1. Field of the Invention
This invention relates generally to molding methods and apparatus, and more particularly to a method and apparatus for molding deep draw components.
2. Description of the Background Art
Several different types of molding processes are known. These methods include injection molding and compression molding. Each of these processes has its own advantages and disadvantages and has, therefore, been used predominantly in particular fields and for particular parts based on the respective advantages and disadvantages of each process. Compression molding is a method of molding where the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed, and pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured.
Compression molding is one of the lowest cost molding methods as compared, for example, to injection molding. However, compression molding often provides poor product consistency and difficulty in controlling flashing. Therefore, compression molding is generally considered to not be suitable for some types of components, for example deep-draw components.
Injection molding is a process for producing components from thermoplastic materials. Material is fed into a heated barrel, mixed, and forced into a mold cavity where it cools and hardens to the shape of the mold cavity. Injection molding is widely used for manufacturing a variety of components, including deep-draw components.
Conventional injection molding has hit a capacity threshold. Higher process speeds are nearing their theoretical limit due to cavitation and cycle times. Faster machines and higher cavitation tooling have negligible room to grow in order to meet future demands and further reduction of price per piece. In order to achieve higher outputs, faster molding machines, higher injection velocities, and increased tooling cavitation have been used. For example, 128 cavity stack molds have been used. These improvements have almost reached their physical limits, so only very small improvements in yield can be achieved with greater costs and risks. Therefore, such improvements are generally considered to be cost ineffective. Furthermore, high cavitation tooling is geometrically expensive to produce, requiring tighter tolerances for the tool stacks as the cavitation increases. Higher cavitation tooling also requires a significantly higher level of maintenance, and loss of cavitation changes the processing parameters. Higher injection velocities create significant shear heat which can and will create burning of the material upon injection. In addition, high speed injection molding machines require significantly greater power to operate and highly skilled technicians to operate and maintain the molding machines and associated auxiliary equipment.
What is needed, therefore, is a molding system/process that can efficiently produce deep-draw components. What is also needed is a molding system/process that significantly increases the output rate of deep-draw components compared to conventional processes. What is also needed is a molding system/process that requires lower maintenance and less expensive molds, and that produces higher quality, deep-draw components.
The present invention overcomes the problems associated with the prior art by providing a high speed, low compression thermoplastic molding system and method. The invention facilitates compression molding of deep-draw components.
An example molding apparatus includes a plurality of deep-draw compression molds. Each of the molds includes a mold cavity and an associated mold core. A rotating support structure operatively supports the mold cavities and the mold cores relative to each other, and the molds open and close as they travel around a closed path defined by the support structure. A mold material discharge mechanism sequentially deposits a predetermined amount of mold material in each of the molds as the molds pass a first predetermined position along the closed path. A heat source is coupled to heat the molds as the molds travel between the first predetermined position and a second predetermined position along the closed path. A mold closing mechanism is disposed to close the heated molds, compressing the mold material between the mold cavities and the mold cores to form a deep draw component, as the molds travel between the second predetermined position and a third predetermined position along the closed path. A coolant source is coupled to cool the molds as the molds travel between the third predetermined position and a fourth predetermined position along the closed path. A mold opening mechanism is disposed to open the cooled molds as the molds travel between the fourth predetermined position and a fifth predetermined position along the closed path. An ejector is disposed to eject the deep draw components from the molds as the molds pass a sixth predetermined position along the closed path.
The molding apparatus can produce a wide range of deep-draw components. In one embodiment, the deep-draw compression molds have a depth to diameter ratio of greater than one. The deep-draw compression molds can have a depth to diameter ratio of greater than ten.
The heat source super-heats the compression molds. In one embodiment, the heat source conducts super-heated water. In an alternate embodiment, the heat source conducts steam. The molds are heated to temperatures exceeding 212 degrees Fahrenheit.
In an example embodiment, the deep-draw compression molds are designed to mold syringe barrels. The deep-draw compression molds for syringe barrels and other deep-draw components are symmetrical about an axis passing through said mold.
An example deep-draw molding method is also disclosed. The example method includes providing a plurality of deep-draw molds, arranging the molds on a support structure, causing the molds to repeatedly traverse a closed path, depositing a predetermined amount of mold material in each of the molds as the molds pass a first predetermined position along the closed path, heating the molds as the molds travel between the first predetermined position and a second predetermined position along the closed path, compressing the mold material in the molds to form a deep draw component as the molds travel between the second predetermined position and a third predetermined position along the closed path, cooling the molds as the molds travel between the third predetermined position and a fourth predetermined position along the closed path, opening the cooled molds as the molds travel between the fourth predetermined position and a fifth predetermined position along the closed path, and ejecting the deep draw components from the molds as the molds travel between the fifth predetermined position and the first predetermined position along the closed path. The step of compressing the mold material in the molds to form deep draw components includes forming a deep draw component having a depth to diameter ratio of greater than one. In some methods, the step of compressing the mold material in the molds to form deep draw components includes forming deep draw components having a depth to diameter ratio of greater than ten.
In one example method, the step of heating the molds includes heating the molds with super-heated water. Alternatively, the step of heating the molds includes heating the molds with steam. The step of heating the molds includes heating the molds to a temperature exceeding 212 degrees Fahrenheit.
In the example method, the step of compressing the mold material in the molds to form a deep draw component includes forming syringe barrels. In addition to syringe barrels, the step of compressing the mold material in the molds to form a deep draw component can include forming other components that are symmetrical about an axis passing through the components.
Means for super-heating the molds as the molds travel between positions along the closed path are disclosed. Means for cooling the molds as the molds travel between positions along the closed path are also disclosed;
The present invention is described with reference to the following drawings, wherein like reference numbers denote substantially similar elements:
The present invention overcomes the problems associated with the prior art, by providing a high-speed rotary compression molding method and apparatus. The method and apparatus facilitate compression molding of deep-draw components such as syringe barrels by super- heating the compression molds using, for example, steam or super-heated water. In the following description, numerous specific details are set forth (e.g., number of molds, shape of path of mold travel, etc.) in order to provide a thorough understanding of the invention. Those skilled in the art will recognize, however, that the invention may be practiced apart from these specific details. In other instances, details of well known compression molding practices (e.g., plumbing and wiring details of machine, specific molding materials, etc.) and components (e.g., plumbing and wiring details of machines, etc.) have been omitted, so as not to unnecessarily obscure the present invention.
Molding machine 100 includes a plurality (32 in this particular example) of deep-draw compression molds 102, which are supported by a rotating support structure 103. In this embodiment, support structure 103 is circular, so that the molds repeatedly traverse a circular path during the operation of molding machine 100. However, neither the shape of the path, nor the number of molds, is essential to the practice of the invention.
Indeed, the path and the number of molds can be modified to provide more heating and/or cooling time, as might be required for a particular molding process. Extending the path by adding additional molds will increase the time allowed for each molded component to be heated or cooled, but will not adversely affect the overall production rate, because the molds are continuously (one at a time) filled and emptied.
Molding machine 100 further includes a mold material (e.g., thermoplastic) discharge mechanism 104 that sequentially deposits a predetermined amount of mold material 106 into each compression mold 102, as each mold 102 passes between a first position 108 and a second position 110 along the mold's path of travel.
As a particular mold 102 travels between second position 110 and a third position 112, mold 102 is super-heated and closed, and as mold 102 passes between third position 112 and a fourth position 114 the mold compresses the molding material to form a deep-draw component. Between fourth position 114 and a fifth position 116, the mold 102 is actively and rapidly cooled. Then, between fifth position 116 and a sixth position 118, mold 102 is opened.
Molding machine 100 further includes an ejector 120 that removes the molded deep-draw components 126 from molds 102, as molds 102 pass between sixth position 118 and first position 108, where mold 102 begins the next cycle of operation. A transfer mechanism 122 receives deep-draw components 126 from ejector 120 and transfers the components 126 to a conveyor system 124, which transports the finished deep-draw components 126 away from molding machine 100.
Superheating molds 102 significantly reduces the viscosity of the molding material 106 and facilitates the compression molding of deep-draw components, even deep-draw components having thin walls. Deep-draw components have a depth-to-diameter ratio of greater than one, and components having a depth-to-diameter ratio of greater than ten can be molded using the process. Although the present inventive method is not limited to deep-draw components having a circular cross section, particularly good results are achieved when the deep draw component is symmetrical about a longitudinal axis passing through the component. Nevertheless, deep-draw components having elliptical, polygonal, and even irregular cross-sections can be successfully molded using the present invention.
In general, superheating is considered to be heating to temperatures exceeding the normal boiling point of water (212 degrees Fahrenheit). Superheating of molds 102 can be accomplished using steam, superheated water, or any other suitable thermal regulating fluid. The thermal regulating fluid (e.g., steam) is conducted through fluid passages (not shown) formed in the molds 102. Known molds already include fluid passages for heating and cooling fluids of more moderate temperatures. Therefore, these existing fluid passages can be used to superheat the molds, with little or no modification.
The description of particular embodiments of the present invention is now complete. Many of the described features may be substituted, altered or omitted without departing from the scope of the invention. For example, alternate heaters (e.g., resistive electrical heaters), may be substituted for the thermal regulating fluid used to superheat molds 102. As another example, a greater number of molds and a longer process path can be employed to allow greater cooling time. These and other deviations from the particular embodiments shown will be apparent to those skilled in the art, particularly in view of the foregoing disclosure.
This application claims the benefit of priority to copending U.S. Provisional Patent App. No. 61/254,600 filed Oct. 23, 2009 by the same inventor, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61254600 | Oct 2009 | US |