Claims
- 1. In a gerotor hydraulic pressure device having a housing, a rotor with a certain eccentric rotary motion , full revolution constant commutation between a fluid passage in the housing and a single ring shaped fluid passage in the rotor, and a valving manifold on one side of the rotor selectively connecting valving passages in the rotor to the expanding and contracting gerotor cells of the device, the improvement of one of the fluid passage in the housing or the fluid passage in the rotor being laid out in a pattern substantially following the certain eccentric rotary motion of the rotor, said pattern facilitating the fluid commutation between the passages.
- 2. In a gerotor hydraulic pressure device having a housing, a rotor with a certain eccentric rotary motion, gerotor cells surrounding the rotor and full revolution commutation between a fluid passage in the housing and a fluid passage in the rotor, the improvement of one of the fluid passage in the housing or the fluid passage in the rotor being laid out in a pattern substantially following the certain eccentric rotary motion of the rotor, said pattern facilitating the fluid commutation between the passages the fluid passage laid out in a pattern substantially following the certain eccentric rotary motion of the rotor being a ring channel and the ring channel being star-shaped, the points of which are directed toward the cells of the gerotor device.
- 3. In a gerotor hydraulic pressure device having a housing, a rotor with two flat axial end surfaces, gerotor cells and two fluid connections, an improved fluid control comprising a pair of travel passageways, 100% of the fluid traveling through both of said pair of travel passageways, a bore extending substantially on the axis of the rotor part way through the rotor from one of the two flat axial end surfaces of the rotor, one of said pair of travel passageways extending from the other of the two flat axial end surfaces of the rotor to said bore, the other of said pair of travel passageways being in the rotor, means to connect one of said pair of travel passageways to one of the two fluid connections, means to connect the other of said pair of travel passageways to the other of the two fluid connections and means within the housing on a single side of the rotor to connect said pair of travel passageways to the gerotor cells selectively as the device is operated.
- 4. The gerotor hydraulic device of claim 3 characterized in that the other of said pair of travel passageways is a second bore extending substantially on the axis of the rotor part way through the rotor from the other of the two flat axial end surfaces of the rotor, said second bore in the rotor being distinct from said bore in the rotor.
- 5. The gerotor hydraulic device of claim 3 characterized in that the other of said pair of travel passageways extends through the rotor, including at one end a bore extending substantially on the axis of the rotor part way through the rotor from the other of the two flat end surfaces of the rotor, said second bore in the rotor being distinct from said bore in the rotor.
- 6. In a gerotor hydraulic pressure having a housing, a rotor with two flat axial end surfaces, gerotor cells and two fluid connections, an improved fluid control comprising a pair of travel passageways, one of said pair of travel passageways extending straight through the rotor from one surface to the other, the other of said pair of travel passageways being in the rotor, means on one side of the rotor to connect one of said pair of travel passageways to one of the fluid connections, means on the other side of the rotor to connect the other of said pair oft ravel passageways to the other of the fluid connections, and means within the housing on a single side of the rotor to connect said pair of travel passageways to the gerotor cells selectively as the device is operated with 100% of the fluid from said pair of travel passageways passing through said means within the housing.
- 7. The gerotor hydraulic pressure device of claim 6 characterized in that said one of said pair of travel passageways surrounds said other of said pair of travel passageways.
- 8. The gerotor hydraulic pressure device of claim 6 characterized in that said other said pair of travel passageways surrounds said one of said pair of travel passageways.
- 9. In a gerotor hydraulic pressure device having a housing, a rotor with two flat axial end surfaces rotatively engaging the housing at planes, gerotor cells and two fluid connections, a improved fluid control comprising a pair of travel passageways, 100% of the fluid traveling through said pair of travel passageways, said pair of travel passageways being in the rotor, means at one plane to connect one of said pair of travel passageways to one of the two fluid connections, means at the other plane to connect the other of said pair of travel passageways to the other of the two fluid connections and valving means within the housing at said one plane to connect said pair of travel passageways to the gerotor cells selectively as the device is operated such that the commutation of one of said pair of travel passageways occurs on the opposite side of the rotor from the commutation of the other of said pair of travel passageways and the valving means to connect said pair of travel passageways to the gerotor cells.
- 10. The gerotor hydraulic device of claim 9 characterized in that a travel passageway of said pair of travel passageways extends straight through the rotor from one axial surface to the other axial surface.
- 11. The gerotor hydraulic pressure device of claim 10 characterized in that said one of said pair of travel passageways surrounds said other of said pair of travel passageways at a plane of the two planes.
- 12. The gerotor hydraulic pressure device of claim 9 characterized by the addition of an input-output shaft and a wobble-stick and wherein said one plane of commutation and valving is on the opposite side of the rotor as the wobble-stick drive connection with the input-output shaft.
- 13. The gerotor hydraulic device of claim 9 characterized in that a travel passageway of said pair of travel passageways includes a bore extending substantially on the axis of the rotor part way through the rotor from one of the two flat axial end surfaces of the rotor and a passageway extending from the other of the two flat axial end surfaces of the rotor to said bore.
- 14. In a gerotor hydraulic pressure device having a housing, a rotor with two flat axial end surfaces rotatively engaging the housing at two planes, said rotor cooperating with said housing to define gerotor cells and two fluid connections, an improved fluid control comprising the rotor having a center opening, means at one plane to connect said center opening to one of the two fluid connections, the rotor having a channel, said channel surrounding said center opening in the rotor, means at the other plane to connect said channel to the other of the two fluid connections, and manifold valving means within the housing on a single side of the rotor at a plane to connect said center opening and said channel to the gerotor cells selectively as the device is operated such that the commutation of the device occurs at both planes on both sides of the rotor with 100% of the fluid traveling through said means within the housing.
- 15. In a gerotor hydraulic pressure device having a housing, a rotor with tow flat axial end surfaces rotatively engaging the housing at two planes, said rotor cooperating with said housing to define gerotor cells and two fluid connections, an improved fluid control comprising the rotor having a center opening, means in the housing at one plane to connect said center opening to one of the two fluid connections, means to hydraulically balance the rotor for the forces present at said center opening, the rotor having a channel, said channel surrounding said center opening in the rotor, means in the housing at the other plane to connect said channel to the other of the two fluid connections, means to hydraulically balance the rotor for the forces present at said channel, means within the housing at a plane to connect said center opening and said channel to the gerotor cells selectively as the device is operated with 100% of the fluid traveling through said means in the housing, and said means within the housing at a plane to connect said center housing and said channel to the gerotor cells selectively as the device is operated being between said means in the housing at the plane to connect said center opening to one of the two fluid connections and said means in the housing at the plane to connect said channel to the other of the two fluid connections such that the commutation and valving of the device occurs at one plane on a single side of the rotor.
- 16. In a gerotor hydraulic pressure device having a housing, a rotor with a certain eccentric rotary motion and full revolution constant commutation between a fluid passage in the housing and a fluid passage in the rotor, the improvement of one of the fluid passages in the housing or the fluid passage in the rotor being laid out in substantially the pattern traced by a given point of the other of the fluid passage in the housing or the fluid passage in the rotor, said pattern substantially following the certain eccentric rotary motion of the rotor, the laid out passage following said pattern facilitating the fluid commutation between the passages.
- 17. The improved gerotor hydraulic pressure device of claim 16 wherein the fluid passage laid in substantially said pattern substantially following the certain eccentric rotary motion of the rotor is a ring channel and characterized in that the ring channel is star-shaped, the points of which are directed towards the cells of the gerotor device.
- 18. In a gerotor hydraulic pressure device having a housing, a rotor with a certain eccentric rotary motion and full revolution constant commutation of 100% of the fluid between a fluid passage on a surface of the housing with a fluid passage on facing surface of the rotor, the improvement of one of the fluid passage of the housing or the fluid passage of the rotor being laid out substantially in the pattern traced on the surface corresponding to said one fluid passage by a given point of the other of the fluid passage of the housing or the fluid passage of the rotor, said pattern substantially following the eccentric rotary motion of the rotor, said laid out passage improving the commutation between the fluid passages.
- 19. The gerotor hydraulic device of claim 18 wherein said one fluid passage is laid out in a substantially star-shaped pattern.
- 20. In a gerotor hydraulic pressure device having a housing, a rotor with a certain eccentric rotary motion and full revolution constant commutation of 100% of the fluid between a single fluid passage on a surface of the housing with a single fluid passage on facing surface of the rotor, the improvement of the fluid passage of the housing being laid out substantially in the pattern traced on the surface of the housing by a given point of the fluid passage of the rotor, said pattern substantially following the eccentric rotary motion of the rotor, said laid out passage improving the commutation between the fluid passages.
- 21. The gerotor hydraulic device of claim 20 wherein said one fluid passage is laid out in a substantially star-shaped pattern.
- 22. In a gerotor hydraulic pressure device having a housing, a rotor with a certain eccentric rotary motion, and full revolution constant commutation of 100% of the fluid between a ring channel fluid passage on a surface of the housing with a generally circular symmetrically shaped ring channel fluid passage on a facing surface of the rotor, the improvement of the ring channel fluid passage of the housing being laid out substantially in the pattern traced by a given point of the generally circular ring channel fluid passage of the rotor, said pattern substantially following the eccentric rotary motion of the rotor, said laid out pattern improving the communication between the ring channel fluid passages.
Parent Case Info
This is a division of co-pending application Ser. No. 840,993 filed on Mar. 14, 1986, U.S. Pat. No. 4,697,997, which is a Continuation-in-Part of Mr. White's prior Rotary Gerotor Hydraulic Device application, Ser. No. 360,832, filed Mar. 23, 1982, U.S. Pat. No. 4,474,544, which in turn is a Continuation-in-Part of Mr. White's prior Rotary Gerotor Hydraulic Device application, Ser. No. 113,400, filed Jan. 18, 1980, U.S. Pat. No. 4,357,133, which in turn is a Continuation of Mr. White's prior Rotary Gerotor Hydraulic Device application, Ser. No. 910,075, filed May 26, 1978, now abandoned.
US Referenced Citations (9)
Foreign Referenced Citations (7)
Number |
Date |
Country |
0054161 |
Jun 1982 |
EPX |
2152652 |
Apr 1973 |
DEX |
1012112 |
Dec 1965 |
GBX |
1062646 |
Mar 1967 |
GBX |
1232686 |
May 1971 |
GBX |
2023738 |
Jan 1980 |
GBX |
2024949 |
Jan 1980 |
GBX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
840993 |
Mar 1986 |
|
Continuations (1)
|
Number |
Date |
Country |
Parent |
910075 |
May 1978 |
|
Continuation in Parts (2)
|
Number |
Date |
Country |
Parent |
360832 |
Mar 1982 |
|
Parent |
113400 |
Jan 1980 |
|