Not Applicable
Not Applicable
Not Applicable
This invention generally relates to a flexure based rotary guide bearing. Flexures have been used successfully in simple and inexpensive as well as complicated and expensive motion systems for centuries. Since they operate by bending, not rolling or sliding, flexures have the inherent advantage of friction-free motion. This key feature allows engineers to build positioning systems with nearly unlimited precision and accuracy. They are also easy to design and fabricate. However, even with these desirable attributes there are very few flexure based bearings available commercially. Therefore, it is common practice for an engineer to design custom flexure systems while developing a new mechanism. The rotary flexure bearing described herein is particularly well suited for integration into precision motion systems and opto-mechanical mechanisms where friction-free rotation over a limited angular range is required. It has integrated mounting and registration features that are concentric, and perpendicular, to the axis of rotation. It also has a configuration that scales easily without compromising the operating principle, making this concept a convenient basis for a family of rotary flexure bearings. In addition to applications in precision mechanics, this bearing can be used in hostile operating conditions (extreme temperatures, extreme changes in temperature, vacuum, corrosive environment, contaminated environment . . . ) that normally prohibit use of conventional bushings, rolling element bearings, or gas lubricated bearings.
Motivation for the proposed rotary flexure bearing is partially based on the limited availability of high quality rotary flexure bearings. The most popular offering has remained unchanged since 1955 when it was first developed by the Bendix Corporation. However, there are some shortcomings associated with these Bendix flex-pivots that engineers have had to overcome or accept.
Four of the shortcomings are:
1) Since they do not have integrated mounting features, the engineer must design and build custom hardware to attach the flex-pivot to the mechanism. The manufacturing and assembly tolerances associated with this additional hardware will increase the coaxial error between the desired and actual axis of rotation.
2) The flex-pivots are made of multiple pieces of 400 series stainless steel that are brazed together. This choice of material and fabrication technique favors mass production but limits application to environments benign enough for 400 series stainless steel, the brazing material, and the galvanic potential of the stainless steel-to-brazing material interface. Failure of any brazed joint will result in catastrophic failure.
3) The operating principle of these flex-pivots is based on beams bridging the gap from a fixed base to a free section. The beams cross each other at 90° and when the free section is rotated the beams bend creating an axis of rotation where they cross. However, the shape of these beams is a function of angular deflection, so the location of the axis of rotation is also a function of angular deflection.
4) In addition to a constantly changing axis of rotation and multiple single point failure sites, the radial stiffness of this nonsymmetrical beam arrangement varies with radial vector angle and direction.
Readily available high quality materials and manufacturing techniques that were not available in 1955 can be used to create high performance alternatives to the Bendix flex-pivot. The proposed rotary flexure bearing addresses the shortcomings listed above as follows:
1) The proposed rotary flexure bearing has integrated mounting flanges. In addition to a screw-hole pattern, centering and clocking features are machined into the mounting flanges during flexure fabrication. This makes the flanges concentric with the axis of rotation and eliminates the need for user designed mounting hardware.
2) The proposed rotary flexure bearing is a seamless monolithic structure. Conventional machine tools and the wire EDM process are used to fabricate this flexure bearing, which permits the use of any application appropriate metal.
3) The operating principle of the proposed rotary flexure bearing is based on multiple compound flexure stages that have been arranged into concentric circular segments. The resulting system is a rotary flexure bearing that has a fixed axis of rotation. Three compound flexure stages will be used to illustrate the principle of operation in the detailed description section.
4) The symmetrical design of the proposed rotary flexure bearing yields a consistent radial stiffness regardless of radial force vector angle or direction. SEE
The arrangement of three compound flexure stages can be seen in
Unsupported free ends of flexures are a source of instability in some multiple flexure mechanisms. The free ends are easily excited by external shock and vibration as well as the normal motion of the mechanism. The regulator link is at the free ends of the blade flexures in the compound stages used in this rotary flexure bearing design. However, the regulator link cannot freely rotate in an independent fashion like the inner or outer hubs. While the hubs are fixed, the regulator link is also fixed. When the inner hub is rotated the outer blade flexures, which move with the inner hub, rotate the regulator link which is guided by the inner blade flexures. This regulated motion is made possible by the unique blade flexure arrangement in the compound stage. If the four blade flexures were parallel they would be free to bend together at any time, and the regulator link would travel with them. Since the four blade flexures are not parallel an over constrained condition exists. The regulator link is not free to move independently, so this flexure arrangement is not subject to undesirable excitations of the flexure free ends. The controlled motion of the regulator link in this compound flexure stage helps to reject external disturbances and creates a fast settling mechanism that is very responsive to high acceleration moves.
Alignment and mounting features are shown in