Rotary handle stent delivery system and method

Information

  • Patent Grant
  • 10441449
  • Patent Number
    10,441,449
  • Date Filed
    Wednesday, May 30, 2018
    6 years ago
  • Date Issued
    Tuesday, October 15, 2019
    5 years ago
Abstract
A delivery device according to principles described herein includes a catheter having three concentric shafts including an inner core, an outer sheath over the inner core and an outer support shaft at least partially extending over the inner core and the outer sheath. A timing belt having a plurality of belt teeth on a surface of the timing belt is coupled to an outer sheath over a medical device or stent on the inner core such that movement of the timing belt link causes movement of the outer sheath from its position over the medical device or stent. The delivery device is actuated by rotation of a thumbwheel a thumbwheel coupled to a barrel having a plurality of teeth such that rotation of the thumbwheel causes movement of the barrel such that the barrel teeth engage the belt teeth to cause movement of the timing belt causing movement of the outer sheath.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Embodiments of the present invention relate to a stent delivery device, specifically a single-handed thumbwheel driven delivery handle.


Background

There are a number of medical conditions and procedures in which a device such as a stent is placed in the body to create or maintain a passage. There are a wide variety of stents used for different purposes, from expandable coronary, vascular and biliary stents, to plastic stents used to allow the flow of urine between kidney and bladder.


Self-expanding stents, as well as balloon expandable stents, may also be used to treat various issues with the vascular system, including, but not limited to May-Thurner Syndrome and Deep Vein Thrombosis.


Stents are usually delivered in a compressed condition to the target site and then, deployed at that location into an expanded condition to support the vessel and help maintain it in an open position. The delivery system used to implant or deploy at the stent target site in the diseased vessel using a delivery system.


Stents are commonly delivered using a catheter delivery system. A common type of delivery system for delivering a self-expanding stent is called a pull back delivery system. This type of delivery system utilizes two catheters or shafts which are concentrically arranged, one around another. The stent is carried axially around the distal end of the inner catheter or shaft. The stent is carried to the delivery site on the distal end of the delivery device, held in its compressed delivery position by the outer shaft or catheter. Once at the desired placement site, the outer shaft is pulled back, releasing the stent to self-expand.


BRIEF SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to a rotary handle stent delivery system and method that obviates one or more of the problems due to limitations and disadvantages of the related art.


In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention, in one aspect, relates to a delivery device according to principles described herein including a catheter having three concentric shafts including an inner core, an outer sheath over the inner core and an outer support shaft; a timing belt having a plurality of belt teeth on a surface of the timing belt; a timing belt link coupled to the outer sheath such that movement of the timing belt link causes movement of the outer sheath; a barrel having barrel teeth corresponding to belt teeth; and a thumbwheel coupled to the barrel such that rotation of the thumbwheel causes movement of the barrel such that the barrel teeth engage the belt teeth to cause movement of the timing belt causing movement of the outer sheath.


In another aspect, a system for delivery of an intraluminal stent according to principles described herein includes a delivery device with a catheter having three concentric shafts including an inner core having the intraluminal stent thereon; an outer sheath over the stent in an unexpanded state on the inner core therein, the outer sheath holding the stent in an unexpanded state, the outer sheath translatable coaxially over the inner core and the intraluminal stent; and an outer support shaft at least partially extending over the inner core and the outer sheath; a timing belt having a plurality of belt teeth on a surface of the timing belt; a timing belt link coupled to the outer sheath such that movement of the timing belt link causes movement of the outer sheath to expose the intraluminal stent; a barrel having barrel teeth corresponding to belt teeth; and a thumbwheel coupled to the barrel such that rotation of the thumbwheel causes movement of the barrel such that the barrel teeth engage the belt teeth to cause movement of the timing belt causing movement of the outer sheath.


In yet another aspect, a method of delivering an medical device to a body according to principles described herein uses a delivery device with a catheter having three concentric shafts including an inner core, an outer sheath over the inner core and an outer support shaft; a timing belt having a plurality of belt teeth on a surface of the timing belt; a timing belt link coupled to the outer sheath such that movement of the timing belt link causes movement of the outer sheath; a barrel having barrel teeth corresponding to belt teeth; a thumbwheel coupled to the barrel such that rotation of the thumbwheel causes movement of the barrel such that the barrel teeth engage the belt teeth to cause movement of the timing belt causing movement of the outer sheath; and a medical device over an outer diameter of the inner core; the method includes rotating the thumbwheel in a predetermined direction to cause the timing belt to move in direction associated with the predetermined direction of thumbwheel rotation to cause the timing belt link to move the outer sheath in a desired direction; and deploying the medical device from a distal end of the inner core to the body as the outer sheath moves in the desired direction.


Additional advantages will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.


Further embodiments, features, and advantages of the rotary handle stent delivery system and method, as well as the structure and operation of the various embodiments of the rotary handle stent delivery system and method, are described in detail below with reference to the accompanying drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, which are incorporated herein and form part of the specification, illustrate a rotary handle stent delivery system and method. Together with the description, the figures further serve to explain the principles of the rotary handle stent delivery system and method described herein and thereby enable a person skilled in the pertinent art to make and use the rotary handle stent delivery system and method.



FIGS. 1(a)-(c) show various embodiments of a stent delivery handle according to principles described herein.



FIG. 2 illustrates an exemplary catheter configuration according to principles described herein.



FIG. 3 illustrates is an exploded view of features of a delivery handle according to principles described herein.



FIG. 4 is cross-sectional view of an assembled handle according to principles described herein



FIG. 5 is a cross-sectional view illustrating motion of the thumbwheel and the timing belt.



FIGS. 6(a)-(c) are cross-sectional views of the delivery device according to principles described herein and illustrate motion of the timing belt link and outer sheath upon movement of the thumbwheel.



FIG. 7 is a top view of the delivery device according to principles described herein.



FIG. 8 illustrates a perspective view of the delivery device according to principles described herein, including the catheter device.



FIG. 9 is a cross-sectional line drawing showing detail of an exemplary embodiment of the thumbwheel assembly.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the rotary handle stent delivery system and method with reference to the accompanying figures. Various embodiments disclosed herein illustrate a device and associated method for delivering expandable stents or other medical devices to implant or deploy a stent or other medical device to a target site in the diseased vessel.



FIGS. 1(a)-(c) show various embodiments of a stent delivery handle according to principles described herein. As illustrated, the handle 10 includes a housing 14 and a thumbwheel/thumbwheel assembly 18, with a triaxial catheter 22 extending therefrom. The catheter may extend through strain relief 26 from the housing 10. The strain relief 26 can take any form, such as being made of polyolefin or other similar flexible material.


Referring to FIG. 2, the catheter 22 includes three concentric or “coaxial” tubes/shafts (a triaxial design): inner core 42, outer sheath 34 and an outer support shaft 38. The outer sheath 34 may be tapered or stepped, as illustrated in FIG. 2, or may not be tapered, depending on the application. The outer support shaft 38 may be a PEEK (polyaryletheretherketone) tubing extrusion or other similar structure. The outer support shaft 38 can be manufactured from any semi-rigid material. PEEK exhibits good mechanical properties to provide support for the smaller diameter of the outer sheath and is flexible. PEEK is also an off-the-shelf component. A material other than PEEK may be used to form the outer support sheath, and the invention described herein is not limited to PEEK for use in the outer support shaft 38. Functionally, the outer support shaft 38 and inner core are fixed in position at the proximal end of the delivery system and the outer sheath translates coaxially over the inner core and inside the outer support shaft 38. A medical device such as a self-expanding stent (not shown) is held in a reduced delivery configuration for insertion and transport through a body lumen to a predetermined site for deployment. The stent (not shown) is carried axially around the inner core 42 and is held in its reduced delivery configuration by the outer sheath 34. The inner core 42 may be a braid reinforced tube that extends from the distal end to the proximal end of the device. In some embodiments, the inner core 42 may extend from the very distal end to the very proximal end (e.g. all the way from end to end). The inner diameter of the tube of the inner core 42 is sized for tracking over a guidewire and the outer diameter of the tube of the inner core 42 at the distal end is where the stent (not show) will be crimped between to inner core band markers (50). The outer support shaft 38 is used to stiffen the delivery device so that the arc of the inner core 42 will not change outside of the body when the outer sheath 34 is pulled back to release the stent (not shown) to self-expand. The outer support shaft 38 is connected to the handle 10 at the proximal end of the device, which stiffens the delivery system and reduces friction at the treatment insertion site so that the inner core 42 will not be urged forward as the middle shaft/outer sheath 34 is pulled backward. As illustrated in FIG. 2, the catheter 22 may include a distal tip 46. The inner core 42 may further include at least one inner core marker band 50 such that self-expanding stent is crimped and loaded at the distal end of the catheter and located over the inner core between two inner core marker bands 50 (only one is shown in FIG. 2) to prevent axial movement of the stent. The crimped and loaded self-expanding stent is circumferentially constrained by the outer sheath 34. The outer sheath 34 may also include an outer sheath marker band 54.


The triaxial design allows for more optimal delivery system stability and accurate placement during stent deployment as compared to a traditional 2-coaxial delivery system. The system in introduced into the body at an access location thorough an introducer sheath with hemostasis valve. Where the stent delivery system enters the introducer sheath into the body friction is generated at the hemostasis valve. Therefore, during deployment of a traditional 2-axis system as the outer sheath is being retracted, it wants to move relative to the introducer sheath due to friction, resulting in the inner core pushing out the stent versus retracting the outer sheath. The operator needs to compensate for this and move the entire delivery catheter while deploying the stent to maintain consistent placement during deployment. With long high radial force stents (such as venous stents) this can result in distal/proximal movement (accordion effect) of the entire delivery system during deployment of the stent and can result in inaccurate deployment or malposition of the stent. The triaxial design mitigates this effect as the outer support shaft 38 is inserted through the introducer sheath and therefore the friction between the outer sheath translation and introducer sheath hemostasis valve is eliminated.



FIG. 3 illustrates an exploded view of features of a delivery handle according to principles described herein. The exemplary embodiment illustrated in FIG. 3 includes a two-part housing 114a and 114b, where the respective two parts 114a and 114b may be snap fit together for assembly. The thumbwheel 18 may comprise two wheels 118a and 118b, an axle 58, and a bearing 62. The wheels 118a and 118b may include teeth on an inner barrel 66 thereof. Although only one inner barrel is shown in FIG. 3 on wheel 118b, wheel 118a may also include an inner barrel with teeth. The teeth on the inner barrel 66 are sized to correspond with teeth on a timing belt 70. A timing belt link 74 connects the outer sheath 34 to the timing belt 70. The housing may include a bushing 78, which may be a separate component or may be integral to the housing 14. The bushing may be formed of PEEK or other suitable material. The exemplary handle of FIG. 3 further includes at least one idler pulley 82 for tensioning and guiding the timing belt. Also shown in FIG. 3 idler pulley axles 86 corresponding to the idler pulleys 82 of the embodiment of FIG. 3. The exemplary delivery handle of FIG. 3 further includes a tensioner assembly 90, the tensioner assembly 90 including a torsion spring 94, a tensioner arm 98, a tensioner pulley 102, a tensioner arm axle 106 and a tensioner pulley axle 112. In the presently described embodiment, the timing belt has teeth on one side (outer diameter or periphery) of the belt and the inner diameter (inner surface) is smooth or substantially smooth or flat. The smooth or flat surface of the timing belt 70 contacts the idler pulleys 82 and the tensioner pulley 102.


In the exemplary embodiment of FIG. 3, the outer support shaft 38 is fixed to the handle housing 14, and both the inner core 42 and outer sheath 34 are contained within the inner diameter of the outer shaft 38. The inner core 42 will be bonded at the proximal end along with a metal (e.g., stainless steel) shaft 30 to a female luer 116, which is coupled to or clamped into the handle body 14. In an aspect of the present invention, the metal shaft 30 may be bonded to the outer diameter of the inner core 42 to provide support/rigidity at the proximal end where the inner core 42 is unsupported in the handle body 10. The support of the metal shaft 30 over the inner core 42 mitigates potential deformation/buckling of proximal unsupported inner core 42 during stent deployment. As the outer sheath 34 is pulled back to release/deploy the stent, the inner core 42 is put into compression, therefore the unsupported proximal end of the inner core could deform. The bonded metal shaft 30 provides support and column strength to unsupported proximal inner core 42. The metal shaft 30 may be sized such that is slides over the outer diameter of the inner core 42 and through the inner diameter of the outer sheath 34. The metal shaft 30 does not impact the inner diameter of the inner core 42, so a guidewire (not shown) can still pass through entire assembly. A material other than metal may be used to for the support shaft, and the invention described herein is not limited to metal for use in the support shaft 30.


The outer sheath 34 is coupled to or bonded to the timing belt link 74 to deliver the stent by retracting the outer sheath 34 by movement of the thumbwheel, which in turn engages the teeth of the timing belt 70 via the inner barrel 66 and the teeth on the inner barrel 66. The metal shaft 30 that is coupled to or bonded to the inner core 42/female luer 116 is a guide rail that the outer sheath 34 and timing belt link 74 move proximally over during deployment.



FIG. 4 is a cross-sectional view of an assembled handle according to principles described herein. The exemplary embodiment illustrated in FIG. 4 shows one part 114b of the two-part housing, where the respective two parts may be snap fit together for assembly. Other assembly methods may be used to mate the two parts together such as welding, bonding, gluing or other method. It is contemplated that each side of the two part housing is symmetrical and complementary, but such configuration is not required. The parts of the thumbwheel assembly 18 may be formed by molding, such as injection molding. The housing 14 may be unitary.



FIG. 4 illustrates one wheel of the thumbwheel assembly 18 that may comprise two wheels 118a and 118b, an axle 58, and a bearing 62. The bearing may include a ball bearing with an inner and outer grooved bearing race. The bearing serves to reduce rotational friction between the thumbwheel and the axle and may be eliminated if the frictional forces are acceptable. An acetal bushing or other method of friction reduction may be used in place of the bearing 62.


The wheels 118a and 118b may include teeth on an inner barrel 66 thereof. Although only one inner barrel is shown in FIG. 4 on wheel 118b, wheel 118a may also include an inner barrel with teeth. The teeth on the inner barrel 66 are sized to correspond with a timing belt 70. The inner barrel may be formed by molding, such as injection molding, and the teeth may be formed as part of the molding or other method such that the teeth are integral to the inner barrel 66. In another aspect, the teeth may be separable from the inner barrel 66.


As shown, the timing belt link 74 connects the outer sheath 34 to the timing belt 70. The exemplary handle of FIG. 4 further includes at least one idler pulley 82 for tensioning and guiding the timing belt 74. Also shown in FIG. 4 idler pulley axles 86 corresponding to the idler pulleys 82 of the embodiment of FIG. 4. The exemplary delivery handle of FIG. 4 further includes a tensioner assembly 90, the tensioner assembly 90 including a torsion spring 94, a tensioner arm 98, a tensioner pulley 102, a tensioner arm axle 106 and a tensioner pulley axle 112. In the exemplary embodiment of FIG. 4, the outer support shaft 38 is fixed to the handle housing 14, and both the inner core 42 and outer sheath 34 are contained within the inner diameter of the outer shaft 38. The inner core 42 will be bonded at the proximal end along with a metal (e.g., stainless steel) shaft 30 to a female luer 116, which is coupled to or clamped into the handle body 14.



FIG. 5 further illustrates motion of the thumbwheel 18, timing belt 70 and timing belt link 74 for deployment of a stent according to principles described herein. As illustrated in FIG. 5, outer sheath 34 is translated proximally over guide tube/inner core 42 by the timing belt 70 by rotating the thumbwheel in the direction of the arrow. The timing belt 70 is driven by an operator via dual thumbwheel assembly 18, which may comprise integrally molded gear teeth, the pitch and shape of which correspond to teeth of the timing belt 70 for synchronizing/engaging the timing belt and causing movement of the timing belt to cause movement of the timing belt link, which is coupled to the outer sheath 34 to cause movement thereof for unsheathing (deploying) a stent provided therein. The diameter of the inner barrel 66, number of teeth on timing belt 70, and the pitch/frequency of the teeth on the timing belt 70 may each be adjusted/modified to allow for variable mechanical advantage during stent deployment and variable translation ratio. In addition, variable speed delivery may also be achieved by actuating the thumbwheel assembly 18 at the desired speed.


In the embodiment illustrated in FIG. 5, rotation of the portion thumbwheel 18 external to the handle proximally (in the direction of the arrow) causes an upper portion of the portion of the timing belt adjacent the portion of the thumbwheel internal to the handle to move distally (in the direction of the arrow). The timing belt 70 extends around an idler pulley 82 such that a portion of the timing belt 70 adjacent the timing belt link 74 move proximally (in the direction of the arrow), engaging the timing belt link 74 to move the timing belt link 74 proximally, which moves the outer sheath 34 coupled thereto proximally, thereby unsheathing the stent for deployment. Movement may be reversed for re-sheathing of catheter following stent deployment.



FIGS. 6(a)-(c) are cross-sectional views of the delivery device according to principles described herein and illustrates motion of the timing belt link 74 and outer sheath 34 upon movement of the thumbwheel 18 counterclockwise in the context of FIGS. 6(a)-(c). It should be appreciated that the direction of thumbwheel rotation described herein is described in the context of the cross-section provide, but that it is contemplated that the portion of thumbwheel external to the handle 14 will be rotated rearward (in a proximal direction). It is also contemplated that the configuration of the timing belt 70 may be adjusted (for example, looped over the thumbwheel) to modify the direction of rotation of the thumbwheel corresponding to the proximal movement (retraction) of the outer sheath 34.


As shown in FIG. 6(a), in an introducing position, the timing belt link is at a distal end of the handle housing. As the thumbwheel 18 is actuated in a predetermined direction, e.g. in the context of the cross-section shown, counterclockwise, the timing belt link/shuttle 74 moves proximally. Because the timing belt link/shuttle 74 is coupled to the outer sheath 34, the outer sheath moves proximally with the timing belt link/shuttle to expose a stent or other medical device mounted on the inner core 42 (not shown). FIG. 6(b) illustrates the positioning of the timing belt link/shuttle in a partially deployed position (e.g. the stent is partially deployed (not shown)). As the thumbwheel 18 is further rotated in a timing belt link/shuttle 74 further translates proximally to allow for full deployment of the stent or medical devices from the of the inner core 42, as shown in FIG. 6(c). In the embodiment here described, the thumbwheel 18 is actuated such that the upper side (external portion) of the thumbwheel is rotated proximally to cause the timing belt link/shuttle 74 to transit proximally. It is appreciated that the configuration/path of the timing belt 70 may be configured such that a distal rotation of the upper side (external portion) of the thumbwheel 18 may cause the timing belt link/shuttle 74 to transit proximally to cause the outer sheath 34 to retract from the inner core 42 to allow deployment of the medical device (not shown).


Although not shown in the figures, the thumbwheel may be a single thumbwheel with appropriate teeth corresponding to the teeth of the timing belt. As illustrated in the top view of FIG. 7, a thumbwheel comprising two wheels allows for a balanced design in which the catheter may exit the handle at a central portion of the distal end of the handle. FIG. 7 shows an assembled handle 10 and housing 14, and a thumbwheel assembly 18 having a first thumbwheel 118a and a second thumbwheel 118b separated by inner barrel 66. This configuration facilitates operation of the delivery device by holding the handle from either the left or the right side, allowing for comparable operation regardless of whether the operator is left or right handed.



FIG. 8 illustrates a perspective view of the delivery device according to principles described herein, including the catheter device. As shown in FIG. 8, the timing belt 70 extends around idler pulleys 82 and the tensioner pulley 102 of tensioner 90. The tensioner pulley 102 is coupled to the torsion spring 94 via the tensioner arm 98. Tension is maintained on the timing belt by torsion spring 94 on tensioner arm axle 106, which urges the tensioner pulley 102 into contact with the timing belt 70 via the tensioner arm 98.



FIG. 9 is a cross-sectional line drawing showing detail of an exemplary embodiment of the thumbwheel assembly 18 and the timing belt link 74. As illustrated in FIG. 9, one part 118b of a two-part thumbwheel 18 has an outer surface 122 that may be textured for ease of use. The thumbwheel part 118b may also include an inner surface or rim 126. An inner barrel 66 extends from the thumbwheel part 118b and has a plurality of barrel teeth 130 thereon. The barrel teeth 130 on the inner barrel 66 are sized to correspond with a timing belt (not shown). Although not illustrated, the barrel teeth 130 may have a standard periodicity (pitch) or may have a variable periodicity (pitch) such that actuation of the thumbwheel assembly may cause movement of the timing belt (not shown) and thus translation of outer sheath 34 at a first rate when barrel teeth of a first periodicity engage the timing belt (not shown) and at a second rate when barrel teeth of a second periodicity engage the timing belt (not shown). Such variable rate may be imparted by having different spacing/periodicity/pitch of the teeth on the timing belt instead of or in addition to having different spacing/periodicity/pitch of the barrel teeth 130 on the inner barrel 66. FIG. 9 further illustrates the thumbwheel bearing 62 and the thumbwheel axle 58.


A safety locking feature (not shown) may be incorporated in the handle design such to mitigate inadvertent actuation of the handle during transit and storage. The safety locking feature may be a removal/disposal or toggle feature that engages the teeth on the inner barrel to lock it in place and prevent rotation. The safety locking feature may also be a feature that engages the timing belt link to prevent its translation.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.


While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the present invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but should be defined only in accordance with the following claims and their equivalents.

Claims
  • 1. A delivery device comprising: a catheter having three concentric shafts including an inner core, an outer sheath over the inner core and an outer support shaft;a flexible timing belt having a plurality of belt teeth on a surface of the flexible timing belt;a timing belt link directly coupled to the flexible timing belt and coupled to the outer sheath such that movement of the timing belt link causes movement of the outer sheath;a barrel having barrel teeth corresponding to belt teeth for directly engaging the belt teeth;a thumbwheel assembly having two thumbwheels, wherein at least a portion of the thumbwheel assembly is integral with the barrel such that rotation of the thumbwheel assembly causes movement of the barrel such that the barrel teeth directly engage the belt teeth to cause movement of the flexible timing belt and the timing belt link, causing movement of the outer sheath; anda belt tensioner comprising a torsion spring, a tensioner arm and a tensioner pulley,wherein the barrel is between the two thumbwheels and the flexible timing belt engages the barrel between the two thumbwheels; andwherein the barrel and the two thumbwheels are rotatable about a common axis.
  • 2. The delivery device of claim 1, further comprising a housing, wherein a portion of the thumbwheel assembly is external to the housing, wherein the barrel is internal to the housing and the flexible timing belt is internal to the housing.
  • 3. The delivery device of claim 1, wherein the belt teeth are on an outer surface of the flexible timing belt.
  • 4. The delivery device of claim 1, further comprising at least one pulley, the flexible timing belt extending around the pulley such that the direction of rotation of the thumbwheel assembly imparts a desired direction of translation of the outer sheath.
  • 5. The delivery device of claim 1, the belt tensioner further comprising a tensioner arm axle and tensioner pulley axle.
  • 6. The delivery device of claim 1, wherein the three concentric shafts comprise: the inner core sized to receive a medical device thereon;the outer sheath sized to receive the medical device in an unexpanded state on the inner core therein and to hold the medical device, the outer sheath translatable coaxially over the inner core; andthe outer support shaft at least partially extending over the inner core and the outer sheath.
  • 7. The delivery device of claim 1, wherein the inner core and the outer support shaft are fixed with respect to a proximal end of the delivery device.
  • 8. The delivery device of claim 1, further comprising a metal shaft at an outer diameter of the inner core.
  • 9. The delivery device of claim 8, wherein the metal shaft is bonded to the outer diameter of the inner core.
  • 10. The delivery device of claim 8, wherein the metal shaft comprises stainless steel.
  • 11. The delivery device of claim 1, wherein the thumbwheel assembly is rotatable in a forward direction and a reverse direction such that the outer sheath translates in first direction when the thumbwheel assembly is rotated in the forward direction and the outer sheath translates in a second direction when the thumbwheel assembly is rotated in the reverse direction.
  • 12. A system for delivery of an intraluminal stent, comprising: a delivery device comprising: a catheter having three concentric shafts including: an inner core having the intraluminal stent thereon;an outer sheath over the intraluminal stent in an unexpanded state on the inner core therein, the outer sheath holding the intraluminal stent in an unexpanded state, the outer sheath translatable coaxially over the inner core and the intraluminal stent; andan outer support shaft at least partially extending over the inner core and the outer sheath;a flexible timing belt having a plurality of belt teeth on a surface of the flexible timing belt;a timing belt link directly coupled to the flexible timing belt and coupled to the outer sheath such that movement of the timing belt link causes movement of the outer sheath to expose the intraluminal stent;a barrel having barrel teeth corresponding to belt teeth;a thumbwheel assembly having two thumbwheels, wherein at least a portion of the thumbwheel assembly is integral with the barrel such that rotation of the thumbwheel assembly causes movement of the barrel such that the barrel teeth directly engage the belt teeth to cause movement of the flexible timing belt and the timing belt link, causing movement of the outer sheath; anda belt tensioner comprising a torsion spring, a tensioner arm and a tensioner pulley,wherein the barrel is between the two thumbwheels and the flexible timing belt engages the barrel between the two thumbwheels; andwherein the barrel and the two thumbwheels are rotatable about a common axis.
  • 13. The delivery device of claim 12, further comprising a housing, wherein a portion of the thumbwheel assembly is external to the housing, wherein the barrel is internal to the housing and the flexible timing belt is internal to the housing.
  • 14. The delivery device of claim 12, wherein the belt teeth are on an outer surface of the flexible timing belt.
  • 15. The delivery device of claim 12, further comprising at least one pulley, the flexible timing belt extending around the pulley such that the direction of rotation of the thumbwheel assembly imparts a desired direction of translation of the outer sheath.
  • 16. The delivery device of claim 12, the belt tensioner further comprising a tensioner arm axle and tensioner pulley axle.
  • 17. The delivery device of claim 12, further comprising a metal shaft at an outer diameter of the inner core.
  • 18. The delivery device of claim 17, wherein the metal shaft is bonded to the outer diameter of the inner core.
  • 19. The delivery device of claim 17, wherein the metal shaft comprises stainless steel.
  • 20. The delivery device of claim 17, wherein the thumbwheel assembly is rotatable in a forward direction and a reverse direction such that the outer sheath translates in first direction when the thumbwheel assembly is rotated in the forward direction and the outer sheath translates in a second direction when the thumbwheel assembly is rotated in the reverse direction.
  • 21. The delivery device of claim 12, wherein the outer support shaft and the inner core are fixed with respect to a proximal end of the delivery device.
  • 22. A method of delivering a medical device to a body using a delivery device comprising a catheter having three concentric shafts including an inner core, an outer sheath over the inner core and an outer support shaft; a flexible timing belt having a plurality of belt teeth on a surface of the flexible timing belt; a timing belt link coupled to the outer sheath such that movement of the timing belt link causes movement of the outer sheath; a barrel having barrel teeth corresponding to belt teeth; a belt tensioner comprising a torsion spring, a tensioner arm and a tensioner pulley; a thumbwheel assembly having two thumbwheels, wherein at least a portion of the thumbwheel assembly is integral with the barrel such that rotation of the thumbwheel assembly causes movement of the barrel such that the barrel teeth engage the belt teeth to cause movement of the flexible timing belt and the timing belt link, causing movement of the outer sheath; and a medical device over an outer diameter of the inner core wherein the barrel is between the two thumbwheels and the flexible timing belt engages the barrel between the two thumbwheels and wherein the barrel and the two thumbwheels are rotatable about a common axis; the method comprising: rotating the thumbwheel assembly in a predetermined direction to cause the flexible timing belt to move in direction associated with the predetermined direction of thumbwheel assembly rotation to cause the timing belt link to move the outer sheath in a desired direction; anddeploying the medical device from a distal end of the inner core to the body as the outer sheath moves in the desired direction.
  • 23. The method of claim 22, wherein the three concentric shafts comprise: the inner core sized to receive a medical device thereon;the outer sheath sized to receive the medical device in an unexpanded state on the inner core therein and to hold the medical device, the outer sheath translatable coaxially over the inner core; andthe outer support shaft at least partially extending over the inner core and the outer sheath.
  • 24. The method of claim 22, wherein the inner core and the outer support shaft are fixed with respect to a proximal end of the delivery device.
  • 25. The method of claim 22, further comprising a metal shaft at an outer diameter of the inner core.
  • 26. The method of claim 25, wherein the metal shaft is bonded to the outer diameter of the inner core.
  • 27. The method of claim 25, wherein the metal shaft comprises stainless steel.
  • 28. The method of claim 25, wherein the thumbwheel assembly is rotatable in a forward direction and a reverse direction such that the outer sheath translates in first direction when the thumbwheel assembly is rotated in the forward direction and the outer sheath translates in a second direction when the thumbwheel assembly is rotated in the reverse direction.
US Referenced Citations (310)
Number Name Date Kind
4665918 Garza et al. May 1987 A
5415664 Pinchuk May 1995 A
5417708 Hall et al. May 1995 A
5433723 Lindenberg et al. Jul 1995 A
5443477 Marin et al. Aug 1995 A
5458615 Klemm et al. Oct 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5501654 Failla et al. Mar 1996 A
5507768 Lau et al. Apr 1996 A
5571168 Toro Nov 1996 A
5695499 Helgerson et al. Dec 1997 A
5725534 Rasmussen et al. Mar 1998 A
5759186 Bachmann et al. Jun 1998 A
5788707 Del Toro et al. Aug 1998 A
5800517 Anderson et al. Sep 1998 A
5860998 Robinson et al. Jan 1999 A
5906619 Olson et al. May 1999 A
5944727 Ahari et al. Aug 1999 A
6019778 Wilson et al. Feb 2000 A
6113608 Monroe et al. Sep 2000 A
6117140 Munsinger Sep 2000 A
6165166 Samuelson et al. Dec 2000 A
6203550 Olson Mar 2001 B1
6241758 Cox et al. Jun 2001 B1
6299635 Frantzen Oct 2001 B1
6302893 Limon et al. Oct 2001 B1
6402760 Fedida Jun 2002 B1
6599296 Gillick et al. Jul 2003 B1
6613075 Healy et al. Sep 2003 B1
6620550 Christian et al. Sep 2003 B2
6669716 Gilson et al. Dec 2003 B1
6702846 Mikus et al. Mar 2004 B2
6755854 Gillick et al. Jun 2004 B2
6866669 Buzzard et al. Mar 2005 B2
6911039 Shiu et al. Jun 2005 B2
6939352 Buzzard et al. Sep 2005 B2
7033368 Rourke Apr 2006 B2
7052511 Weldon et al. May 2006 B2
7105016 Shiu et al. Sep 2006 B2
7182779 Acosta et al. Feb 2007 B2
7278998 Gaschino et al. Oct 2007 B2
7300456 Andreas et al. Nov 2007 B2
7309350 Landreville et al. Dec 2007 B2
7326236 Andreas et al. Feb 2008 B2
7381216 Buzzard et al. Jun 2008 B2
D576725 Shumer et al. Sep 2008 S
7419501 Chiu et al. Sep 2008 B2
D578216 Dorn et al. Oct 2008 S
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7476244 Buzzard et al. Jan 2009 B2
7550001 Dorn et al. Jun 2009 B2
7553322 Dorn et al. Jun 2009 B2
7553324 Andreas et al. Jun 2009 B2
7660621 Skakoon et al. Feb 2010 B2
7674282 Wu et al. Mar 2010 B2
7758625 Wu et al. Jul 2010 B2
7780716 Pappas et al. Aug 2010 B2
7794489 Shumer et al. Sep 2010 B2
7799065 Pappas et al. Sep 2010 B2
7815669 Matsuoka et al. Oct 2010 B2
7819882 Rourke Oct 2010 B2
7892274 Will et al. Feb 2011 B2
7935141 Randall et al. May 2011 B2
7963987 Melsheimer et al. Jun 2011 B2
7967829 Gunderson et al. Jun 2011 B2
7976574 Papp Jul 2011 B2
7993384 Wu et al. Aug 2011 B2
8016870 Chew Sep 2011 B2
8062344 Dorn et al. Nov 2011 B2
8075607 Melsheimer Dec 2011 B2
8092468 Hansen Jan 2012 B2
8157851 Andreas Apr 2012 B2
8177831 Andreas May 2012 B2
8216296 Wu et al. Jul 2012 B2
8382813 Shumer Feb 2013 B2
D678512 Bow Mar 2013 S
8416636 Carman et al. Apr 2013 B2
8419784 Matsuoka et al. Apr 2013 B2
8486128 Jen et al. Jul 2013 B2
8500789 Wueebbeling et al. Aug 2013 B2
8500792 Berra Aug 2013 B2
8585747 Andreas et al. Nov 2013 B2
8778006 Fargahi et al. Jul 2014 B2
8784468 Gerdts et al. Jul 2014 B2
8808346 Jimenez, Jr. et al. Aug 2014 B2
8828072 Hoffman et al. Sep 2014 B2
8852266 Brooks et al. Oct 2014 B2
8864811 Kao Oct 2014 B2
8888834 Hansen et al. Nov 2014 B2
8911487 Bennett et al. Dec 2014 B2
8951297 Kawakita Feb 2015 B2
8956398 George et al. Feb 2015 B2
8986362 Snow et al. Mar 2015 B2
8986363 McHugo et al. Mar 2015 B2
9039750 Ryan et al. May 2015 B2
9138315 Straubinger et al. Sep 2015 B2
9149379 Keady et al. Oct 2015 B2
9301864 Kao Apr 2016 B2
9314360 Kao Apr 2016 B2
9320591 Bolduc Apr 2016 B2
9408736 Loewen Aug 2016 B2
9421115 Wübbeling et al. Aug 2016 B2
9445928 Argentine Sep 2016 B2
9539130 Farag et al. Jan 2017 B2
D779053 Kobida et al. Feb 2017 S
9566179 Andreas et al. Feb 2017 B2
9622894 McGee Apr 2017 B2
D786429 Cummins et al. May 2017 S
9662236 Masubuchi May 2017 B2
9675486 Jimenez, Jr. et al. Jun 2017 B2
D795425 Cummins Aug 2017 S
9744021 Bolduc Aug 2017 B2
9765858 Kelly Sep 2017 B2
9849016 Beard et al. Dec 2017 B2
9872785 Dorn et al. Jan 2018 B2
9878127 Damm et al. Jan 2018 B2
9901468 Harada Feb 2018 B2
9913741 Melsheimer et al. Mar 2018 B2
9918835 Guyenot et al. Mar 2018 B2
9974677 Costello May 2018 B2
9974678 Cummins May 2018 B2
10016292 Senness et al. Jul 2018 B2
20010004696 Roberts et al. Jun 2001 A1
20010012944 Bicek et al. Aug 2001 A1
20010027323 Sullivan et al. Oct 2001 A1
20010047150 Chobotov Nov 2001 A1
20020007138 Wilk et al. Jan 2002 A1
20020007206 Bui et al. Jan 2002 A1
20020029075 Leonhardt Mar 2002 A1
20020065545 Leonhardt May 2002 A1
20020128707 Kavteladze Sep 2002 A1
20020151953 Chobotov et al. Oct 2002 A1
20030009174 Smith Jan 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040789 Colgan et al. Feb 2003 A1
20030045893 Ginn Mar 2003 A1
20030050686 Raeder-Devens et al. Mar 2003 A1
20030074045 Buzzard et al. Apr 2003 A1
20030120331 Chobotov et al. Jun 2003 A1
20030149469 Wolinsky et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153941 Rourke Aug 2003 A1
20030167087 Piplani et al. Sep 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20040006380 Buck Jan 2004 A1
20040093056 Johnson et al. May 2004 A1
20040106977 Sullivan et al. Jun 2004 A1
20040153137 Gaschino et al. Aug 2004 A1
20040167619 Case et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040193243 Mangiardi et al. Sep 2004 A1
20040199240 Dorn Oct 2004 A1
20040210188 Glines et al. Oct 2004 A1
20050027345 Horan et al. Feb 2005 A1
20050033403 Ward et al. Feb 2005 A1
20050038493 Feeser Feb 2005 A1
20050060016 Wu et al. Mar 2005 A1
20050080476 Gunderson et al. Apr 2005 A1
20050090887 Pryor Apr 2005 A1
20050090890 Wu Apr 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050149159 Andreas et al. Jul 2005 A1
20050149160 McFerran Jul 2005 A1
20050182475 Jen et al. Aug 2005 A1
20050232961 Lowe et al. Oct 2005 A1
20050256562 Clerc Nov 2005 A1
20050273151 Fulkerson Dec 2005 A1
20050288763 Andreas et al. Dec 2005 A1
20060009833 Chobotov et al. Jan 2006 A1
20060020321 Parker Jan 2006 A1
20060142833 Von Oepen et al. Jun 2006 A1
20060212105 Dorn et al. Sep 2006 A1
20060229711 Yan et al. Oct 2006 A1
20060247661 Richards et al. Nov 2006 A1
20060259124 Matsuoka et al. Nov 2006 A1
20060286145 Horan et al. Dec 2006 A1
20070055340 Pryor Mar 2007 A1
20070060999 Randall et al. Mar 2007 A1
20070088421 Loewen Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070118079 Moberg et al. May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070156224 Cioanta et al. Jul 2007 A1
20070162127 Peterman et al. Jul 2007 A1
20070168014 Jimenez et al. Jul 2007 A1
20070185558 Hartley Aug 2007 A1
20070191925 Dorn Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070219617 Saint Sep 2007 A1
20080082154 Tseng et al. Apr 2008 A1
20080154293 Taylor Jun 2008 A1
20080188920 Moberg et al. Aug 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20090005760 Cartledge et al. Jan 2009 A1
20090024133 Keady et al. Jan 2009 A1
20090024137 Chuter et al. Jan 2009 A1
20090171428 Hansen Jul 2009 A1
20090177264 Ravenscroft Jul 2009 A1
20090210046 Shumer et al. Aug 2009 A1
20090216310 Straubinger et al. Aug 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090312831 Dorn Dec 2009 A1
20100004606 Hansen Jan 2010 A1
20100004730 Benjamin et al. Jan 2010 A1
20100036472 Papp Feb 2010 A1
20100076541 Kumoyama Mar 2010 A1
20100125280 Molloy May 2010 A1
20100137967 Atlani et al. Jun 2010 A1
20100168756 Dorn et al. Jul 2010 A1
20100168834 Ryan et al. Jul 2010 A1
20100174290 Wueebbeling et al. Jul 2010 A1
20100292779 Straubinger et al. Nov 2010 A1
20110056064 Malewicz et al. Mar 2011 A1
20110190862 Bashiri et al. Aug 2011 A1
20110190865 McHugo et al. Aug 2011 A1
20110288626 Straubinger et al. Nov 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120022631 Costello Jan 2012 A1
20120022632 Hoffman et al. Jan 2012 A1
20120022635 Yamashita Jan 2012 A1
20120029607 McHugo et al. Feb 2012 A1
20120041450 Awtar et al. Feb 2012 A1
20120053671 McHugo et al. Mar 2012 A1
20120116493 Harada May 2012 A1
20120123516 Gerdts et al. May 2012 A1
20120158117 Ryan Jun 2012 A1
20120209175 Moelgaard-Nielsen Aug 2012 A1
20120209366 Sudo et al. Aug 2012 A1
20120226341 Schreck et al. Sep 2012 A1
20120265288 Jones et al. Oct 2012 A1
20120310321 Beach et al. Dec 2012 A1
20120330401 Sugimoto et al. Dec 2012 A1
20130013057 Salahieh et al. Jan 2013 A1
20130018451 Grabowski Jan 2013 A1
20130079864 Boden et al. Mar 2013 A1
20130085562 Rincon et al. Apr 2013 A1
20130103130 Lubinski et al. Apr 2013 A1
20130184805 Sawada Jul 2013 A1
20130211493 Wubbeling et al. Aug 2013 A1
20130268048 Watson et al. Oct 2013 A1
20130268049 Munsinger et al. Oct 2013 A1
20130304189 Shimoyama Nov 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140025155 Masubuchi Jan 2014 A1
20140081252 Bowe et al. Mar 2014 A1
20140107673 Snyder et al. Apr 2014 A1
20140121674 Staunton May 2014 A1
20140121755 Farag et al. May 2014 A1
20140180380 Kelly Jun 2014 A1
20140257454 McGee Sep 2014 A1
20140257459 Masakazu Sep 2014 A1
20140276682 Hendrick et al. Sep 2014 A1
20140277037 Grace et al. Sep 2014 A1
20140277321 Grace Sep 2014 A1
20140277349 Vad Sep 2014 A1
20140343601 Abbott et al. Nov 2014 A1
20140343660 Shimoyama Nov 2014 A1
20150025615 Brooks et al. Jan 2015 A1
20150051688 Cummins Feb 2015 A1
20150057739 Costello Feb 2015 A1
20150057741 Ryan Feb 2015 A1
20150065280 Kelly Mar 2015 A1
20150094794 Cummins et al. Apr 2015 A1
20150105796 Grace Apr 2015 A1
20150119800 Neoh et al. Apr 2015 A1
20150127092 Straubinger et al. May 2015 A1
20150148894 Damm et al. May 2015 A1
20150230954 McHugo Aug 2015 A1
20150238315 Rabito et al. Aug 2015 A1
20150238730 Corman et al. Aug 2015 A1
20150250631 Cummins et al. Sep 2015 A1
20150265445 Weber et al. Sep 2015 A1
20150282881 Beard et al. Oct 2015 A1
20150297378 Senness et al. Oct 2015 A1
20150335333 Jones et al. Nov 2015 A1
20150343121 Kobida et al. Dec 2015 A1
20160074184 Cummins et al. Mar 2016 A1
20160074189 Cummins Mar 2016 A1
20160123441 Gillick et al. May 2016 A1
20160135972 Vad et al. May 2016 A1
20160135975 Shimoyama May 2016 A1
20160158010 Lim et al. Jun 2016 A1
20160158049 Dooley Jun 2016 A1
20160213465 Girard et al. Jul 2016 A1
20160235568 Green Aug 2016 A1
20160262883 Sandstrom Sep 2016 A1
20160303734 Bowles et al. Oct 2016 A1
20170035590 Watson et al. Feb 2017 A1
20170348100 Lane et al. Feb 2017 A1
20170056156 Ryan Mar 2017 A1
20170095236 Sharma et al. Apr 2017 A1
20170095330 Malewicz et al. Apr 2017 A1
20170095922 Licht et al. Apr 2017 A1
20170172773 Gong et al. Jun 2017 A1
20170216063 Bessho Aug 2017 A1
20170348087 Chobotov et al. Dec 2017 A1
20180021132 Ottma et al. Jan 2018 A1
20180080533 Awtar Mar 2018 A1
20180098849 Yellin et al. Apr 2018 A1
20180133006 Jones et al. May 2018 A1
20180133007 Prabhu May 2018 A1
20180147076 Cummins et al. May 2018 A1
20180153693 Copeland et al. Jun 2018 A1
20180153694 Wilson et al. Jun 2018 A1
20180206976 Cartledge et al. Jul 2018 A1
Foreign Referenced Citations (11)
Number Date Country
29717110 Nov 1997 DE
19819634 Nov 1999 DE
102013015896 Mar 2015 DE
3354237 Aug 2018 EP
2008132027 Jun 2008 JP
2012187177 Oct 2012 JP
101685325 Dec 2016 KR
2008034793 Mar 2008 WO
2008124844 Oct 2008 WO
2017052414 Mar 2017 WO
2018107123 Jun 2018 WO
Non-Patent Literature Citations (2)
Entry
U.S. Appl. No. 16/134,287, Non-Final Office Action dated Apr. 5, 2019.
International Search Report and Written Opinion issued in Application No. PCT/US2019/03437, dated Aug. 19, 2019.