1. Field of the Invention
The present invention relates to a rotary impact tool such as an impact wrench or an impact driver used for fastening or loosening of fastening member such as a screw, a bolt or a nut.
2. Description of the Related Art
A rotary impact tool which can stop the driving of the motor automatically when a fastening torque reaches to a predetermined value is conventionally provided. In the actual fastening work, there, however, are many cases that the fastening torque of the fastening member is insufficient for preventing the over fastening. For preventing occurrence of the insufficient fastening torque, Japanese Laid-Open Patent Publication No. 2001-129767 shows a rotary impact tool which can fasten the fastening member a little more further to stop the fastening of the fastening member in normal fastening torque (it is called tight fastening mode).
In such a conventional rotary impact tool, when the user holds a main switch on after stopping to motor when a controller judges that the fastening torque reaches to a predetermined torque, the controller restarts the driving of the motor so as to apply a predetermined number of impact blows of a hammer, so that the tight fastening can be performed. In tight fastening mode, the impact energy is generally made smaller, so that it is possible to prevent the over fastening.
In such a conventional rotary impact tool with the tight fastening mode, the tight fastening mode cannot be transitive when the switching on state of the main switch after stopping the driving of the motor is maintained. Thus, if the user judges that the fastening of the fastening member is completed due to stop of the driving of the motor, the tight fastening bode cannot be transitive.
A purpose of the present invention is to provide a rotary impact tool, which has a tight fastening mode and the tight fastening mode can be transitive properly.
A rotary impact tool in accordance with an aspect of the present invention comprises: a rotary driving mechanism including a motor for rotating a driving shaft; a hammer engaged with the driving shaft; an output shaft to which a driving force is applied by impact blow of the hammer; a main switch operated by a user for controlling fastening operation; and a controller for controlling on and off of the motor, and having a normal fastening mode and a tight fastening mode.
The rotary impact tool further comprises a term sensor for sensing terms of switching on and off of the main switch is further comprised. The term sensor senses a term between a time when the main switch is switched off and a time when the main switch is switched on next, and the controller gives transition to the tight fastening mode corresponding to the term sensed by the term sensor.
By such a configuration, when a user switches on the main switch in a predetermined term after completing a normal fastening operation in the normal operation mode, it is possible to give transition to the tight fastening mode so as to perform a tight fastening operation. Thus, even when it is found that the fastening of a fastening member such as a screw, a bolt or a nut is insufficient after judging that the fastening operation has been completed, it is possible further to fasten the fastening member with a predetermined fastening torque. Thus, the tight fastening operation can be performed preferably. Furthermore, a wood screw or a tapping screw can be fastened completely with using the tight fastening mode.
A rotary impact tool in accordance with an embodiment of the present invention is described. A block configuration of the rotary impact tool is shown in
When no load is applied to the output shaft 31, the hammer 40 and the output shaft 31 are integrally rotated by the driving force of the motor 3. When a load equal to or larger than a predetermined value is applied to the output shaft 31, the hammer moves backward against the pressing force of the spring 37. When the engagement of the hammer 40 with the anvil of the output shaft 31 is released, the hammer 40 moves forward with rotation and applies impact blow in the rotation direction to the anvil of the output shaft 31, so that the output shaft 31 can be rotated.
As for the impact sensor 6, not only a device such as a microphone or an acceleration sensor which can directly sense the occurrence of the impact blow can be used, but also an encoder for sensing the rotation of the motor can be used, since the rotation speed of the motor varies at a moment of the impact blow.
The fastening time sensor 9 is connected in parallel with the main switch 2 so as to measure on time and off time of the main switch 2.
As for the normal fastening term setting switch 7 and the tight fastening term setting switch 8, a type of a rotary switch shown in
The normal fastening term setting switch 7 is used for setting or changing a term T2, for example, shown in
In such a rotary impact tool, when the fastening operation of a fastening member such as a screw, a bolt or a nut, the motor 3 is driven for staring impact blows of the hammer 40 according to the switch on of the main switch 2, as shown in, for example,
When the actual fastening term T1 is shorter than the normal fastening term T2, as shown in
When the controller 5 judges that the normal fastening operation a has been completed, a term T3 between the above-mentioned switching off of the main switch 2 to switching on of the main switch 2 next time is measured. When the term T3 is shorter than the above-mentioned term T4, the controller 5 judges that the user wishes to perform the tight fastening operation, and it drives the motor 3 in the tight fastening mode. In the tight fastening mode, it is possible that the impact operation of the hammer can be limited due to the limitation of the number of impact blows of the hammer 40, a term for supplying driving current to the motor 3, and the rotation speed of the motor 3. Furthermore, the limitation of the number of impact blows of the hammer 40, a term for supplying driving current to the motor 3, and the rotation speed of the motor 3 can be limited independently or combination of at least two of them. By the way, the limitation of the rotation speed of the motor 3 is controlled by PWM (Pulse Width Modulation) control for intermittently switching on and off the switching device 4 used for supplying the driving current to the motor 3. By limiting the rotation speed of the shaft of the motor 3, the impact force of the hammer 40 can be controlled.
The control of the tight fastening operation due to the number of impact blows of the hammer 40 can be performed with sensing the occurrence of the impact blow of the hammer 40 by the impact sensor 6. The control of the tight fastening operation due to the term of the fastening operation can be performed with the measurement of the term by the fastening term sensing circuit 9.
When the tight fastening operation β in the tight fastening mode is performed to stop the driving of the motor 3 due to the quantity of energy due to the impact blows of the hammer 40, it is possible alternative to fix the quantity of the impact blows of the hammer 40 or to vary the quantity of energy due to the impact blows of the hammer 40 corresponding to a length of the normal fastening term T2 or the total number of impact blows of the hammer 40 while the normal fastening operation. It is because, when the normal fastening term T2 becomes longer, the quantity of energy due to the impact blows of the hammer 40 becomes larger just before the completion of the fastening operation of the fastening member.
When the number of the impact blows of the hammer 40 is varied corresponding to the normal fastening term T2 in the tight fastening mode, it is amended that the impact number is two when the normal fastening term T2 is in a range of 0.5 to 1.0 sec, the impact number is three when the normal fastening term T2 is in a range of 1.0 to 1.5 sec, the impact number is four when the normal fastening term T2 is in a range of 1.5 to 2.0 sec, and the impact number is ten when the normal fastening term T2 is equal to or larger than 5.0 sec. When the number of the impact blows of the hammer 40 is varied corresponding to the total number of the impact blows of the hammer 40, it is amended that the impact number is two when the total number of the impact blows of the hammer 40 is less than five, the impact number is three when the total number of the impact blows of the hammer 40 is in a range of six to ten, the impact number is four when the total number of the impact blows of the hammer 40 is in a range of eleven to twenty, and the impact number is ten when the total number of the impact blows of the hammer 40 is equal to or larger than fifty.
In addition, when the term T3 is longer than the term T4, the controller 5 starts to drive the motor 3 in the normal fastening mode, without given transition to the tight fastening mode.
It is possible that the term T1 can be measured from the start of the impact blow of the hammer 40, instead of the term of switching on state of the main switch 2.
In the above-mentioned description, the examples that have no torque controlling function for controlling the torque for calculating the fastening torque and for stopping the driving of the motor automatically when the calculated fastening torque reaches to a predetermined reference value. It, however, is possible to adopt the feature of the present invention to the rotary impact tool with the torque control function.
This application is based on Japanese patent application 2004-142843 filed May 12, 2004 in Japan, the contents of which are hereby incorporated by references.
Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2004-142843 | May 2004 | JP | national |