This is a continuation, under 35 U.S.C. §120, of copending International Application No. PCT/EP2009/000531, filed Jan. 28, 2009, which designated the United States; this application also claims the priority, under 35 U.S.C. §119, of German Patent Applications DE 10 2008 008 628.2, filed Feb. 12, 2008, DE 10 2008 008 626.6, filed Feb. 12, 2008 and DE 10 2008 008 629.0, filed Feb. 12, 2008; the prior applications are herewith incorporated by reference in their entirety.
The invention relates to a rotary lithographic printing machine including an inking unit having a plurality of inking unit rollers, and a dampening roller having a porous surface from which dampening solution emerges.
Rotary lithographic printing machines, that is to say for example web-fed or sheet-fed offset printing machines, normally have in each printing unit an inking unit with a plurality of inking unit rollers, which lead an ink flow from an ink reservoir, namely an ink fountain, to an offset printing plate on a plate cylinder and even it out and possibly distribute it laterally, etc. In addition, in so-called wet offset printing machines, a dampening unit is required, which wets the offset printing plate at hydrophilic points of the printing plate and ensures that the printing plate does not pick up any ink there. Dampening units of that type are normally constructed on the scoop principle, i.e. a so-called dip roller dips to some extent into a dampening solution fountain and a dampening solution film is transported from its surface through the use of further rollers to a dampening solution applicator roller resting on the plate surface.
In addition, so-called spray dampening units are also known, in which, instead of the dampening solution fountain and dip roller, use is made of a spray beam, with which a dampening solution film is sprayed onto the surface of one or more dampening unit rollers.
Furthermore, it is known from Japanese Patent Publication JP 05-064872 A and International Publication No. WO 2006/047997, corresponding to U.S. Patent Application Publication No. US 2007/0227374, to use so-called membrane rollers in the dampening unit, i.e. dampening rollers having a porous surface from which the dampening solution emerges. According to the prior art, those porous dampening rollers are set directly against the dampening solution applicator roller, amongst other reasons because the latter have a resilient roller shell, while the porous membrane roller is composed of sintered metal and, in that way, the result is a gap between the rollers that is easily adjustable in order to transport the dampening solution away, which would not be provided in the event of a contact between two hard rollers.
Given that configuration, inhomogeneities of the dampening solution on the roller surface are difficult to even out because of the short transfer path to the printing plate. Finally, there is still the problem that the dampening solution applicator roller to a certain extent also transfers ink back from the printing plate onto the porous dampening roller, so that the latter is contaminated and the pores are blocked with ink. That problem is also addressed in the aforementioned Japanese Patent Publication JP 05-064872 A.
It is accordingly an object of the invention to provide a rotary lithographic printing machine, which overcomes the hereinafore-mentioned disadvantages of the heretofore-known machines of this general type and which reduces or avoids problems associated with the use of porous dampening rollers.
With the foregoing and other objects in view there is provided, in accordance with the invention, a rotary lithographic printing machine, comprising a plate cylinder, an inking unit having a plurality of inking unit rollers for supplying an ink flow to the plate cylinder and a dampening unit having a plurality of dampening unit rollers for supplying a dampening solution flow to the plate cylinder. One of the dampening unit rollers has a porous surface from which dampening solution emerges and at least two further rollers are disposed in the dampening solution flow between the dampening unit roller having the porous surface and the plate cylinder.
In a first embodiment, the porous dampening roller is set against the applicator roller belonging to the dampening unit and being contaminated with ink, through at least one further interposed roller in the dampening solution flow. As a result, it is possible to provide this interposed roller or these interposed rollers with a surface that repels ink, at least during operation, i.e. in the dampened state. In this way, the transport of ink back from the inking unit to the surface of the porous dampening roller can be reduced or prevented. Of course, it is also possible and expedient to provide the dampening roller itself with a surface that repels ink, at least during operation.
According to a second embodiment of the invention, the porous dampening roller is assigned to the inking unit and, at least during printing, is set against one or more of the inking unit rollers, either directly or through one or more intermediate rollers.
In this configuration, the otherwise necessary separate dampening unit can be dispensed with entirely, so that additional space becomes free on the periphery of the plate cylinder and, for example, can be used to integrate a washing device for the plate cylinder there. Nevertheless, the function of the dampening unit is ensured, since the dampening solution is emulsified into the ink transported by the inking unit and thus travels to the plate cylinder or the printing plate on this path.
It is expedient to set the porous dampening roller against the ink applicator roller or one of the ink applicator rollers of the inking unit, if appropriate through an intermediate roller, and in the case of inking units having three to four applicator rollers, at best against the first of the ink applicator rollers in the direction of rotation of the plate cylinder, as viewed in the direction out from the press nip. This therefore achieves the situation where the plate is already adequately dampened when the other ink applicator rollers “come into play.” Accordingly, scumming of the non-printing regions of the offset plate is avoided.
However, it is also possible to set the porous dampening roller directly or indirectly against a roller in the ink flow of the inking unit. Then, the dampening solution can be emulsified more homogenously into the ink.
The best position for the introduction of the dampening solution into the inking unit depends on the type of inking unit and its specific construction and can be determined by appropriate printing tests.
In the case of so-called short form inking units (anilox inking units), in which the ink is metered by a doctor and an engraved roller, it is conventional for only a single ink applicator roller to be provided. In this case, it is expedient to set the porous dampening roller against the ink applicator roller, possibly through one or two intermediate rollers. In particular, in conjunction with anilox inking units, the advantages of the porous dampening roller can be employed particularly well with regard to the most optimal utilization of the overall space in the printing unit.
The volume flow of the dampening solution which emerges from a porous dampening roller certainly depends on the internal pressure in the porous dampening roller but is otherwise time-invariant, i.e. constant, irrespective of how quickly printing is currently being carried out, i.e. how many plates per unit of time have to be dampened. It is therefore expedient to provide switching and/or actuating elements with the aid of which the pressure of the dampening solution in the interior of the porous dampening roller can be adjusted. Advantages are also offered by temperature control of the dampening solution which is supplied to the porous dampening roller. That is because the temperature of the dampening solution supplied to the plate should not be too high but rather should lie below the machine temperature, in order to obtain stable, continuous printing conditions. This becomes particularly important for the case in which printing is to be carried out with as little alcohol as possible or even no alcohol in the dampening solution, where therefore the cooling effect of isopropyl alcohol which otherwise evaporates becomes lower or disappears.
Furthermore, the porous dampening roller offers the possibility of metering the dampening solution zone by zone, i.e. of having it emerge from the roller shell in a different quantity in the axial direction. It therefore becomes possible to even print difficult print jobs, having a very inhomogeneous distribution of the subject on the printing plates, in a stable fashion. This is achieved by the interior of the porous dampening roller being composed of individual segments and by the pressure in the segments being independently adjustable.
If, despite the countermeasures described at the beginning, printing ink is deposited on the surface of the porous dampening roller, this leads to the emergence of the solution being partly suppressed at the points covered with ink. Furthermore, however, dampening solution emerges to an increased extent from the porous dampening roller in the neighboring regions, which leads to over-dampening of the printing plate at the non-image points. This effect is brought about by a flow of dampening solution in the axial direction within the porous carrier material of the dampening roller. In order to avoid this, it is therefore expedient to provide the porous carrier material of the dampening roller with an anisotropic structure which suppresses a flow of dampening solution parallel to the roller surface.
The same effect occurs if the membrane having the narrower pores, which constitutes the primary flow resistance as compared with the porous carrier material of the roller, is not applied to the inside but to the outside of the hollow cylindrical carrier material of the roller. Given such a formation, the surface of the porous dampening roller can in addition be freed better from ink residues by the dampening roller having an increased internal pressure applied, for example, in washing cycles.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a rotary lithographic printing machine, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawings in detail and first, particularly, to
The printing unit 7a has an impression cylinder 4a, a blanket cylinder 5a and a plate cylinder 6a, on which a respective printing plate is clamped. This is correspondingly true of the three other printing units 7b-d. The printing plates are inked by inking units 8a-d, the rollers of which cover a large part of the circumference of the plate cylinder. The respective inking unit, for example 8a, is adjoined by four rollers of a dampening unit 9a, of which a dip roller conveys dampening solution out of a dampening solution fountain 10a. Reference numeral 11a designates a cloth washing device for the blanket cylinder 5a of the printing unit 7a.
A combined inking and dampening unit according to the invention, as illustrated in
A chromium plated distributor roller 36 is set against the dampening solution applicator roller 37. This is used to even out the dampening solution film of the applicator roller 37. The rough chromium layer is hydrophilic but tends to pick up ink if there is no dampening solution film on the surface of the distributor roller 36.
In addition, a porous dampening roller 34 is set against the dampening solution applicator roller 37 indirectly through an intermediate roller 35. This dampening roller 34, as indicated by a feed line 66a and a return line 66b, is connected to a dampening solution circuit with the aid of non-illustrated connections on a bearing journal of the roller 34. The dampening solution supplied through the line 66a floods the interior of the roller 34 and, given an appropriate overpressure, emerges through the porous roller shell, travels onto the intermediate roller 35 and is conveyed by the latter to the dampening solution applicator roller 37. The structure of the porous dampening roller 34 can be as described in International Publication No. WO 2006/047997, corresponding to U.S. Patent Application Publication No. US 2007/0227374, mentioned at the beginning, i.e. the porous dampening roller 34 can have a two-part structure with a membrane resting on the inside on the body of the porous roller 34 and having pores with a smaller diameter than the pores of the porous roller shell itself. However, it is also possible to fix a porous layer having relatively narrow pores to the outside of the roller 34 formed of porous sintered metal.
The intermediate roller 35 and the porous dampening roller 34 have an ink-repelling surface in order to prevent ink from being transported back from the printing plate clamped on the plate cylinder 6a to the porous dampening roller 34 and there blocking the pores through which the dampening solution is intended to pass. To this end, the roller 35 is provided on its surface with a fluoroelastomer layer or a silicon organic layer which has a low surface energy. Tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer is, for example, suitable as a material for this purpose. As an alternative to this, the roller 35 can also, for example, be roughly chromium plated or provided with another hydrophilic metal or ceramic layer which, when wetted with dampening solution, has ink-repelling properties. On the other hand, the roller 34 is provided with a resilient, water-permeable layer. This can, for example, be a shrunk-on plastic membrane made of polysulfane or a thin layer of another water-permeable resilient plastic.
In addition, the roller 35 can also be thrown off the dampening solution applicator roller 37 through an actuator mechanism 69, and the roller 37 can be thrown off the plate cylinder 6a through an actuator mechanism 68. This therefore achieves the situation in which, following each printing interruption or before each resumption of printing operation, the hard, for example chromium plated, roller 35 is or can be firstly brought into contact with the porous dampening roller and a film of dampening solution thus builds up on its surface, before it comes into contact with the dampening solution applicator roller 37 possibly contaminated by ink. The actuator mechanism 68, with which the dampening solution applicator roller 37 is set against the printing plate on the plate cylinder 6a, ensures that the supply of dampening solution to the printing plate is carried out at the times at which the printing plate must be dampened before the start of the printing process.
A non-illustrated drive is provided for the two rollers 34 and 35, with which the rotational speed of the two rollers can be set independently of the rollers of the inking unit. This makes it possible to generate slippage between the rollers 35 and 37, with the aid of which the dampening solution supplied by the roller 35 is emulsified effectively into the ink layer on the dampening solution applicator roller 37. That layer forms as a result of the contact of the roller 37 with the inked printing plate.
In a slightly modified exemplary embodiment of the invention according to
In order to divide the dampening solution roller train, the intermediate roller 35a can be lifted off the two rollers 34 and 35b by an actuator mechanism 67. As an alternative to this, the roller 35a can also remain in contact with the porous dampening roller 34 and be separated from the intermediate roller 35b through a pivoting movement about the axis of the roller 34. As illustrated in the figure, throwing the dampening unit off the plate cylinder is carried out by a pivoting movement of the roller 37 about the axis of rotation of the roller 36 with the aid of the actuator mechanism 68, while the hard roller 35 can be pivoted about the axis of rotation of the roller 35a by an actuator 69.
A printing unit 402 for offset printing with a short-form inking unit is illustrated in
In the case of this sheet-fed offset printing machine with an anilox inking unit, a dampening unit 405 shown in the figure has a dampening solution applicator roller 420, a transfer roller 419 and a chromium plated distributor roller 421.
A porous dampening roller 434 is set against the transfer roller 419, which carries an ink-repelling coating. This roller 434 corresponds to the roller 34 according to
The hard, hydrophilic roller 419 can, in turn, be thrown off the roller 420 by a second actuator 469 by being pivoted about the axis of the roller 434, while the supply of dampening solution to the printing plate can be interrupted by an actuator 468, which pivots the roller 420 about the axis of the roller 421.
A combined inking and dampening unit according to the invention, illustrated in
A porous dampening roller 734 is set against the first ink applicator roller 728 indirectly through an intermediate roller 735. This dampening roller 734, as indicated by the feed line 766a and the return line 786a, is connected to a dampening solution circuit with the aid of non-illustrated connections on a bearing journal of the roller 734. The dampening solution supplied through the line 766a floods the interior of the roller 734 and, given an appropriate overpressure, emerges through the porous roller shell, travels onto the intermediate roller 735 and is conveyed by the latter to the ink applicator roller 728. The structure of the porous dampening roller 734 can be as described in International Publication No. WO 2006/047997, corresponding to U.S. Patent Application Publication No. US 2007/0227374, mentioned at the beginning, i.e. the porous dampening roller 734 can have a two-part structure with a membrane resting on the inside on the porous roller body 734 and having pores with a smaller diameter than the pores of the porous roller shell itself. However, it is also possible to fix a porous layer having relatively narrow pores to the outside of the roller 734 formed of porous sintered metal.
The intermediate roller 735 and the porous dampening roller 734 have an ink-repelling surface in order to prevent ink from being transported back from the ink applicator roller 728 to the porous dampening roller 734 and there blocking the pores through which the dampening solution is intended to pass. To this end, the roller 735 is provided on its surface with a fluoroelastomer layer or silicon organic layer which has a low surface energy. Tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer is, for example, suitable as a material for this purpose. As an alternative to this, the roller 735 can also, for example, be roughly chromium plated or provided with another hydrophilic metal or ceramic layer which, when wetted with dampening solution, has ink-repelling properties. On the other hand, the roller 734 is provided with a resilient, water-permeable layer. This can, for example, be a shrunk-on plastic membrane made of polysulfane or a thin layer of another water-permeable, resilient plastic.
Furthermore, the dampening roller 734 can be thrown off the intermediate roller 735 through an actuator mechanism 767. The actuator mechanism 767 is connected to the control system of the printing machine, which ensures that the dampening roller 734 is set against the roller train only when dampening solution emerges from the surface of the roller and wets the surface, in order to ensure that adhesion of ink is avoided.
A further actuator mechanism 768 ensures that the roller 735 can be pivoted about the axis of the roller 734 and thus, together with the roller 734, can be thrown off the ink applicator roller 728. In this way, it is possible to dampen the roller 735 and therefore to make it ink-repelling before it comes into contact with the ink applicator roller 728.
The two rollers 734 and 735 have a non-illustrated drive, with which the rotational speed of the two rollers can be set independently of the rollers of the inking unit. This makes it possible to generate slippage between the rollers 735 and 728, with the aid of which the dampening solution supplied by the roller 735 is emulsified effectively into the ink layer on the ink applicator roller 728.
An inking unit modified in accordance with the invention and belonging to another sheet-fed offset printing machine, is illustrated in
Conventionally, the printing plate 103 is wetted with dampening solution by a film dampening unit, as illustrated in a region H in which the rollers are shown in dashed lines. However, according to the invention, this is dispensed with. Instead, a porous dampening roller 134 is indirectly in contact with the surface of a distributor roller 140 of the inking unit through an intermediate roller 135. The roller 140 assumes a central position in the inking unit, in as much as the entire flow of ink picked up from a ductor roller 114 by an ink take-up roller 115 is led over it. Thus, in this case, at a central point, dampening solution is emulsified into the ink layer transported by the roller 140. This ink-dampening solution emulsion is then distributed through two further rollers 119 and 142 and rollers 122 and 123 as well as further rollers 116, 118, 120, 124 and 127 to the four ink applicator rollers. The printing plate 103 picks up the dampening proportion of the emulsion at its hydrophilic non-image points, while the image points are inked with ink.
In this exemplary embodiment, too, the dampening roller 134 can be thrown off the intermediate roller 135, and the latter can in turn be pivoted away from the roller 140 through an actuator 168. Of course, in this case, too, both rollers can be provided with an ink-repelling coating. In this case, the coating of the roller 135 is resilient and is therefore composed, for example, of a rubber coated with a fluoroelastomer, while the surface of the porous dampening roller 134 is hard and is formed of sintered metal or ceramic.
Furthermore, it is also possible to have the intermediate roller 135 run not only in contact with the roller 140 but also with the roller 141 of the inking unit, if the diameter of the latter roller is matched to the roller 140. In this way, even better emulsification of the dampening solution into the ink can be achieved.
The porous dampening roller 134 is illustrated in more detail in
However, these are only exemplary statements. The pore size may be varied within wide limits by choosing the granulation of the ceramic or metal powder to be sintered and the management of the process during sintering and thus matched to the requirements in the individual case in such a way that, with a given pressure range for the dampening solution 134d and the dimensions of the roller 134, the desired dampening solution volume flow is established.
In addition, it is also possible to produce an outer membrane by applying a layer to the carrier sleeve 134a and subsequently perforating it by electron beams, laser beams or by etching.
If the hydrophilic properties of the ceramic layer 134b or its lipophobic properties are inadequate, a lipophobic layer 134c is additionally vapor deposited on the surface of the ceramic layer 134b, as illustrated in
As illustrated in the slightly modified exemplary embodiment according to
An alternative exemplary embodiment of the roller 134 according to
The material of the metal sleeve 34a can, for example, be aluminum or steel. The surface of the roller 34 is preferably constructed to be rough and, as indicated by the reference symbol 34e, can additionally be provided with a chromium layer, which also penetrates partly into the interior of the capillaries 34c.
The membrane layer 34b constitutes the greatest flow resistance for the dampening solution 34d in the interior of the dampening roller 34. The dampening solution that has passed through in this case travels into the capillaries 34c and can then only emerge to the outside radially. In particular, it no longer has any possibility of forming a surface flow parallel to the roller surface if individual capillaries have been blocked, for example by ink transported back. The same is true of the roller 134 in
An exemplary embodiment of a further porous dampening roller 534 can be seen in more detail in
As far as the roller shell is concerned, the individual partial segments 536, 537, 538 . . . are constructed in a similar way to the roller 134 in
The emergence of the dampening solution from the porous surface of the roller can be controlled zone by zone by controlling the pressure of the dampening solution in the interior of the segments 536, 537, 538 . . . . It is therefore possible to supply different quantities of dampening solution locally to the printing plate through the use of such a roller. In this way, in the case of specific subjects, continuous printing becomes more stable or, in the case of spot subjects, the printer has greater freedom in the setting of the dampening solution balance.
It can also be advantageous if a gumming agent, for example, carboxymethyl cellulose (CMC) is added to the dampening solution. On the surface of the dampening rollers described with regard to
A printing unit 902 for offset printing with a short-form inking unit is illustrated in
In a known sheet-fed offset printing machine marketed by the corporate assignee of the instant application and having an anilox inking unit, a dampening unit 905 shown in dashed lines in the figure, including a dampening solution fountain 918, a dip roller 917, a transfer roller 919, a dampening solution applicator roller 920 and a chromium plated distributor roller 921, is included. According to the invention, that dampening unit can be dispensed with, which creates space for other auxiliary units, such as a washing device.
Instead, a porous dampening roller 934 is set against a remaining bridge roller 922, which carries an ink-repelling coating. This roller 934 corresponds to the rollers 34 and 134 according to
In
The pressure reducers 48a and 48b allow the internal pressure in the membrane roller to be set separately for each printing unit, specifically to the value required during printing operation, depending on the printing speed, in order to ensure that the printing plate is supplied adequately with dampening solution even at higher printing speeds. This is symbolized by corresponding arrows. For this purpose, the pressure reducers 48a, 48b are connected to the non-illustrated control system of the printing machine.
The multiway valves 49a, 49b permit the internal pressure of the membrane rollers to be switched back quickly from the operating pressure predefined through the pressure reducers 48a, 48b (that is the switching position shown) to a value at which no dampening solution emerges from the membrane roller. In this case, when the dampening is to be interrupted (pressure off), the line 66a is blocked off from the feed and at the same time connected to a compensating vessel 52, so that the overpressure in the roller 34 can be relieved quickly in this way. A few tenths of a second after that, a further switch is then made to a third position, in which the membrane rollers are also isolated from the compensating vessel 52.
Reference numerals 51a and 51b designate shut-off valves in return lines 86a and 86b. These valves can be opened at relatively large time intervals, in order to flush through the roller interior and thus to free it of deposits under the porous membrane of the rollers 34a, 34b.
A second circuit, which originates from the storage container 45, includes a pump 147 and a feed line 166 with which a very much higher volume flow is pumped through the rollers 34a, 34b at rotary leadthroughs in bearing journals 44a and 44b for the purpose of controlling the temperature of the latter. In the interior of the rollers 34a, 34b, this circuit is isolated from the actual dampening solution flow by a thin, highly thermally conductive sleeve. In return lines 186a, 186b of the temperature controlled circuit, there is a cooling and heating device 88, which is activated by a temperature sensor T in the storage vessel 45.
An exemplary embodiment for the dampening solution circuit, which is modified with respect to
Changeover valves 350a and 350b make it possible to quickly de-pressurize the rollers 334a and 334b in the respective self-contained, pre-pressurized dampening solution circuits when necessary.
The circuits are supplied through nonreturn valves 356a and 356b from a dampening solution storage vessel 345. In this case, a pump 347 in a feed line 346 in conjunction with pressure reducers 348a and 348b in each case ensure that the desired pressure is maintained in the self-contained temperature control circuits for the respective roller 334a and 334b.
A rapid reduction in the pressure level in the closed temperature-controlled dampening solution circuit can be achieved through changeover valves 349a and 349b. These valves then isolate the pre-pressurized combined dampening solution supply and temperature control circuits for the rollers 334a and 334b from the dampening solution supply, while at the same time the changeover valves 350a and 350b let down the pressure from the interior of the rollers 334a and 334b into a compensating vessel 352.
Before the printing machine illustrated in
Number | Date | Country | Kind |
---|---|---|---|
10 2008 008 626.6 | Feb 2008 | DE | national |
10 2008 008 628.2 | Feb 2008 | DE | national |
10 2008 008 629.0 | Feb 2008 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2009/000531 | Jan 2009 | US |
Child | 12844469 | US |