There are no related applications.
Not applicable.
Not applicable.
(1) Field of the Invention
This invention relates to a rotary food server and, in particular, to such a device capable of storing food in a chilled condition.
(2) History of the Prior Art
In outdoor home cooking, for example, such as is associated with barbeque prepared food, it is common to accompany the food with salad items such as lettuce, sliced tomato, and condiments which diners serve to themselves, often from a series of salad bowls and similar receptacles. The storage and service of the accompanying foods in open bottles is the source of many all too familiar problems. Health concerns are important in hot weather if the accompanying ingredients are left out at ambient temperature because bacteria can multiply to population levels which pose risks of stomach upset and worse if left too long in the heat. The taste and appearance of foods such as lettuce and potato salad can deteriorate at an outdoor picnic or barbeque if these foods are simply left out in bowls for people to help themselves from. Also, if uncovered bowls are used, it may not be long before food becomes contaminated by unwanted falling of materials into the uncovered bowls or by unwanted insects such as ants and wasps. Also, there can be lack of convenience at the meal table if the accompanying foods are served in too many bowls which require excessive passing back and forth and clutter the dining table area unacceptably.
One approach to improving outdoor food service has been to use rotary food containers, of the lazy susan type, for the fixings that often accompany outdoor dining such as lettuce, tomato, potato salad, condiments and so forth. To keep out contaminants and unwanted insects, a lazy susan may also be combined with containers for these types of food which have removable lids on them. One example of a lazy susan type food server was shown in U.S. Pat. No. Des. 260,469. While this type of structure may provide some improvements over using an uncovered salad bowl, in terms of convenience and hygiene, the problems associated with failing to keep the food adequately chilled are not ameliorated in its approach.
The advantage, however, of keeping the salad type foods in a chilled condition have been recognized and have led to proposals for use of a chill retaining gel material incorporated into the structure of an outdoor serving tray or dish. One such prior product is a chill retention food service tray disclosed in U.S. Pat. No. 4,989,419. The '419 patent discloses a service tray which is generally circular and has a rim and a central boss and a number of spokes extending radially in the form of walls which divide the tray into a number of peripherally spaced regions in which differing foods can be placed and served. The '419 patent disclosed using regions of at least the base wall and some upstanding vertical walls of a food service tray for gel material which can be refrigerated before food is served from the pocket regions of the tray. While there is no reason to question the operability of the device of the '419 patent, it does not provide a lazy susan type serving approach under which the foods necessary can be contained within a single convenient server. It seems, so far as the present inventor is aware, that previous efforts to devise a practical rotary server that can keep food such as lettuce, sliced tomato and potato salad chilled in an outdoor dining situation, cover against insects and other pollution, and easily selectable by a diner, have gone largely unsatisfied, notwithstanding the large number of prior patents that can be found showing earlier proposals for lazy susan types of items.
The present invention provides a rotary food server for storing food in a chilled condition and serving it to a user.
A food server, in accordance with the present invention, includes a horizontal base on which is a dish mounted for rotation about a vertical axis. The dish has a central boss and an outer rim and is divided by a number of dividing walls into a series of generally pie-shaped pockets, each of which can receive a correspondingly-shaped, pie-shaped food tray. Each food tray has a movable and detachable lid. The separate trays provide for storage of a different food within each tray on the dish, for example, lettuce in one, tomatoes in another and so on.
The walls of each tray can each include a hollow region containing chill retention gel material so that the food within that tray is kept in a cool condition as long as the gel remains chilled.
Thus, food within each tray is stored in a chilled condition. Food within any selected tray may be served by rotating the dish to move the selected tray into proximity where the desirous user raises the lid to extract the contents.
A further significant aspect of the invention is that the lids are detachable and the trays are differently sized to enable them to be stacked together in nested relation, after the lids have been removed. The masted trays can be placed together in the freezer section of the refrigerator to chill the retention material in advance of use of the device.
In a further aspect, the rotary server has a central boss with a well within it to receive a cup for holding condiments. Coolant housings which surround the cup are refrigerated, along with the trays, before the food server is to be used. After the cup has been filled with food, such as condiments, the coldness of the chill retention material in the coolant housings keeps the condiments chilled. The coolant housings also assist in chilling the trays at their inner ends where they close to the housings.
In an alternative embodiment of a food server according to the invention, a one-piece dish is mounted on a horizontal base for rotation about a vertical axis. The dish has an outer rim and forms a lower housing. A one-piece upper housing has a plurality of cavities therein which define food trays. Each of the food trays is covered by a hinged lid which is detachable. One of the food trays is formed by a cup shaped cavity at the center of the circular upper housing. The remaining cavities, which are generally pie-shaped extend around the upper housing outside of the cup shaped cavity and form pie-shaped food trays.
The cup shaped food tray and the pie-shaped food trays are maintained in a chilled condition by first filling the lower housing with a mixture of water and ice to a desired level. When the upper housing is then mounted in the lower housing, the mixture of water and ice is displaced and rises along the sides of the food tray forming cavities to chill the cavities and thereby food which is stored therein.
This summary is not intended to be exhaustive of all features of the invention which is fully set forth in the following detailed description encountered by the claims.
A rotary food server, according to one embodiment of the invention, is illustrated in
Considering the exploded parts in more detail, the food server includes and rests upon a stationary base 2. The base is ring-shaped and has a U-shaped channel 4 extending peripherally in its upper surface. The base supports a dish 6, also generally circular, for rotation about a central vertical axis shown by the central dotted line in
The dish 6 has a peripheral circular rim 16 extending upwardly and outwardly from the bottom wall 8. As shown in
The reason for the pockets 20 is to receive and seat a plurality of food containing trays 24 (
Each tray 24, as shown in
To close each tray 24 at its open upper end, a complementary shaped lid 32 is hinged to the upper end of the inner wall 28 of the tray. The lid 32, in the lowered condition shown in
Referring to the illustration of half of one of the lids 32 provided in
An important aspect of the invention resides in features intended to provide a chilled environment for storage of the foods within the trays 24. One of these features resides in coolant housings 42 (
Another feature of the chill-retaining capability of the invention resides in thermal transfer through the sidewalls 30 of each tray. For this purpose, each of the pairs of walls 22 receives a vertical dividing wall 46, shown in
To chill the trays 24 and the coolant housings 42, the trays 24 are lifted out of the dish. Then the user removes the coolant housings 42 and the vertical walls 46, all of which contain the chill-retaining substance, and place them in the freezer section of a refrigerator so that they may be chilled to freezing temperature. When the time comes for use of the rotary server, the coolant housings 42 or the walls 46 are taken from the refrigerator and reinstalled in the dish, together with the trays 24. In this condition, the trays are now ready to receive food where it will be maintained in a chilled condition for a prolonged time because of thermal transfer through the base wall and the sidewalls of each tray 24 to the chill-retaining substance.
Alternatively, the chill-retention substance can be housed directly within hollow regions in the sidewalls and bottom walls of the tray 24 itself. In such arrangement, the tray is conducted as an inner tray and a complemental outer tray, joined together along their peripheral edges, defining an interior space between them. The chill-retaining substance is placed, during manufacture, in this interior space between the inner and outer sidewalls in each tray rather than in separate enclosures as described above.
Although the chill-retaining substance, has been described as comprising a gel, such substance can instead comprise a mixture of ice and water.
A further aspect of the invention resides in a separate chilled compartment for condiments. Referring to
Another aspect of the invention resides in making the trays nestable once the lids have been detached. Accordingly, they are sized and shaped to stack together in a nested relation so that the trays may be placed together in the freezer.
Another aspect of the invention resides in structure which allows the lids 32 of adjacent trays 24 to be raised without interference with each other. It will be appreciated that, with the lids 32 in the closed condition, they are below a horizontal condition in which the peripheral edges of adjacent lids 32 are closest together. To avoid a condition in which the simultaneous raising of the lids 32 of two adjacent trays 24 could cause the lids 32 to interfere as they reach the horizontal condition of the plane, the dividing walls 46 are made sufficiently wide in the peripheral direction that they ensure sufficient spacing between the lids 32 of the adjacent trays 24 to avoid interference between adjacent lids 32 as they are raised through the horizontal plane.
The rotary food server shown in
An alternative arrangement of a rotary food server 62 is shown and described hereafter in connection with
The rotary food server 62 includes a horizontal, stationary base 64 having an upwardly extending spindle 66 at a central portion thereof. An outer peripheral portion of the base 64 has a U-shaped channel 68. Rollers 70 are mounted at spaced locations about the U-shaped channel 68.
A lower housing 72 of circular configuration is rotatably mounted on the stationary base 64 by a receptacle 74 at the center of a bottom wall 76 thereof. The receptacle 74 receives the spindle 66 of the stationary base 64 therein so that the lower housing 72 may rotate about a vertical axis relative to the base 64. An outer portion of the bottom wall 76 engages the rollers 70 of the base 64 to facilitate such rotational movement of the lower housing 72.
The lower housing 72 has an outer peripheral rim 78 of circular configuration extending upwardly from an outer periphery of the bottom wall 76. The peripheral rim 78 forms a cavity 80 within the lower housing 72. A fill line 82 located part way up the height of the peripheral rim 78 extends circumstantially around the inside of the peripheral rim 78. The lower housing 72 is preferably of one-piece construction, such as by being molded of plastic material.
The food server 62 includes an upper housing 84 of generally circular configuration and having a peripheral rim 86 extending downwardly from the outer edge thereof. The upper housing 84 may be mounted on the lower housing 72, with the peripheral rim 86 of the upper housing 84 engaging the peripheral rim 78 of the lower housing 72 to provide a snap fit, as shown in
The upper housing 84 has a generally cup-shaped central cavity 88 therein. The central cavity 88 has a generally cylindrical sidewall 90 extending upwardly from a bottom wall 92 thereof. A partition 94 divides the central cavity 88 into separate compartments 96 and 98. The upper housing 84 also includes a plurality of peripheral cavities 100 extending radially outwardly from the central cavity 88 to regions adjacent to the peripheral rim 86 of the upper housing 84. Each of the peripheral cavities 100 has a pair of sidewalls 102 and 104 at the opposite sides thereof, a sidewall 106 at the front thereof and a sidewall 108 at the back thereof. A circular central pocket 110 extends between the cylindrical sidewall 90 of the central cavity 88 and the sidewalls 108 at the backs of the peripheral cavities 100. The upper housing 84 also includes a plurality of peripheral pockets 112, each of which extends radially outwardly from the circular central pocket 110 between a different adjacent pair of the peripheral cavities 100. Each peripheral pocket 112 has opposite sides defined by the sidewalls 102 and 104 of an adjacent pair of the peripheral cavities 100.
Each of the peripheral cavities 100 is generally pie-shaped and forms a tray for food. A plurality of hinged lids 114 are removably mounted on the upper housing 84 so as to cover the cavities 100. Only one such lid 114 is shown in
In order to chill the cavities 88 and 100 and the food stored within such cavities, a cooling medium is poured into the cavity 80 of the lower housing 72 up to the fill line 82. The cooling medium may comprise any fluid-like substance capable of imparting a cooling effect, but preferably comprises a mixture of water and ice. Chilled water can also be used, although the presence of ice tends to keep the water cool longer as its melt. With the cavity 80 filled to the fill line 82 by the water and ice mixture, the upper housing 84 is then mounted on the lower housing 72 where the peripheral rim 86 snap fits over the peripheral rim 78. As the upper housing 84 is mounted over the lower housing 72, the central cavity 88 and the peripheral cavities 100 which extend downwardly from the peripheral rim 78 of the lower housing 72 extend into and displace the water and ice mixture within the cavity 80 in the lower housing 72. The water level rises from the fill line 82 to a displaced level 118 shown in
Because of the one-piece molded construction of the upper housing 84, the undersides of the central cavity 88 and the peripheral cavities 100 are exposed to the water and ice mixture when the upper housing 84 is mounted on the lower housing 72. In addition to exposing the bottom walls 120 of the peripheral cavities 100 and the bottom wall 92 of the central cavity 88 to the water and ice mixture, the mixture is dispersed upwardly into the circular central pocket 110 surrounding the central cavity 88 and the peripheral pockets 112 separating the adjacent peripheral cavities 100. This enables substantial portions of the sidewall 90 of the central cavity 88 and the sidewalls 102, 104, 106 and 108 of the peripheral cavities 100 to be exposed to the water and ice mixture and chilled thereby. In this fashion, substantial cooling is imparted to the central cavity 88 and the peripheral cavities 100 by the water and ice mixture. Because the cavity 80 in the lower housing 72 is enclosed by the upper housing 84, the ice tends to melt slowly, and the water remains cold for a substantial period of time. However, should it become necessary to replace the water and ice mixture, it is a simple matter to remove the upper housing 84 from the lower housing 72 because of the snap fit therebetween. The water and melted ice within the cavity 80 of the lower housing 72 is then discarded and replaced with a fresh mixture, before again mounting the upper housing 84 onto the lower housing 72.
Although the invention has been described with respect to preferred embodiments, it will be understood by those skilled in the art that insubstantial variations in the embodiments disclosed may be made by one of ordinary skill in the art without departing from the invention set forth in the claims thereof.
Number | Name | Date | Kind |
---|---|---|---|
1277253 | Paschal | Aug 1918 | A |
D65722 | Bennett | Oct 1924 | S |
1768976 | Cuthbertson | Jul 1930 | A |
D91971 | Scurlock | Apr 1934 | S |
D92981 | Scurlock | Aug 1934 | S |
2030899 | Scurlock | Feb 1936 | A |
2042637 | Scurlock | Jun 1936 | A |
2052801 | Russakov | Sep 1936 | A |
2110921 | Scurlock | Mar 1938 | A |
D160688 | Brock | Oct 1950 | S |
2553880 | Stigler | May 1951 | A |
2625274 | Clements | Jan 1953 | A |
D169143 | Karoff | Mar 1953 | S |
D170917 | Gruen | Nov 1953 | S |
D173456 | Rosen | Nov 1954 | S |
2719413 | Panzer | Oct 1955 | A |
D176097 | Bonistall | Nov 1955 | S |
D178029 | Warren | Jun 1956 | S |
D178473 | Warren | Aug 1956 | S |
D181776 | Asquith | Dec 1957 | S |
D182697 | Warren | Apr 1958 | S |
D183285 | Lipka | Jul 1958 | S |
2880882 | Lipka | Apr 1959 | A |
2978285 | Jester | Apr 1961 | A |
D193103 | Heller | Jun 1962 | S |
D193308 | Jackson | Jul 1962 | S |
D207409 | Laughlin | Apr 1967 | S |
3331515 | Lange | Jul 1967 | A |
D209848 | Berend | Jan 1968 | S |
D210311 | Newman | Feb 1968 | S |
3385465 | Bliss | May 1968 | A |
3413820 | Paquin | Dec 1968 | A |
3972419 | Short | Aug 1976 | A |
D260219 | Blake et al. | Aug 1981 | S |
D260343 | Blake et al. | Aug 1981 | S |
D260469 | Blake et al. | Sep 1981 | S |
D285157 | Wan | Aug 1986 | S |
D285638 | Trivison | Sep 1986 | S |
D286124 | Dempsey | Oct 1986 | S |
D286360 | Trivison | Oct 1986 | S |
4775055 | Morse | Oct 1988 | A |
D310940 | Kastanek | Oct 1990 | S |
4989419 | Brando et al. | Feb 1991 | A |
5088301 | Piepenbrink | Feb 1992 | A |
5544489 | Moren | Aug 1996 | A |
D407610 | Weterrings et al. | Apr 1999 | S |
D408212 | Blaise | Apr 1999 | S |
6131393 | Greene | Oct 2000 | A |
6182839 | Robbins et al. | Feb 2001 | B1 |
6237345 | Kalman et al. | May 2001 | B1 |
6477855 | Findley et al. | Nov 2002 | B1 |
6557368 | DeMars | May 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050005631 A1 | Jan 2005 | US |