The present invention relates to powered rotary hammers, and to power drills having a hammer action.
One type of rotary hammers comprise a motor which rotatingly drives a spindle supporting a chuck in which a drill bit can be held, while at the same time causing a piston tightly fitted within the spindle to execute a linear reciprocating motion within the spindle. This motion causes repeated compression of an air cushion between the piston and a ram slidably mounted within the spindle, which causes the ram in turn to execute reciprocating linear motion within the spindle and apply impacts to the drill bit via a beat piece.
The problem with such designs is that the frequency of impacts per revolution of the spindle is relatively small.
In an alternative design of hammer drill, the impacts which are imparted onto the drill bit are generated using two ratchet plates which interact with each other, one of which is fixed, the other rotating with the spindle, the vibrations generated by two ratchets being transferred to the drill bit. EP0613758 discloses such a design.
Though this design produces a high frequency of impacts per revolution of the spindle, the size of the impacts is relatively small.
Accordingly there is provided a rotary hammer comprising:
a housing
a motor mounted within the housing;
a tool holder rotatably mounted on the housing for holding a cutting tool;
a striker mounted in a freely slideable manner within the housing for repetitively striking, at a relatively low frequency, an end of a cutting tool when a cutting tool is held by the tool holder, wherein the striker is reciprocatingly driven by the motor, when the motor is activated, via a drive mechanism;
wherein the striker strikes an end of a cutting tool via a beat piece slideably mounted within the housing;
characterised in that the beat piece is capable of being rotatingly driven by the motor whereby there is further provided a pair of co-operating ratchet plates the first ratchet plate being rigidly connected to the beat piece and the second ratchet plate being connected to the housing 4 and which, when the first and second ratchet plates are engaged and the beat piece is rotatingly driven by the motor, superimpose high frequency impacts onto the low frequency impacts generated by the striker, when the striker is being reciprocatingly driven by the motor.
Preferably, the drive mechanism comprises, a support which is capable of being reciprocatingly driven by the motor, ideally by a wobble bearing or a crank mechanism, when the motor is activated; and a spring interconnected between the support and the striker.
Tool holders for rotary hammers typically support the end of a drill bit in such a manner that the drill bit can axially slide within the tool holder over a limited range of distance whilst being rotationally fixed within the tool holder. When the tool holder rotates, the drill bit rotates. In such designs, the end of the drill bit is directly struck by the beat piece. As the drill bit can axially slide within the tool holder, no impact force is imparted on to the tool holder itself. The present invention can be utilised with such tool holders, the beat piece striking the end of the tool bit directly. However, the present invention also allows for the end of the tool bit to be struck indirectly, ie via another component such as the tool holder. In such an arrangement, the tool holder can be attached to the beat piece with the impacts being transferred to the cutting tool via the tool holder.
Preferably, the ratchet plates are biased apart and are only brought into engagement when a force is applied to the beat piece which over comes the biasing force.
An embodiment of the present invention will now be described with reference to the accompanying drawings of which:
A rotary hammer drill comprises a housing 2 in which is mounted an electric motor. A chuck support 120 is rotatingly mounted within the housing 2, one end of which projects from the front of the housing. A chuck 4 is attached to the end of the chuck support 120. The electric motor is capable of rotatingly driving the chuck support 120 in order for the hammer to perform a drilling function. In addition, the motor can also reciprocatingly drive a ram 142 via a drive mechanism to repetitively strike the chuck support 120. The impulses on the chuck support 120 are transferred to the rear end of a drill bit located within the chuck 4 in order for the drill bit to perform a chiselling function. A gear mechanism (not shown) is capable of engaging or disengaging the drive to either the chuck support 120 and/or the ram 142 so that the rotary hammer is capable of performing the drilling function and chiselling function separately or in combination.
A wobble plate 146 is mounted to a rotary shaft 147 by means of bearings 148. The wobble plate is prevented from rotation around the axis of the shaft 147. A support 149 is pivotably connected to an arm 153 of the wobble plate 146 remote from the shaft 147 such that rotation of the shaft 147 by means of the motor causes axial reciprocating motion of the upper extremity of the arm 153 of the wobble plate 146 in a direction indicated by Arrow A in
A person skilled in the art will appreciate that the wobble bearing can be replaced by a crank mechanism.
The chuck support 120 is mounted within a mount 124. The mount 124 is rigidly attached to the housing 4. The chuck support 120 is capable of freely rotating as well as axially sliding within the mount 124. A compression spring 150 biases the chuck support forward (right in
An annular first ratchet plate 154 is integrally formed on rear end of the chuck support 120. An annular second ratchet plate 151 is integrally formed on the mount 124. The compression spring biases the two ratchet plates 154, 151 apart.
The hammer mechanism can be operated in at least two different manners of operation. In the first manner, the motor drives both the chuck support 120 in a rotating manner and the ram 142 in a reciprocating manner.
In use in the first manner, a drill bit is held by the chuck 4. When the end of the drill bit is placed against the surface of a work piece in order to drill a hole, the chuck support is biased forward to its furthest extent. The drill bit is rotatingly driven by the chuck support 120. When the shaft 147 is rotatingly driven by the motor, the ram 142 is reciprocatingly driven by the wobble plate 146 via the support 149 and the spring 144. However, the hammer mechanism is arranged so that the ram 142 either very narrowly misses the chuck support 120 when it is in its forward most position or just touches the chuck support when it is in its forward (right in
However, when an operator applies further pressure onto the drill bit through the hammer in order to push the tip of the drill bit into the work piece to be drilled, the chuck support 120 slides backwards against the biasing force of the spring 150. This results in the reciprocatingly driven ram 142 to strike the chuck support 120. The impulses generated by this striking action are then passed onto the chuck 4. As such, a hammer action is supper imposed onto the drill bit as it is pressed against a work piece. It should be noted that a chuck 4 needs to be constructed in a sufficiently robust manner in order to withstand the impacts imparted by the reciprocating ram 142 over a long period of time.
If sufficient force is applied onto the drill bit, the chuck support slides rearwardly (left in
In the second manner of operation, the motor initially drives the chuck support 120 in a rotating manner, no drive being applied to the ram 142.
In use in the second manner, a drill bit is held by the chuck 4. When the end of the drill bit is placed against the surface of a work piece in order to drill a hole, the chuck support is biased forward to its furthest extent. The drill bit is rotatingly driven by the chuck support 120. No forward impulses are generated which would be passed forward to the drill bit.
If sufficient force is applied onto the drill bit, the chuck support slides rearwardly (left in
However, if for a short period of time the operator wishes to increase the hammering action, the operator can engage the drive to the ram 142 to cause it to reciprocate. This results in the reciprocatingly driven ram 142 striking the chuck support 120. The impulses generated by this striking action are then passed onto the chuck 4. As such, a larger hammer action is supper imposed onto the drill bit as it is pressed against a work piece.
The second manner of operation allows the action of the reciprocating ram 142 to be used sparingly, thus enabling a standard design of chuck to be utilised without damage due to the large vibration caused by the ram 142. If the hammer mechanism is intended to be used predominantly in the second manner of operation, the strength of the spring can be reduced to allow easy engagement of the ratchet plates 151, 154.
The present invention has been described in relation to a chuck mounted on the chuck support. However, a person skilled in the art will realise that it can also be utilised with typical tool holders for rotary hammers which support the end of a drill bit in such a manner that the drill bit can axially slide within the tool holder over a limited range of distance whilst being rotationally fixed within the tool holder. When the tool holder rotates, the drill bit rotates. When such designs of tool holders are used, the end of the drill bit is directly struck by the chuck support 120. As the drill bit can axially slide within the tool holder, no impact force is imparted on to the tool holder itself. The chuck support and the tool holder will be separately rotatingly driven. The tool holder will be rotatingly driven to rotate the bit. The chuck support 120 will rotatingly driven to generate the hammering effect due to the ratchet plates 151, 154.
Number | Date | Country | Kind |
---|---|---|---|
GB 05 016 17.5 | Jan 2005 | GB | national |