft 220. Hence, a localized axis system is optionally used to describe elements of the vane 450. For a static position of a given vane, an x-axis runs through the vane body 1610 from the trailing chamber or 333 to the leading chamber 334, a y-axis runs from the vane base 1612 to the vane end 1614, and a z-axis is normal to the x-, y-plane, such as defining the thickness of the vane. Hence, as the vane rotates, the axis system rotates and each vane has its own axis system at a given point in time.
Vane Head
Referring now to
Vane Caps/Vane Seals
Preferably vane extensions or vane caps, not illustrated, cover the upper and lower surface of the vane 450. For example, an upper vane cap covers the entirety of the upper z-axis surface of the vane 450 and a lower vane cap covers the entirety of the lower z-axis surface of the vane 450. Optionally the vane caps function as seals or seals are added to the vane caps.
Vane Movement
The vane 450 optionally slidingly moves along and/or within the rotor-vane chamber or rotor-vane slot 452. The edges of the rotor vane slot 452 function as guides to restrict movement of the vane along the y-axis. The vane movement moves the vane body, in a reciprocating manner, toward and then away from the housing inner wall 432. Referring now to
Vane Wing-Tips
Herein vane wings or vane extensions are defined, which protrude or extend away from the vane body 1610 along the x-axis. Referring again to
Still referring to
In one example, the outer edge of the wing-tips 1620, 1630, proximate the inner wall 432, are progressively further from the inner wall 432 as the wing-tip extends away from the vane end 1614 along the x-axis. In another example, a distance between the inner edge of the wing-tip 1634 and the inner housing 432 decreases along a portion of the x-axis versus a central x-axis point of the vane body 1610. Some optional wing-tip shape elements include:
Further examples of wing-tip shapes are illustrated in connection with optional wing-tip pressure elements and vane caps, described infra.
A t-shaped vane refers to a vane 450 having both a leading wing-tip 1620 and trailing wing-tip 1630.
Vane End Components
Referring now to
Each of the bearings, seals, pressure relief cuts, and/or boosters are further described herein.
Bearings
The vane end 1614 optionally includes a roller bearing 1740. The roller bearing 1740 preferably takes a majority of the force of the vane 450 applied to the inner housing 432, such as fuel expansion forces and/or centrifugal forces. The roller bearing 1740 is optionally an elongated bearing or a ball bearing. An elongated bearing is preferred as the elongated bearing distributes the force of the vane 450 across a larger portion of the inner housing 432 as the rotor 440 turns about the shaft 220, which minimizes formation of a wear groove on the housing inner wall 432. The roller bearing 1740 is optionally one, two, three, or more bearings. Preferably, each roller bearing is spring loaded to apply an outward force of the roller bearing 1740 into the inner wall 432 of the housing. The roller bearing 1740 is optionally magnetic.
Seals
Still referring to
Pressure Relief Cuts
As the vane 450 rotates, a resistance pressure builds up between the vane end 1614 and the housing inner wall 432 that results in chatter. For example, pressure builds up between the leading wing-tip surface 1710 and the housing inner wall 432. Pressure between the vane end 1614 and housing inner wall 432 results in vane chatter and inefficiency of the engine.
The leading wing-tip 1620 optionally includes a leading wing-tip surface 1710. The leading wing-tip surface 1710, which is preferably an edge running along the z-axis, cuts, travels, and/or rotates through air and/or fuel in the leading chamber 334.
The leading vane wing-tip 1620 optionally includes: a cut, aperture, hole, fuel flow path, air flow path, and/or tunnel 1720 cut through the leading wing-tip along the y-axis. The cut 1720 is optionally one, two, three, or more cuts. As air/fuel pressure builds between the leading wing-tip surface 1710 or vane end 1614 and the housing inner wall 432, the cut 1720 provides a pressure relief flow path 1725, which reduces chatter in the rotary engine 110. Hence, the cut or tunnel 1720 reduces build-up of pressure, resultant from rotation of the engine vanes 450 about the shaft 220, proximate the vane end 1614. The cut 1720 provides an air/fuel flow path 1725 from the leading chamber 334 to a volume above the leading wing-tip surface 1710, through the cut 1720, and back to the leading chamber 334. Any geometric shape that reduces engine chatter and/or increases engine efficiency is included herein as possible wing-tip shapes.
Still referring to
Vane Wing
Referring now to
The first optional feature is a curved outer surface 1622 of the leading vane wing 1620. In a first case, the curved outer surface 1622 extends further from the inner wall of the housing 432 as a function of x-axis position relative to the vane body 1610. For instance, at a first x-axis position, x1, there is a first distance, d1, between the outer surface 1622 of the wing 1620 and the inner housing 432. At a second position, x2, further from the vane body 1610, there is a second distance, d2, between the outer surface 1622 of the wing 1620 and the inner housing 432 and the second distance, d2, is greater than the first distance, d1. Preferably, there are positions on the outer surface 1622 of the leading wing 1620 where the second distance, d2, is about two, four, or six times as large as the first distance, d1. In a second case, the outer surface 1622 of the leading wing 1620 contains a negative curvature section 1623. The negative curvature section 1623 is optionally described as a concave region. The negative curvature section 1623 on the outer surface 1622 of the leading wing 1620 allows the build-up 610 and the cut-outs 510, 520 in the housing as without the negative curvature 1623, the vane 450 mechanically catches or physically interferes with the inner wall of the housing 432 with rotation of the vane 450 about the shaft 220 when using a double offset housing 430.
The second optional feature is a curved inner surface 1624 of the leading vane wing 1620. The curved inner surface 1624 extends further toward the inner wall of the housing 432 as a function of x-axis position relative to the vane body 1610. Stated differently, the inner surface 1624 of the leading vane curves away from a reference line 1625 normal to the vane body at the point of intersection of the vane body 1610 and the leading vane wing 1620. For instance, at a third x-axis position, x3, there is a third distance, d3, between the outer surface 1622 of the wing 1620 and the reference line 1625. At a fourth position, x4, further from the vane body 1610, there is a fourth distance, d4, between the outer surface 1622 of the wing 1620 and the reference line 1625 and the fourth distance, d4, is greater than the third distance, d3. Preferably, there are positions on the outer surface 1622 of the leading wing 1620 where the fourth distance, d4, is about two, four, or six times as large as the third distance, d3.
The third optional feature is a curved fuel flow path 2010 running through the leading vane wing 1620, where the fuel flow path is optionally described as a hole, aperture, and/or tunnel. The curved fuel flow path 2010 includes an entrance opening 2012 and an exit opening 2014 of the fuel flow path 2010 in the leading vane wing 1620. The edges of the fuel flow path are preferably curved, such as with a curvature approximating an aircraft wing. A distance from the vane wing-tip 1710 through the fuel flow path 2010 to the inner surface at the exit port 2014 of the leading wing 1624 is longer than a distance from the vane wing-tip 1710 to the exit port 2014 along the inner surface 1624 of the leading wing 1620. Hence, the flow rate of the fuel through the fuel flow path 2010 maintains a higher velocity compared to the fuel flow velocity along the base 1624 of the leading wing 1620, resulting in a negative pressure between the leading wing 1620 and the inner housing 432. The negative pressure lifts the vane 450 toward the inner wall 432, which lifts the vane tip 1614 along the y-axis to proximately contact the inner housing 432 during use of the rotary engine 110. The fuel flow path 2010 additionally reduces unwanted pressure between the leading wing 1620 and inner housing 432, where excess pressure results in detrimental engine chatter.
Trailing Wing
Referring now to
Still referring to
Referring now to
Booster
Referring now to
Swing Vane
In another embodiment, a swing vane 2100 is used in combination with an offset rotor, such as a double offset rotor in the rotary engine 110. More particularly, the rotary engine, using a swing vane separating expansion chambers, is configured for operation with a pressurized fuel or fuel expanding during a rotation of the engine. A swing vane pivots about a pivot point on the rotor and/or pivots about a separate pivot point on or in the housing yielding an expansion chamber separator ranging from the width of the swing vane to the length of the swing vane. The swing vane optionally slidingly extends to dynamically lengthen or shorten the length of the swing vane. The combination of the pivoting and the sliding of the vane allows for use of a double offset rotor in the rotary engine and the use of rotary engine housing wall cut-outs and/or buildups to expand rotary engine expansion chamber volumes with corresponding increases in rotary engine power and/or efficiency.
The swing vane 2100 is optionally used in place of the sliding vane 450. The swing vane 2100 is optionally described as a separator between expansion chambers. For example, the swing vane 2100 separates expansion chamber 333 from leading chamber 334. The swing vane 2100 is optionally used with in combination with any of the elements described herein used with the sliding vane 450.
Swing Vane Rotation
Referring now to
In another embodiment, the swing vane 2100 pivots about a swing vane housing pivot 2116. In this embodiment one or both of the housing 430 and/or rotor 440 rotate.
In yet another embodiment, the swing vane 2100 pivots about both the swing vane rotor pivot 2115 and the swing vane housing pivot 2116. In this embodiment one or both of the housing 430 and/or rotor 440 rotate.
Swing Vane Extension
Preferably, the swing vane base 2110 includes a straight section or a curved section, slidably or telescopically respectively attached to a straight section or a curved section of a sliding swing vane or a sliding swing vane head 2120. For clarity, only the curved telescoping swing vane is further described herein. For example, the sliding swing vane head 2120 slidingly extends along the curved section of the swing vane base 2110 during use to extend an extension length of the swing vane 2100. A variable size chamber 2150 preferably exists between the swing vane base 2110 and swing vane head 2120. The extension length extends the swing vane 2100 from the rotor 440 into proximate contact with the housing inner wall 432. One or both of the curved sections on the swing vane base 2110 or sliding swing vane head 2120 guides sliding movement of the sliding swing vane head 2120 along the swing vane base 2110 to extend a length of the swing vane 2100. For example, at about the six o'clock position the swing vane extends nearly perpendicularly outward from the rotor 440 and the distance between the rotor and the housing inner wall 432 is the length of the swing vane plus the length of the extension between the sliding swing vane head 2120 and swing vane base 2110. In one case, an inner curved surface of the sliding swing vane head 2120 slides along an outer curved surface of the swing vane base 2110, which is illustrated in
A vane actuator 2130 provides an outward force, where the outward force extends the sliding swing vane head 2120 into proximate contact with the housing wall 432. A first example of vane actuator is a spring attached to either the swing vane base 2110 or to the sliding swing vane head 2120. The spring provides a spring force resulting in sliding movement of the sliding swing vane head 2120 relative to the swing vane base 2110. A second example of vane actuator is a magnet and/or magnet pair where at least one magnet is attached or embedded in either the swing vane base 2110 or to the sliding swing vane head 2120. The magnet provides a repelling magnet force providing a partial internal separation between the swing vane base 2110 from the sliding swing vane head 2120. A third example of vane actuator is a air and/or fuel pressure directed through the swing vane base 2110 to the sliding swing vane head 2120, such as through a sliding vane conduit 2155. The fuel pressure provides an outward sliding force to the sliding swing vane head 2120, which extends the length of the swing vane 2100. The spring, magnet, and fuel vane actuators are optionally used independently or in combination to extend the length of the swing vane 2100 and the actuator operates in combination with centrifugal force of the rotary engine 110.
Referring now to
Rotor-Vane Cut-Out
Optionally, the rotor 440 includes a swing vane rotor cut-out 2125, a swing vane housing build-up 2126, and/or a swing vane housing cut-out 2127, each of which alter the distance between the rotor 440 and the housing inner wall 432 as a function of rotational position. In a first example, the rotor cut-out 2125 allows the swing vane 2100 to fold into the rotor 440, thereby reducing to an about minimum space a first between the rotor 440 and the housing inner wall. More particularly, by folding the swing vane 2100 into the rotor 440, the distance between the rotor 440 ands housing inner wall 432 is reduced allowing a greater double offset position of the rotor 440 relative to the housing 430 as at least a portion of the width of the swing vane 2100 lays in the rotor 440. In a second example, the swing vane housing build-up 2126 moves the housing inner wall 432 closer to the rotor 440, which allows the swing vane 2100 to further lay into the rotor 440 at about the ten o'clock to twelve o'clock position without losing contact with the housing inner wall 432. In a third example, the swing vane housing cut-out 432 allows the swing vane 2100 to pivot outward early in the rotational cycle, such as from about the one o'clock position to about the three o'clock position yielding a expansion chamber 333 with an increasing volume as a function of rotor rotation in the power phase of the engine operation.
Swing Vane Seals
Referring again to
Swing Vane Caps
Preferably a swing vane cap covers each z-axis edge of the swing vane 2100. For example, a first and second swing vane cap covers the innermost and outermost edge of the swing vane, respectively. The two swing vane caps function as a wiper seals, sealing the end plate sides of the swing vane 2100 to the first end plate 212 and second end plate 214, respectively.
Scalability
The swing vane 2100 attaches to the rotor 440 via the swing vane pivot 2115. Since, swing vane movement is controlled by the swing vane pivot 2115, the rotor vane chamber 452 is not necessary. Hence, the rotor 440 does not necessitate the rotor vane chamber 452. When scaling down a rotor 440 guiding a sliding vane 450, the rotor vane chamber 452 limits the minimum size of the rotor. As the swing vane 2100 does not require the rotor vane chamber 452, the diameter of the rotor 440 is optionally about as small as ¼, ½, 1, or 2 inches or as large as about 1, 2, 3, or 5 feet. Traditional rotary engines have a minimum rotor size of about a two inch diameter.
Cap or Extension
Referring now to
More particularly, a rotary engine method and apparatus configured with a dynamic cap seal is described. A dynamic cap 2200 or seal restricts fuel flow from a fuel compartment to a non-fuel compartment and/or fuel flow between fuel compartments, such as between a reference expansion chamber and any of an engine: rotor, vane, housing, and/or a leading or trailing expansion chamber. For a given type of cap, optional sub-cap types exist. In a first example, types of vane caps include: vane-housing caps, vane-rotor caps, and rotor-vane slot caps. As a second example, types of rotor caps include: rotor-slot caps, rotor/expansion chamber caps, and/or inner rotor/shaft caps. Generally, caps float or dynamically move along an axis about normal to an outer surface of the cap. For example, the first vane cap 2210 includes an outer surface 2214, which seals to the housing 210 or an endplate 212, 214. Generally, the outer surface of the cap seals to a rotary engine element, such as a housing 210 or endplate element 212, 214, providing a dynamic seal. Means for providing cap sealing force to seal the cap against a rotary engine housing element comprise one or more of a spring force, a magnetic force, a deformable seal force, and a fuel force. The dynamic caps ability to track a noncircular path while still providing a seal are particularly beneficial for use in a rotary engine having an offset rotor and with a non-circular inner rotary engine compartment having engine wall cut-outs and/or build-ups. For example, the dynamic cap ability to move to form a seal allows the seal to be maintained between a vane and a housing of the rotary engine even with a housing cut-out at about the one o'clock position. Further, the dynamic sealing forces provide cap sealing forces over a range of temperatures and operating engine rotation speeds.
Still more particularly, caps 2200 dynamically move or float to seal a junction between a sealing surface of the cap and a rotary engine component. For example, a vane cap sealing to the housing inner wall 432 dynamically moves along the y-axis until an outer surface of the cap seals to the housing 430.
In one example, caps 2200 function as seals between rotary chambers over a range of operating speeds and temperatures. For the case of operating speeds, the dynamic caps seal the rotary engine chambers at zero revolutions per minute (r.p.m.) and continue to seal the rotary engine compartments as the engine accelerates to operating revolutions per minute, such as about 1000, 2000, 5000, or 10,000 r.p.m. For example, since the caps move along an axis normal to an outer surface and have dynamic means for forcing the movement to a sealed position, the caps seal the engine compartments when the engine is any of: off, in the process of starting, is just started, and or is operating. In an exemplary case, the rotary engine vane 450 is sealed against the rotary engine housing 210 by a vane cap. For the case of operating temperatures, the same dynamic movement of the caps allows function over a range of temperatures. For example, the dynamic cap sealing forces function to apply cap sealing forces when an engine starts, such as at room temperature, and continue to apply appropriate sealing forces as the temperature of the rotary engine increases to operational temperature, such as at about 100, 250, 500, 1000, or 1500 degrees centigrade. The dynamic movement of the caps 2200 is described, infra.
Vane Caps
Still referring to
Herein, for a static position of a given vane, an x-axis runs through the vane body 1610 from the trailing chamber or 333 to the leading chamber 334, a y-axis runs from the vane base 1612 to the vane-tip 1614, and a z-axis is normal to the x-, y-plane, such as defining the thickness of the vane between the first endplate 212 and second endplate 214. Further, as the vane rotates, the axis system rotates and each vane has its own axis system at a given point in time.
Referring now to
Vane Cap Movement
Still referring to
Examples are provided of a vane z-axis spring, magnet, deformable seal, and fuel force.
In a first example, a vane cap z-axis spring force is described. One or more vane cap springs 2340 are affixed to one or both of the vane body 1610 and the first vane cap 2210. In
In a second example, a vane cap z-axis magnetic force is described. One or more vane cap magnets 2350 are: affixed to, partially embedded in, and/or are embedded within one or both of the vane body 1610 and first vane cap 2210. In
In a third example, a vane cap z-axis deformable seal force is described. One or more vane cap deformable seals 2330 are affixed to and/or are partially embedded in one or both of the vane body 1610 and the first vane cap 2210. In
Each of the spring force, magnetic force, and deformable seal force are stored potential energy sources optionally set to provide a sealing force that seals the vane cap outer face 2214 to the first endplate 212 with a force that is (1) great enough to provide a fuel leakage seal and (2) small enough to allow a wiper seal movement of the vane cap outer face 2214 against the first endplate 212 with rotation of the rotor 440 in the rotary engine 110. The sealing force is further described, infra.
In a fourth example, a vane cap z-axis fuel force is described. As fuel penetrates into a vane body/cap gap 2315, the fuel provides a z-axis fuel force pushing the first vane cap 2210 into proximate contact with the first endplate 212. The cap/endplate gap 2310 and vane body/cap gap 2315 are exaggerated in the provided illustrations to clarify the subject matter. The potential fuel leak path between the first vane cap 2210 and vane body 1610 is blocked by one or more of a first seal 2320, the deformable seal 2330, and a flow-path reduction geometry. An example of a first seal 2320 is an o-ring positioned about either an extension 2360 of the vane body 1610 into the first vane cap 2210, as illustrated, or an extension of the first vane cap 2210 into the vane body 1610, not illustrated. In a first case, the first seal 2320 is affixed to the vane body 1610 and the first seal 2320 remains stationary relative to the vane body 1610 as the first vane cap 2210 moves along the z-axis. Similarly, in a second case the first seal 2320 is affixed to the first vane cap 2210 and the first seal 2320 remains stationary relative to the first vane cap 2210 as the first vane cap 2210 moves along the z-axis. The deformable seal was described, supra. The flow path reduction geometry reduces flow of the fuel between the vane body 1610 and first vane cap 2210 by forcing the fuel through a path having a series of about right angle turns about the above described extension. Fuel flowing through the labyrinth must turn multiple times breaking the flow velocity or momentum of the fuel from the reference expansion chamber 333 to the leading expansion chamber 334. For example, the turns of the labyrinth extend into the vane cap 2210 and/or into the vane body 1610.
Vane Cap Sealing Force
Referring now to
The rigid support 2440 additionally functions as a guide controlling x- and/or y-axis movement of the first vane cap 2210 while allowing z-axis sealing motion of the first vane cap 2210 against the first endplate 212.
Positioning of Vane Caps
The vane 450 in
One or more vane caps 2300 optionally interconnect to guide and/or restrict movement of another vane cap. For instance, the reference chamber vane cap 2510 and/or the leading chamber vane cap 2520 restrict y-axis movement of the first vane cap 2210.
The vane caps seal potential fuel leak paths. The first vane cap 2210, second vane cap 2220 and the vane tip cap 2530 provide three x-axis seals between the expansion chamber 333 and the leading chamber 334. As described, supra, the first vane cap 2210 provides a first x-axis seal between the expansion chamber 333 and the leading chamber 334. The second vane cap 2220 is optionally and preferably a mirror image of the first vane cap 2210. The second vane cap 2220 contains one or more elements that are as described for the first vane cap 2210, with the second end cap 2220 positioned between the vane body 1610 and the second endplate 214. Like the first end cap 2210, the second end cap 2220 provides another x-axis seal between the reference expansion chamber 333 and the leading chamber 334. Similarly, the vane tip cap 2530 preferably contains one or more elements as described for the first vane cap 2210, only the vane tip cap is located between the vane body 1610 and inner wall 432 of the housing 210. The vane tip cap 2530 provides yet another seal between the expansion chamber 333 and the leading chamber 334. The vane tip cap 2530 optionally contains any of the elements of the vane head 1611. However, the vane tip cap 2530 preferably uses the roller bearings 1740 described in reference to the vane head 1611 in place of the bearings 2212. The roller bearings 1740 aid in guiding rotational movement of the vane about the shaft 220.
The vane 450 optionally and preferably contains four additional seals between the expansion chamber 333 and the rotor-vane slot 452. For example, the reference chamber vane cap 2510 provides a y-axis seal between the reference chamber 333 and the rotor-vane slot 452. Similarly, the leading chamber vane cap 2520 provides a y-axis seal between the leading chamber 334 and the rotor-vane slot 452. Each of the reference chamber vane cap 2510 and leading chamber vane cap 2520 contain one or more elements that correspond with any of the elements described for the first vane cap 2510. The reference and leading chamber vane caps 2510, 2520 preferably contain roller bearings 2522 in place of the bearings 2212. The roller bearings 2522 aid in guiding movement of the vane 450 next to the rotor 440 along the y-axis as the roller bearings have unidirectional ability to rotate. The reference chamber vane cap 2510 and leading chamber vane slot 2520 each provide y-axis seals between an expansion chamber and the rotor-vane slot 452. The upper trailing seal 1028 and upper leading seal 1029 each are optionally configured as dynamic x-axis dynamically moveable vane caps, which also function as y-axis seals, though the upper trailing seal 1028 and upper leading seal 1029 function as seals along the upper end of the rotor-vane slot 452 next to the reference and leading expansion chambers 333, 334, respectively.
Generally, the vane caps 2300 are species of the generic cap 2200. Caps 2200 provide seals between the reference expansion chamber and any of: the leading expansion chamber 334, a trailing expansion chamber, the rotor-vane slot 452, the inner housing 432, and a rotor face. Similarly caps provide seals between the rotor-vane slot 452 and any of: the leading expansion chamber 334, a trailing expansion chamber, and a rotor face.
Rotor Caps
Referring now to
Magnetic/Non-Magnetic Rotary Engine Elements
Optionally, the bearing 2212, roller bearing 1740, and/or roller bearing 2522 are magnetic. Optionally, any of the remaining elements of rotary engine 110 are non-magnetic. Combined, the bearing 2212, roller bearing 1740, rigid support 2440, intermediate vane/cap linkages 2430, and/or vane body spring 2420 provide an electrically conductive pathway between the housing 210 and/or endplates 212, 214 to a conductor proximate the shaft 220.
Lip Seals
In still yet another embodiment, a lip seal 2710 is an optional rotary engine 110 seal sealing boundaries between fuel containing regions and surrounding rotary engine 110 elements. A static seal and/or a dynamic seal seals a gap between two surfaces with minimal force that allows movement of the seal relative to a rotary engine 110 component. For example, a lip seal 2710 seals boundaries between the reference expansion chamber 333 and surrounding rotary engine elements, such as the rotor 440, vane 450, housing 210, and/or first and second end plates 212, 214. Generally, one or more lip seals 2710 are inserted into any dynamic cap 2200 as a secondary seal, where the dynamic cap 2200 functions as a primary seal. However, a lip seal 2710 is optionally affixed or inserted into a rotary engine surface in place of the dynamic cap 2200. For example, a lip seal 2710 is optionally placed in any location previously described for use of a cap seal 2200. Herein, lips seals are first described in detail as affixed to a vane 450 or vane cap. Subsequently, lips seals are described for rotor 440 elements. When the lip seal 2710 moves in the rotary engine 110, the lip seal 2710 functions as a wiper seal.
More particularly, a rotary engine method and apparatus configured with a lip seal 2710 is described. A lip seal 2710 restricts fuel flow from a fuel compartment to a non-fuel compartment and/or fuel flow between fuel compartments, such as between a reference expansion chamber and any of an engine: rotor 440, vane 450, housing 210, and/or a leading expansion chamber 334 or trailing expansion chamber 333. Generally, a lip seal 2710 is a semi-flexible insert, optionally inserted into a vane 450 or dynamic cap 2200, that dynamically flexes in response to fuel flow to seal a boundary, such as sealing a vane 450 or rotor 440 to a rotary engine 110 housing 210 or endplate element 212, 214. The lip seal 2710 provides a seal between a high pressure region, such as in the expansion chamber 333, and a low pressure region, such as the leading chamber 334 past the seven o'clock position in the exhaust phase. Further, lips seals are readily replaced, detachable, and/or are removable.
Referring now to
Lip seals 2710 are compatible with one or more cap 2200 elements. For example, lip seals 2710 are optionally used in conjunction with any of bearings 2212, roller bearings 2522, and any of the means for dynamically moving the cap 2200.
Referring now to
Still referring to
Referring now to
In one example, the trailing lip seal edge 2730 is forced toward the housing 210 by fuel pressure in the reference expansion chamber 333 at the same time the leading lip seal edge 2731 is pulled toward the housing 210 by low pressure in the leading chamber 334. Motion of the trailing lip seal edge 2730 is independent of motion of the leading lip seal edge 2731. An example of two lips seals having opposing lip seals is curving in a first orientation of the trailing lip seal edge 2730 toward the housing 210 and the curving in a second opposing orientation of the leading lip seal edge 2731 toward the housing.
Referring now to
Lip seals 2710 are optionally used alone, in pairs, and/or in sets of three or more. Optionally a second lip seal lays parallel to the first lip seal. In a first case of a rotor face lip seal, the second seal provides an additional seal against fuel traversing past the first lip seal. In a second case, referring again to
Although the invention has been described herein with reference to certain preferred embodiments, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the Claims included below.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/069,165 filed Mar. 22, 2011, which: is a continuation-in-part of U.S. patent application Ser. No. 13/042,744 filed Mar. 8, 2011;is a continuation-in-part of U.S. patent application Ser. No. 13/031,228 filed Feb. 20, 2011;is a continuation-in-part of U.S. patent application Ser. No. 13/031,190 filed Feb. 19, 2011;is a continuation-in-part of U.S. patent application Ser. No. 13/041,368 filed Mar. 5, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 13/031,755 filed Feb. 22, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 13/014,167 filed Jan. 26, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 12/705,731 filed Feb. 15, 2010, which is a continuation of U.S. patent application Ser. No. 11/388,361 filed Mar. 24, 2006, now U.S. Pat. No. 7,694,520, which is a continuation-in-part of U.S. patent application Ser. No. 11/077,289 filed Mar. 9, 2005, now U.S. Pat. No. 7,055,327;claims the benefit of U.S. provisional patent application No. 61/304,462 filed Feb. 14, 2010;claims the benefit of U.S. provisional patent application No. 61/311,319 filed Mar. 6, 2010;claims the benefit of U.S. provisional patent application No. 61/316,164 filed Mar. 22, 2010;claims the benefit of U.S. provisional patent application No. 61/316,241 filed Mar. 22, 2010;claims the benefit of U.S. provisional patent application No. 61/316,718 filed Mar. 23, 2010;claims the benefit of U.S. provisional patent application No. 61/323,138 filed Apr. 12, 2010; andclaims the benefit of U.S. provisional patent application No. 61/330,355 filed May 2, 2010,all of which are incorporated herein in their entirety by this reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
122713 | Faucett | Jan 1872 | A |
1953378 | Vias | Apr 1934 | A |
2545238 | MacMillin | Mar 1951 | A |
2588342 | Bidwell | Mar 1952 | A |
2778317 | Hamilton | Jan 1957 | A |
3183843 | Cockburn | May 1965 | A |
3237528 | Rose | Mar 1966 | A |
3295752 | Bellmer | Jan 1967 | A |
3381891 | Bellmer | May 1968 | A |
3450108 | Rich | Jun 1969 | A |
3516769 | Korhonen | Jun 1970 | A |
3539281 | Kramer | Nov 1970 | A |
3585973 | Klover | Jun 1971 | A |
3809020 | Takitani | May 1974 | A |
3869231 | Adams | Mar 1975 | A |
3873253 | Eickmann | Mar 1975 | A |
3883277 | Keller | May 1975 | A |
3915598 | Kalen et al. | Oct 1975 | A |
3950950 | Doerner | Apr 1976 | A |
3951111 | Lester | Apr 1976 | A |
3958422 | Kelly | May 1976 | A |
3970051 | Kirkman | Jul 1976 | A |
3975914 | Tufts | Aug 1976 | A |
3976037 | Hojnowski | Aug 1976 | A |
3986483 | Larson | Oct 1976 | A |
4005951 | Swinkels | Feb 1977 | A |
4033299 | Manzoni | Jul 1977 | A |
4033300 | Larson | Jul 1977 | A |
4046493 | Alund | Sep 1977 | A |
4047856 | Hoffman | Sep 1977 | A |
4064841 | Jenkins | Dec 1977 | A |
4106472 | Rusk | Aug 1978 | A |
4115045 | Wyman | Sep 1978 | A |
4132512 | Roberts | Jan 1979 | A |
4168941 | Rettew | Sep 1979 | A |
4178900 | Larson | Dec 1979 | A |
4191032 | August | Mar 1980 | A |
4203410 | Ramer | May 1980 | A |
4242065 | Ishizuka | Dec 1980 | A |
4290268 | Lowther | Sep 1981 | A |
4353337 | Rosaen | Oct 1982 | A |
4354809 | Sundberg | Oct 1982 | A |
4355965 | Lowther | Oct 1982 | A |
4367629 | Cann | Jan 1983 | A |
4399863 | Banasiuk | Aug 1983 | A |
4437308 | Fischer | Mar 1984 | A |
4486158 | Maruyama | Dec 1984 | A |
4492541 | Mallen-Herrero | Jan 1985 | A |
4515123 | Taylor | May 1985 | A |
4548171 | Larson | Oct 1985 | A |
4580950 | Sumikawa | Apr 1986 | A |
4638776 | Crittenden | Jan 1987 | A |
4721079 | Lien | Jan 1988 | A |
4760701 | David | Aug 1988 | A |
4792295 | Joyce, Sr. | Dec 1988 | A |
4804317 | Smart | Feb 1989 | A |
4813388 | Yang | Mar 1989 | A |
4817567 | Wilks | Apr 1989 | A |
4860704 | Slaughter | Aug 1989 | A |
5039290 | Nardi | Aug 1991 | A |
5092752 | Hansen | Mar 1992 | A |
5116208 | Parme | May 1992 | A |
5181844 | Bishop | Jan 1993 | A |
5224850 | Pie | Jul 1993 | A |
5235945 | Testea | Aug 1993 | A |
5277158 | Pangman | Jan 1994 | A |
5336047 | Kolhouse | Aug 1994 | A |
5359966 | Jensen | Nov 1994 | A |
5379736 | Anderson | Jan 1995 | A |
5408824 | Schlote | Apr 1995 | A |
5419691 | Lien | May 1995 | A |
5501586 | Edwards | Mar 1996 | A |
5524587 | Mallen | Jun 1996 | A |
5540199 | Penn | Jul 1996 | A |
5558511 | Hedelin | Sep 1996 | A |
5567139 | Weatherston | Oct 1996 | A |
5571005 | Stoll | Nov 1996 | A |
5571244 | Andres | Nov 1996 | A |
5634783 | Beal | Jun 1997 | A |
5681153 | Weatherston | Oct 1997 | A |
5720251 | Round | Feb 1998 | A |
5755196 | Klassen | May 1998 | A |
5758501 | Jirnov | Jun 1998 | A |
5794583 | Ichieda | Aug 1998 | A |
5882183 | Andres | Mar 1999 | A |
5937820 | Nagata | Aug 1999 | A |
5946916 | Ven | Sep 1999 | A |
5968378 | Jensen | Oct 1999 | A |
6006009 | Friedheim | Dec 1999 | A |
6036463 | Klassen | Mar 2000 | A |
6070565 | Miniere | Jun 2000 | A |
6086347 | Ryska | Jul 2000 | A |
6106255 | Viegas | Aug 2000 | A |
6164263 | Saint-Hilaire | Dec 2000 | A |
6169852 | Liao | Jan 2001 | B1 |
6247443 | Pelleja | Jun 2001 | B1 |
6354262 | Wade | Mar 2002 | B2 |
6364646 | Kirtley | Apr 2002 | B1 |
6497557 | Aden | Dec 2002 | B2 |
6530211 | Holtzapple et al. | Mar 2003 | B2 |
6546908 | Pekau | Apr 2003 | B1 |
6565310 | Davidow | May 2003 | B1 |
6589033 | Johnson | Jul 2003 | B1 |
6594997 | Romanelli | Jul 2003 | B2 |
6601570 | Zetmeir | Aug 2003 | B2 |
6634873 | Klassen | Oct 2003 | B2 |
6659065 | Renegar | Dec 2003 | B1 |
6722182 | Buettner | Apr 2004 | B1 |
6729296 | King | May 2004 | B2 |
6739852 | Klassen | May 2004 | B1 |
6772728 | Al-Hawaj | Aug 2004 | B2 |
6773226 | Al-Hawaj | Aug 2004 | B2 |
6786036 | Kight | Sep 2004 | B2 |
6799549 | Patterson | Oct 2004 | B1 |
6886527 | Regev | May 2005 | B2 |
6899075 | Saint-Hilaire | May 2005 | B2 |
7073477 | Gorski | Jul 2006 | B2 |
7178502 | Okulov | Feb 2007 | B2 |
7255083 | Hamada | Aug 2007 | B2 |
7341041 | Pekau | Mar 2008 | B2 |
7395805 | MacMurray | Jul 2008 | B1 |
7412831 | Ullyott | Aug 2008 | B2 |
7578278 | Peitzke | Aug 2009 | B2 |
7674101 | Maeng | Mar 2010 | B2 |
7707987 | Guthrie | May 2010 | B2 |
7713042 | Rodgers | May 2010 | B1 |
7845332 | Wang | Dec 2010 | B2 |
8360759 | Pekrul | Jan 2013 | B2 |
8360760 | Pekrul | Jan 2013 | B2 |
8375720 | Pekrul | Feb 2013 | B2 |
8517705 | Pekrul | Aug 2013 | B2 |
20060102139 | Fernandez Garcia | May 2006 | A1 |
20080041056 | Carnahan | Feb 2008 | A1 |
20110116958 | Pekrul | May 2011 | A1 |
20110142702 | Pekrul | Jun 2011 | A1 |
20110155096 | Pekrul | Jun 2011 | A1 |
20110165007 | Pekrul | Jul 2011 | A1 |
20110171051 | Pekrul | Jul 2011 | A1 |
20110176947 | Pekrul | Jul 2011 | A1 |
20110200473 | Pekrul | Aug 2011 | A1 |
20120230822 | Pekrul | Sep 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20110200473 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
61304462 | Feb 2010 | US | |
61311319 | Mar 2010 | US | |
61316164 | Mar 2010 | US | |
61316241 | Mar 2010 | US | |
61316718 | Mar 2010 | US | |
61323138 | Apr 2010 | US | |
61330355 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11388361 | Mar 2006 | US |
Child | 12705731 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13069165 | Mar 2011 | US |
Child | 13098418 | US | |
Parent | 13042744 | Mar 2011 | US |
Child | 13069165 | US | |
Parent | 13031228 | Feb 2011 | US |
Child | 13042744 | US | |
Parent | 13031190 | Feb 2011 | US |
Child | 13031228 | US | |
Parent | 13041368 | Mar 2011 | US |
Child | 13031190 | US | |
Parent | 13031755 | Feb 2011 | US |
Child | 13041368 | US | |
Parent | 13014167 | Jan 2011 | US |
Child | 13031755 | US | |
Parent | 12705731 | Feb 2010 | US |
Child | 13014167 | US | |
Parent | 11077289 | Mar 2005 | US |
Child | 11388361 | US |