Information
-
Patent Grant
-
6250401
-
Patent Number
6,250,401
-
Date Filed
Thursday, May 27, 199925 years ago
-
Date Issued
Tuesday, June 26, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Bednarek; Michael D.
- Pittman; Shaw
-
CPC
-
US Classifications
Field of Search
US
- 173 205
- 173 94
- 173 98
- 173 128
- 173 91
- 173 212
-
International Classifications
-
Abstract
A rotary impacting apparatus is provided which comprises a housing, a rotor rotatably accommodated in the housing, a driving source for rotating the rotor about a rotation axis, a main reciprocative implement reciprocatively held by the housing, and an impact member eccentrically held by the rotor. The impact member exerts an impacting force for pressing the main reciprocative implement when the main reciprocative implement is advanced relative to the rotation axis. The main reciprocative implement is provided with a diametrically smaller portion and a diametrically greater portion connected to the diametrically smaller portion.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a rotary impacting apparatus capable of providing high-frequency impacting force.
2. Description of the Related Art
Generally, an impacting apparatus such as a concrete breaker utilizes expansive force of compressed air or a combination of a motor and a crank mechanism for reciprocating an impacting piston in the main body. When reciprocated, the impacting piston repetitively hits a reciprocating implement supported at an end portion of the main body in an axial direction.
In the impacting apparatus of the above type, the impacting piston is forcibly reciprocated, so that the main body of the impacting apparatus will unfavorably be vibrated due to reaction from the impacting piston in motion. In addition, it is difficult to increase the frequency of reciprocation of the impacting piston due to the inertial mass of the impacting piston.
In order to overcome the above problems, the applicant of the present application has proposed a rotary impacting apparatus as shown in
FIG. 5
of the accompanying drawings. The illustrated rotary impacting apparatus includes a rotor
6
which is rotatably supported by a housing
5
, and a reciprocative implement
14
which is reciprocatively held by the housing
5
. The reciprocative implement
14
includes an auxiliary reciprocating member
14
a
. The rotor
6
loosely retains an impact member
12
in oval retaining holes
11
formed in flanges
6
a
,
6
b
of the rotor
6
. The flanges
6
a
,
6
b
are connected to each other via a connector
6
c.
When the rotor
6
rotates about a rotation axis Ax, the impact member
12
repeatedly hits an impact receiving face
20
of the auxiliary reciprocating member
14
a
. As shown in
FIG. 5
, the impact member
12
is arranged to come into hitting contact with the impact receiving face
20
at a marginal portion of the face
20
. (In
FIG. 5
, the hitting point is the left edge of the impact receiving face
20
.) In hitting the impact receiving face
20
, the impact member
12
will be rotated about a central axis Ay due to friction between the impact member
12
and the impact receiving face
20
.
By being repeatedly hit, the auxiliary reciprocating member
14
a
(and consequently the reciprocative implement
14
) is caused to reciprocate in a predetermined direction (vertical direction in FIG.
5
).
The above rotary impacting apparatus has been found disadvantageous in the following point.
When the impact member
12
hits the impact receiving face
20
at the above-mentioned marginal portion, a rotating force M may be applied to the auxiliary reciprocating member
14
a
, as shown in FIG.
5
. In such an instance, the auxiliary reciprocating member
14
a
will unfavorably be slanted in the housing
5
, thereby failing to provide smooth reciprocative movement or even becoming stuck in the housing
5
.
There may be several solutions to the above problems. One of them may be to lower the top dead center of the auxiliary reciprocating member
14
a
, so that the impact member
12
hits the auxiliary oscillating member
14
a
at an inner portion of the impact receiving face
20
. Another solution may be increasing the diameter of the auxiliary oscillating member
14
a.
However, the first solution is disadvantageous because the lowered auxiliary reciprocating member
14
a
fails to receive a sufficiently great impacting force from the impact member
12
. The second solution is also disadvantageous because the overall size and weight of the rotary impacting apparatus will unduly be increased.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention is to provide a rotary impacting apparatus which overcomes the above-described problems.
According to the present invention, there is provided a rotary impacting apparatus comprising:
a housing;
a rotor rotatably accommodated in the housing;
a driving source for rotating the rotor about a rotation axis;
a reciprocative implement reciprocatively held by the housing; and
an impact member eccentrically held by the rotor, the impact member exerting an impacting force for pressing the main reciprocative implement when the main reciprocative implement is advanced relative to the rotation axis;
characterised in that the reciprocative implement is provided with a diametrically smaller portion and a diametrically greater portion connected to the diametrically smaller portion.
With such an arrangement, it is possible to cause the main reciprocative implement to reciprocate smoothly (i.e., without being stuck) in the housing.
According to a preferred embodiment, the diametrically smaller portion is provided with an impact receiving face at which the impact member hits the main reciprocative implement. The impact receiving face may be arranged in parallel to the rotation axis.
Advantageously, the main reciprocative implement may be formed with a shock absorbing bore which is open at the impact receiving face.
In the preferred embodiment, the impact member has a columnar configuration.
The rotor may be formed with retaining holes for loosely retaining the impact member.
Preferably, the rotary impacting apparatus may further comprise an auxiliary reciprocating member reciprocatively held by the housing for transmitting an impacting force from the impact member to the main reciprocative implement when the main reciprocative implement is advanced relative to the rotation axis by a predetermined distance.
The auxiliary reciprocating member may be provided with a diametrically smaller portion and a diametrically greater portion connected to the diametrically smaller portion.
Preferably, the rotor may comprise a pair of flanges, a connector for connecting the flanges, and shafts projecting oppositely from the flanges. The shafts may be supported by the housing via needle bearings.
Preferably, the diametrically smaller portion may have a diameter which is smaller than a distance between the paired flanges.
Other objects, features and advantages of the present invention will become clearer from the detailed description of the preferred embodiment given below with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:
FIG. 1
is a sectional side view showing a rotary impacting apparatus according to a preferred embodiment of the present invention;
FIG. 2
is an enlarged sectional view showing principal components of the impacting apparatus of
FIG. 1
;
FIG. 3
is a sectional view taken along lines IIIāIII in
FIG. 2
;
FIG. 4
is a perspective view illustrating the overall arrangement of the impacting apparatus of
FIG. 1
; and
FIG. 5
is an enlarged sectional view showing principal components of a comparable example of rotary impacting apparatus.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The preferred embodiment of the present invention will be described below with reference to
FIGS. 1-4
of the accompanying drawings.
Reference is first made to
FIG. 4
showing a rotary impacting apparatus
1
according to a preferred embodiment of the present invention. As illustrated, the impacting apparatus
1
includes an engine
2
as a drive source and a shovel
3
(main reciprocative implement) suitable for digging or moving earth, stones and the like. The shovel
3
is provided with a reciprocative implement
14
extending therefrom. The impacting apparatus
1
also includes a connection pipe
4
and a main housing
5
. The main housing
5
may be made of aluminum and formed by die-casting for example.
Further, the impacting apparatus
1
is provided with a main handle
22
and an auxiliary handle
24
. As shown in
FIG. 1
, the main handle
22
is supported by a pair of arm members
22
a
,
22
b
which are fixed to a clutch housing
23
. The main handle
22
supports a throttle lever
25
provided for controlling the operation of the engine
2
. The auxiliary handle
24
is attached to an outer pipe
24
a
into which the connection pipe
4
is inserted.
Referring to
FIG. 1
, the main housing
5
is provided with a first and a second side walls
5
a
,
5
b
facing each other. Between these side walls, a space is provided for accommodating a rotary member
6
. The rotary member
6
is formed with two shafts
7
a
,
7
b
projecting in the opposite directions. The respective shafts
7
a
,
7
b
have a common axis Ax about which the rotary member
6
is rotated. The shaft
7
a
is supported by the first side wall
5
a
via a needle bearing
30
a
, while the other shaft
7
b
is supported by the second side wall
5
b
via a needle bearing
30
b.
In the illustrated embodiment, use is made of an additional needle bearing
31
for rotatably supporting the shaft
7
a
of the rotary member
6
. The additional needle bearing
31
is directly supported by the housing
5
, whereas the first two bearings
30
a
,
30
b
are supported by the housing
5
via metal collars
40
a
,
40
b.
A bevel gear
8
is disposed between the needle bearings
30
a
and
31
. The bevel gear
8
is fixed to the shaft
7
a
of the rotary member
6
, so that when the bevel gear
8
is rotated, the shaft
7
a
(and consequently the rotary member
6
) is rotated simultaneously. The bevel gear
8
is brought into engagement with another bevel gear
10
attached to an end of a transmission shaft
9
. As shown in
FIG. 1
, the transmission shaft
9
extends through the connection pipe
4
. The transmission shaft
9
is linked to the engine
2
.
In the above arrangement, when the engine
2
is started to turn at a certain speed, a centrifugal clutch accommodated in the clutch housing
23
activates to transmit the rotational movement of the engine
4
to the transmission shaft
9
. Then, upon rotation of the transmission shaft
9
, the rotational movement is transmitted to the rotary member
6
via the bevel gears
8
and
10
. As a result, the rotary member
6
begins to rotate about the axis Ax.
As shown in
FIGS. 1 and 2
, the rotary member
6
includes a first flange
6
a
, a second flange
6
b
and a connector
6
c
. The two flanges
6
a
,
6
b
are arranged in facing relation to each other. The connector
6
c
extends between the first and the second flanges
6
a
,
6
b
. In operation of the impacting apparatus
1
, the connector
6
c
functions as a balance weight. The connector
6
c
is eccentrically held by the flanges
6
a
,
6
b
in a manner such that the axis Az of the connector
6
c
is offset from the rotation axis Ax (see FIG.
3
).
As shown in
FIG. 3
, each of the first and the second flanges
6
a
,
6
b
is formed with a retaining hole
11
located opposite to the connector
6
c
with respect to the axis Ax. The retaining hole
11
loosely retains each end of a columnar impact member
12
. In this arrangement, the impact member
12
is eccentrically held by the rotary member
6
in a manner such that the axis Ay of the impact member
12
is offset from the rotation axis Ax. The impact member
12
is rotatable about the axis Ay in the retaining hole
11
and also movable radially within a limited range allowed by the retaining hole
11
. For preventing the impact member
12
from moving in its axial direction, use is made of doughnut-shaped guide plates
13
flanking the rotary member
6
(see also FIGS.
1
and
2
).
For enabling the rotary member
6
to rotate smoothly about the axis Ax, the rotary member
6
is arranged so that its center of gravity (as viewed in
FIG. 3
) will coincide with the axis Ax when the impact member
12
is moved farthest away from the axis Ax in the retaining hole
11
.
As shown in
FIG. 3
, the main housing
5
is provided with a holder
15
for holding the reciprocative element
14
of the shovel
3
. The shank
14
is slidably accommodated in the holder
15
, thereby enabling the shovel
3
to reciprocate in the axial direction of the reciprocative implement
14
. As can be seen from
FIG. 2
, the central axis of the holder
15
extends through the center of of the rotary member
6
. Thus, the axis of the holder
15
does not coincide with the axis of the connection pipe
4
(see also FIG.
1
).
As shown in
FIG. 2
, the holder
15
is divided into two parts, namely a first holding member
15
a
and a second holding member
15
b
connected to the first holding member
15
a
. Similarly, the reciprocative implement
14
is divided into a auxiliary reciprocating member
14
a
and a main reciprocating member
14
b
. The auxiliary reciprocating member
14
a
is held in the first holding member
15
a
, while the main reciprocating member
14
b
is held in the second holding member
15
b.
The auxiliary reciprocating member
14
a
is rotatable about its axis while also being movable in its axial direction relative to the first holding member
15
a
. As shown in
FIG. 2
, the auxiliary reciprocating member
14
a
varies in diameter as viewed in its axial direction. Specifically, the auxiliary reciprocating member
14
a
is provided with a diametrically smaller upper portion (whose diameter is d
1
) and a diametrically greater lower portion (whose diameter is d
2
). Further, the auxiliary reciprocating member
14
a
is formed, at its bottom, with a flange
16
which is diametrically greater than the above-mentioned lower portion (diameter d
2
).
As seen from
FIG. 2
, the diameter d
1
of the upper portion of the auxiliary reciprocating member
14
a
is smaller than the distance between the first and the second flanges
6
a
,
6
b
. Thus, the upper portion of the auxiliary reciprocating member
14
a
can be inserted into the space between the two flanges
6
a
,
6
b
. On the other hand, the diameter d
2
of the lower portion of the auxiliary reciprocating member
14
a
is greater than the distance between the first and the second flanges
6
a
,
6
b
. This lower portion (diameter d
2
) is slidably guided by the first holding member
15
a.
As shown in
FIG. 2
, the flange
16
of the auxiliary reciprocating member
14
a
can be moved in its axial direction between a lower edge
17
a
of the first holding member
15
a
and a stepped portion
17
b
of the second holding member
15
b.
The main reciprocating member
14
b
is provided with a groove
18
extending in its axial direction. The groove
18
receives part of a stopper pin
19
which is held by the second holding member
15
b
. In this arrangement, the main reciprocating member
14
b
is movable through a predetermined distance in its axial direction while being unable to rotate about its axis. As is easily understood, the combination of the groove
18
and the stopper pin
19
serves to prevent the main reciprocating member
14
b
from being pulled out from the second holding member
15
b.
As shown in
FIGS. 2 and 3
, the auxiliary reciprocating member
14
a
has a flat, impact receiving face
20
which lies in a plane perpendicular the axis of the auxiliary reciprocating member
14
a
. The auxiliary reciprocating member
14
a
is formed with a shock absorbing bore
21
having a predetermined depth. In the illustrated embodiment, the shock absorbing bore
21
is upwardly open at the impact receiving face
20
. As illustrated, the shock absorbing bore
21
varies in diameter as viewed in its axial direction, thereby providing a diametrically smaller upper portion and a diametrically greater lower portion.
Differing from the illustrated embodiment, the shock absorbing bore
21
may be entirely closed so that it is not exposed to the exterior.
As shown in
FIG. 3
, when the auxiliary reciprocating member
14
a
is lifted up to a maximum level in its stroke (this happens when the shovel
3
is pulled toward the rotation axis Ax), the impact receiving face
20
of the auxiliary reciprocating member
14
a
comes into engagement with the impact member
12
which is spaced farthest from the axis Ax. Advantageously, the impact member
12
is arranged to hit the impact receiving face
20
at a particular portion thereof as shown in
FIG. 3
(in the figure, that portion is the left extremity of the impact receiving face
20
). If arrangements were made so that the impact member
12
hits the impact receiving face
20
at other positions, the impact member
12
would fail to move the auxiliary reciprocating member
14
a
with a sufficiently great impacting force.
Though not illustrated, suitable lubricant-supplying means is provided in the main housing
5
, so that lubricant is supplied to certain areas where a plurality of parts, components and the like are moved relative to each other. For instance, lubricant is supplied to the needle bearings
30
a
,
30
b
,
31
and the retaining holes
11
.
The impacting apparatus
1
having the above arrangement operates in the following manner.
When the apparatus
1
is used for digging earth, the operator supports the apparatus
1
downwardly using his both hands. Specifically, the operator grips the main handle
22
with his right hand and the auxiliary handle
24
with his left hand. Then, the shovel
3
is held in pressing contact with the ground. At this stage, the auxiliary reciprocating member
14
a
(and the main reciprocating member
14
b
as well) is brought to the uppermost position of its stroke as shown in FIG.
3
. In this state, when the throttle lever
25
(
FIG. 4
) is operated to allow the engine
2
to turn at a high speed, the centrifugal clutch held in the clutch housing
23
activates to transmit the rotational output of the engine
2
to the rotary member
6
via the transmission shaft
9
.
As a result, the rotary member
6
hits the impact receiving face
20
of the auxiliary reciprocating member
14
a
upon each revolution of the motor
2
, thereby driving the shovel
3
downward by an axial component of the impacting force from the impact member
12
.
After the shovel
3
is driven into the earth to a desired extent, the operator releases the throttle lever
25
to stop the engine
2
. Then, the ground is dug up by moving back and forth the main handle
22
of the impacting apparatus
1
.
The impacting apparatus
1
described above has the following advantages.
First, since the shock absorbing bore
21
is formed in the auxiliary reciprocating member
14
a
, the diametrically smaller upper portion of the auxiliary reciprocating member
14
a
can suitably be deflected when the impact member
12
hits the impact receiving face
20
. Thus, the auxiliary reciprocating member
14
a
and the impact member
12
will be held in pressing contact with each other for a certain short period of time rather than instantly repelled from each other upon hitting. In this manner, the impact member
12
can reliably transmit an impacting force to the auxiliary reciprocating member
14
a.
Second, in the illustrated embodiment, it is possible to prevent the auxiliary reciprocating member
14
a
from being unduly slanted in the first holding member
15
a
upon receiving an impacting force from the impact member
12
. The reason such an advantage is obtainable is that the impacting force from the impact member
12
is applied to the diametrically smaller upper portion of the auxiliary reciprocating member
14
a
. In other words, the impacting force to the auxiliary reciprocating member
14
a
is applied at a position closer to the central axis (not shown) of the auxiliary reciprocating member
14
a
than is conventionally possible (compare FIG.
3
and FIG.
5
). In this arrangement, no unfavorable rotating force is applied to the auxiliary reciprocating member
14
a
by the impact member
12
.
Third, since lubricant is supplied to the retaining hole
11
, the impact member
12
can be moved smoothly within the retaining holes
11
(i.e., without generating much frictional heat). In addition, in the presence of lubricant, it is possible to reduce the amount of frictional heat generated between the impact member
12
and the impact receiving face
20
when they are relatively moved in pressing contact with each other. As a result, unfavorable increase in temperature within the main housing
5
is prevented.
Fourth, in the impacting apparatus
1
, three needle bearings
30
a
,
30
b
,
31
are used for supporting the rotary member
6
. Since each of the needle bearings
30
a
,
30
b
,
31
supports the projecting shaft
7
a
or
7
b
of the rotary member
6
with an advantageously long contact area, the rotary member
6
is properly supported within the main housing
5
. Thus, even when the rotary member
6
undergoes vibration or deflection (which may happen when the gravitational center of the rotary member
6
is shifted from the rotation axis Ax), the rotary member
6
will be rotated smoothly. This advantage is enhanced by the metal collars
40
a
,
40
b
which are provided between the main housing
5
and the needle bearings
30
a
,
30
b.
Fifth, when the operator supports the impacting apparatus
1
in a manner such that the shovel
3
is held above the ground, the auxiliary reciprocating member and the reciprocative implement
14
a
and
14
b
, respectively, are brought to the lowermost positions in their strokes. In this state, the auxiliary reciprocating member
14
a
is out of reach of the impact member
12
revolving around the axis Ax, thereby receiving no impacting force from the impact member
12
.
It should be noted that when the impact member
12
is revolving around the axis Ax but does not hit the auxiliary reciprocating member
14
a
, the impact member
12
is spaced farthest from the axis Ax in the retaining hole
11
due to the centrifugal force. Under these circumstances, the gravitational center of the rotary member
6
put together with the impact member
12
coincides with the rotation axis Ax. Thus, the rotary member
6
will smoothly rotate about the axis Ax even at a high speed.
The present invention is not limited to the preferred embodiment described above. For instance, the rotary member
6
may be actuated by a different driving means other than the engine
2
.
Further, the shovel
3
may be replaced by a chisel suitable for breaking a concrete layer.
The impacting apparatus
1
may also be used for driving stakes into the ground. Further, when the shovel
3
is replaced with a flat scraper, the impacting apparatus
1
may be used for removing shellfish, mud or rust adhered to an outer wall of a ship. When the shovel
3
is replaced with a suitable cutting blade, the impacting apparatus
1
may be used for plant-cutting above the ground.
Still further, the main reciprocating member
14
b
is rendered to be nonrotatable about its axis, so that a ground digging operation is easily performed with the shovel
3
. Alternatively, when a chisel is used in place of the shovel
3
, the main reciprocating member
14
b
may be rendered rotatable about its axis. In such an instance, auxiliary reciprocating member and main reciprocation member
14
a
and
14
b
, respectively, may be integrally formed.
The present invention being thus described, it is obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to those skilled in the art are intended to be included within the scope of the following claims.
Claims
- 1. A rotary impacting apparatus comprising:a housing; a rotor rotably accommodated in the housing; a driving source for rotating the rotor about a rotation axis; a reciprocative implement reciprocatively held by the housing; and an impact member eccentrically held by the rotor, the impact member exerting an impacting force for pressing the reciprocative implement when the reciprocative implement is advanced relative to the rotation axis; wherein the reciprocative implement is provided with a diametrically smaller non-guided end portion for contact with the impact member and a diametrically greater guided intermediate portion connected to the diametrically smaller end portion; and wherein the reciprocative implement is formed with a shock absorbing bore with a smaller inner diameter upper portion that is open at the impact receiving face and a larger inner diameter lower portion.
- 2. The rotary impacting apparatus according to claim 1, wherein the diametrically smaller end portion is provided with an impact receiving face at which the impact member hits the reciprocative implement, the impact receiving face being arranged in parallel to the rotation axis.
- 3. The rotary impacting apparatus according to claim 1, wherein the impact member has a columnar configuration.
- 4. The rotary impacting apparatus according to claim 1, wherein the rotor is formed with retaining holes for loosely retaining the impact member.
- 5. The rotary impacting apparatus according to claim 1, wherein the reciprocative implement comprises a main reciprocating member reciprocatively held by the housing and an auxiliary reciprocating member reciprocatively held by the housing for transmitting an impacting force from the impact member to the main reciprocating member when the main reciprocating member is advanced relative to the rotation axis by a predetermined distance.
- 6. The rotary apparatus according to claim 5, wherein the auxiliary reciprocating member is provided with the diametrically small end portion and the diametrically greater portion connected to the diametrically smaller end portion.
- 7. The rotary impacting apparatus according to claim 1, wherein the rotor comprises a pair of flanges, a connector for connecting the flanges, and shafts projecting oppositely from the flanges, the shafts being supported by the housing via needle bearings.
- 8. The rotary impacting apparatus according to claim 7, wherein the diametrically smaller end portion has a diameter which is smaller than a distance between the paired flanges.
- 9. A rotary impacting apparatus comprising:a housing; a rotor rotatably accommodated in the housing; a driving source for rotating the rotor about a rotation axis; an impact member eccentrically held by the rotor; a main reciprocating member reciprocatively held by the housing; and an auxiliary reciprocating member reciprocatively held by the housing between the main reciprocating member and the impact member for transmitting an impacting force from the impact member to the main reciprocating member when the main reciprocating member is advanced relative to the rotation axis by a predetermined distance; wherein the rotor comprises a pair of flanges and a connector for connecting the flanges; and wherein the auxiliary reciprocating member includes a first end portion adjacent to the impact member for contact therewith, a second end portion away from the impact member for contact with the main reciprocating member, and an intermediate portion between the first end portion and the second end portion for being slidably guided by the housing, the first end portion having an outer diameter smaller than a distance between the flanges of the rotor for insertion therebetween, the intermediate portion having an outer diameter larger than the distance between the flanges of the rotor for being slidably guided by the housing wherein the auxiliary reciprocating member includes a shock absorbing bore extending from said first end portion through said intermediate portion.
- 10. The rotary impacting apparatus according to claim 9, wherein the second end portion of the auxiliary reciprocating member is diametrically larger than the first end portion and the intermediate portion.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-378550 |
Dec 1998 |
JP |
|
US Referenced Citations (9)