1. Field of the Invention
The present invention relates generally to the field of mechanical gaseous compressors or vacuum pumps used in industrial, automotive and municipal applications, and more particularly relates to a double rotor multi-lobe type commonly known as rotary lobe type or simply Roots type blowers or vacuum pumps, or known as Roots superchargers in internal combustion engine, and more specifically relates to a shunt pulsation trap for reducing pulsations and induced vibration, noise and harshness (NVH) from such blowers, compressors and pumps for improved efficiency and increased pressure rises.
2. Description of the Prior Art
Rotary lobe blowers or vacuum pumps with potential pressure rises for air or gases up to 30 psig (3:1 ratio) or vacuums up to 28″Hg (15:1 ratio) are widely used in industrial and municipal applications such as power source for loading and unloading bulk materials, for aeration in a waste water treatment plant, for vacuum booster evacuating a container or cleaning municipal sewer lines by vacuum suction. They are also widely used in supercharging automotive engines to boost engine power and could potentially be used for air-conditioning and refrigeration compressors.
Rotary lobe blower (that is: Roots blower or supercharger) or vacuum pump is greatly desired because of their unique compression principle: air or gas is not compressed by conventional positive displacement principle of a fixed volumetric change through the action of a piston, sliding vanes or rotary screw, but instead compressed by a series of waves or shock waves generated by a sudden opening of lobes to blower discharge pressure. The term “shockwave” denotes a physical phenomenon as also occurs in a shock tube where a diaphragm separating a region of high-pressure gas from a region of low-pressure gas inside a closed tube. As shown in
Roots blower can be also seen as a fast-moving rotary valve and an effective rotary shockwave generator as long as there is a pressure difference between outlet and inlet and rotating speed is fast enough. A stronger shockwave is always associated with a higher pressure difference and faster opening. As illustrated from
From the above Roots cycle analysis, it should be noted that energy transfers directly between two fluids without using mechanical components like pistons or vaned impellers. Their major benefits are their potential to generate large pressure changes in short time or distance in an efficiency equivalent to those of dry screw compressors. Two rotors of Roots blower are just used as a rotary seal and valve for moving a fixed volume of air from low pressure inlet to high pressure outlet in a fast and continuous manner. In the process, compression is accomplished by waves or shock waves generated by suddenly exposing the fast moving air to higher discharge pressure. In a sense, it is always in an under-compression mode as in the case of conventional positive displacement compressors with a pre-determined pressure ratio of one. Therefore, Roots compression possesses another unique characteristic: it maintains a good efficiency while meeting varying pressure demands. This makes rotary lobe blowers ideal for variable demand applications such as in pneumatic conveying where material clogging can be quickly cleared out or for municipal wastewater treatment aeration tanks where water levels change constantly or for automotive supercharging at different speeds and pressure boosting levels while maintaining a good efficiency throughout the process. Since the compression is achieved through faster moving waves or shock waves without hardware or the associated inertial, rotary lobe blowers can be build very small in size and simple in structure without complicated geometry or rotor contours as other varying volume types, and are capable of a long service life since there are no wearing parts involved for compression.
Despite the above mentioned generally attractive features, several challenges have impeded their extensive commercial applications of the unique Roots wave compression principle. Among them, the number one problem is the pulsation: when pressure waves or shockwaves are generated on low pressure side compressing the air inside lobe cell, a series of expansions waves are generated simultaneously on high pressure side which, together with the reflected pressure wave or shockwaves travel downstream the discharge pipe, creating huge pressure and flow fluctuations that could destroy downstream components, or generate noises as high as 140 dB for high pressure applications. Therefore, a large reactive type pulsation dampener is required at the discharge side of a rotary lobe blower to dampen the air borne pulsations, as shown in
Various attempts have been made to reduce the air borne pulsations in addition to the conventional method using a serially connected discharge dampener or silencer. One example, as disclosed in U.S. Pat. No. 4,215,977 to Weatherston, is to feed back a portion of the outlet flow through an injection port to the transfer chamber prior to discharge, in an attempt to equalize the cell pressure with the outlet hence reducing the pressure spike when the cell is suddenly exposed to the higher outlet pressure. One of the commercial applications of this technology, for example, is trademarked WhispAir manufactured by Dresser Roots. However, its effectiveness for pulsation attenuation is somehow limited, only achieving 5-10 dB reduction and a discharge dampener silencer is still needed in most of the applications. In theory, having a flow back prior to discharge could reduce pulsation amplitude by elongating releasing time to discharge pressure. But the prior art failed to recognize the existence of finite waves that travel in both directions, hence failed to attenuate them at its source: the waves are simply re-channeled and passed on to the down-stream dampener or silencer without much attenuation. Moreover, the prior art failed to address losses associated with high velocity jet flow through the injection port, compounding the pressure loss already existed from the discharge silencer.
In addition to pulsation problems associated with Roots compression, another often cited limitation is its “inherent mediocre efficiency”, typically ranging from 50-60%, and its low compression ratio (typically 2.2:1, or 18 psig) it can achieve without external cooling. The two factors are somehow tied together resulted from an outlet temperature limit of about 350 F. If efficiency could be higher, say up to 80%, it would dramatically increase the pressure ratio to 3:1, or 30 psig with discharge temperature still at 350 F. It is the low efficiency that hampers Roots compression from being used more widely to higher pressure ratios and more energy sensitive applications like air-conditioning and refrigeration.
One reason for its low efficiency is from extra leakages out of thermally distorted “banana shaped cylinder”. As gas goes from suction port on one side of the cylinder (inner casing) to discharge port on other side of the cylinder with a temperature rise, the discharge side (hot side) of the cylinder will typically bow towards the inlet side (cool side). However, while the blower cylinder is “banana shaped” in hot condition, the rotors remain its original straight shape and relatively uniform temperature, because they continuously experience the cyclic cool and hot air temperature during each rotation. This condition creates an uneven internal clearance at rotor tips and rotor ends between rotor and casing. Some clearance is increased from the cold state, say near discharge side, causing more internal leakage while the other clearance is decreased, posing potential rubbing and seizure failures. The later scenario often forces the design clearances to be set larger than necessary to avoid any potential contact. The result is more leakage flow. The recycled hot leakage gas raises the inlet temperature further more, further increases the discharge temperature. This becomes one of the dominant limiting factors for rotary lobe blower to reach pressure ratio like a dry sliding vane or screw type compressor. Moreover, since blower cylinder is often the structure support for bearing housings located on its sides, the precision bearing alignment in a cold state is thus shifted in a hot condition, causing potential vibrations which in turn inducing more noises.
Accordingly, it is always desirable to provide a new design and construction of a rotary lobe blower that is capable of achieving high pulsation and NVH reduction at source and improving blower efficiency without using an externally connected silencer while being kept light in mass, compact in size and suitable for high efficiency, high pressure ratio applications at the same time.
Accordingly, it is an object of the present invention to provide a rotary lobe blower with a shunt pulsation trap in parallel with the transfer chamber for trapping and attenuating pulsations close to the pulsation source.
It is a further object of the present invention to provide a rotary lobe blower with a shunt pulsation trap as an integral part of the blower casing that does not need externally connected pulsation dampeners or silencers so that it remains compact in size with smaller noise radiation surfaces and suitable for both mobile and stationary applications.
It is a further object of the present invention to provide a rotary lobe blower with a shunt pulsation trap that is capable of achieving higher adiabatic efficiency in the range equivalent or close to the conventional dry sliding vane or dry screw compressors, say up to about 80%.
It is a further object of the present invention to provide a rotary lobe blower with a shunt pulsation trap that is capable of achieving higher pressure ratio per stage in the range equivalent to the conventional dry sliding vane or dry screw compressors, say up to 3:1 ratio for pressure operation and up to 15:1 ratio for vacuum applications.
Referring particularly to the drawings for the purpose of illustration only and not limited for its alternative uses, there is illustrated:
a and 1b show a shock tube device with the pressure, wave distribution before and after diaphragm is broken;
a to 2e (PRIOR ART) show the compression cycle of a conventional rotary lobe blower with a silencer in series with discharge port;
a to 5d show the new Roots compression cycle of the present invention rotary lobe blower with a shunt pulsation trap;
e shows an exploded view of
a and 7b show a cross-sectional front and side view of a preferred embodiment of the shunt pulsation trap;
a and 9b show a cross-sectional side view of an alternative embodiment of the shunt pulsation trap with an additional wave reflector either before or after the trap exit;
a to 10c are cross-sectional views of different shapes of wave reflector of the shunt pulsation trap;
a to 12c show cross-sectional side views of another alternative embodiment of the shunt pulsation trap with a diaphragm as a dampener and pump;
a and 13b show cross-sectional views of a rotary valve and a reed valve in open and close positions;
a to 14c show cross-sectional side views of yet another alternative embodiment of the shunt pulsation trap with a piston as a dampener and pump;
a to 15c show cross-sectional side views of yet another alternative embodiment of the shunt pulsation trap with a diaphragm used as a dampener pump to drive an external load;
a and 16b show cross-sectional side views of yet another alternative embodiment of the shunt pulsation trap with a valve at trap outlet;
a to 18c show cross-sectional side views of yet another alternative embodiment of the shunt pulsation trap with a diaphragm used as a dampener and a supercharger when the pulsation trap outlet (feedback port) is open to atmosphere;
a and 19b show cross-sectional side views of yet another alternative embodiment of the shunt pulsation trap with a valve at trap outlet that is open to atmosphere.
Although specific embodiments of the present invention will now be described with reference to the drawings, it should be understood that such embodiments are examples only and merely illustrative of but a small number of the many possible specific embodiments which can represent applications of the principles of the present invention. Various changes and modifications obvious to one skilled in the art to which the present invention pertains are deemed to be within the spirit, scope and contemplation of the present invention as further defined in the appended claims.
It should also be pointed out that though drawing illustrations and description are devoted to a straight 3-lobe rotary air blower in the present invention, the principle can be applied to other types of rotary blowers with different numbers of lobes such as two-lobed, four-lobed or five-lobed, etc. Moreover, lobes can be either straight or twisted in its axial direction as long as both rotors have the same number of lobes. The principle can also be applied to other gases or liquid media, such as lobe or gear pumps are variations of Roots type blowers for liquid and the later uses involute lobe shape to allow the lobes to function as gears with rolling interfacial contact. In addition, lobe type expanders are the above variations too except being used to generate shaft power from media pressure drop.
As a brief introduction to the principle of the present invention,
The principal difference with the conventional rotary blower is in the compression and dampening phase: instead of waiting and delaying the compression and attenuation action until the lobe tip reaches the outlet by using a serially-connected dampener silencer, the shunt pulsation trap would start compression and induce pulsations into the trap as soon as the trapped cell is sealed from the inlet. It then dampens the pulsations within the trap simultaneously as the cell flow is being compressed before reaching the outlet. In this process, the flow cell being compressed and pulsations being attenuated are in parallel with each other instead of in series as in a conventional rotary blower.
There are several advantages associated with the parallel pulsation trap compared with the serially connected dampener silencer. First of all, pulsating wave is separated from the main cell flow so that an effective attenuation will not affect the main flow cell, resulting in both higher compression efficiency and attenuation efficiency. In a traditional serially connected silencer, both pulsating waves and fluid flow move together through the dampening elements inside the silencer where a better attenuation always comes at the expense of a higher pressure loss. So a compromise is often made in order to reduce losses by sacrificing the magnitude of pulsation dampening or have to use a very large volume silencer in a serial setup.
Secondly, the parallel pulsation trap attenuates pulsation much closer to the pulsation source than a serial one and is capable of using a more effective pulsation dampening means without affecting main flow efficiency. It can be built as an integral part and conforming shape of the blower casing with a much smaller size and footprint, less weight. By replacing the traditional serially connected silencer with an integral paralleled pulsation trap, it will be compact in size which also reduces noise radiation surfaces and is more suitable for mobile applications.
Moreover, the pulsation trap is so constructed that its inner casing is an integral part of the outer casing of the transfer chamber, and the outer casing are oversized surrounding the inner casing, resulting in a double-walled structure enclosing and concealing the noise source deeply inside the core. The casings could be made of cast iron that would be more waves absorptive, thicker and more rigid than a conventional sheet-metal silencer casing, hence less prone to noise radiation. In addition, the outer casing can be provided with an outer noise abatement jacket for further noise reduction.
With an integral pulsation trap, the blower outer casing would be more structurally rigid and resistant to stress or thermal related deformations. At the same time, the double-wall casing tends to have a more uniform temperature distribution inside the pulsation trap so that the traditional “banana shaped casing distortion” would be kept to minimum, thus reducing internal clearances and leakages, resulting in a higher blower efficiency.
With a better control over pulsation and pressure losses, the blower with the shunt pulsation trap is capable of achieving higher pressure ratio in a range equivalent to the conventional dry sliding vane or dry screw compressors with pressure rises, say up to 30 psig.
It should be pointed out that though drawing illustrations and description are devoted to a rotary blower with a single stage pulsation trap in the present invention, the principle can be applied to 2 or more stage cases corresponding to rotary blowers with more lobes such as four-lobed or five-lobed, etc. In the case of a two stage pulsation trap corresponding to a four-lobed blower, two traps are connected in series in such a way that the first trap inlet is at least one lobe span away from the blower inlet and the first trap outlet communicates with the second trap pressure, and the second trap inlet is at least one lobe span away from the first trap inlet and the second trap outlet communicates with the blower outlet pressure in order to achieve multistage compression and dampening. In other embodiments, at least two of the pulsation traps are connected in parallel, with the first trap inlet located at least one lobe span away in the flow direction from the suction port and the first trap outlet communicating with the atmosphere, and the second trap inlet located at least one lobe span away in the flow direction from the first trap inlet and the second trap outlet communicating with the atmosphere in order to achieve multistage compression and dampening.
Referring to
As an important novel and unique feature of the present invention, a shunt pulsation trap apparatus 50 is conformingly surrounding the rotary blower 10 of the present invention, and its cross-section is illustrated in
When a rotary blower 10 is equipped with the shunt pulsation trap apparatus 50 of the present invention, there exist both a reduction in the pulsation transmitted from rotary blower to blower downstream flow as well as an improvement in internal flow field (hence its adiabatic efficiency) and leakage control so that it is compactly suitable for mobile and stationary applications, and efficiently suitable for higher pressure applications like conventional dry sliding vane or dry screw compressors.
The theory of operation underlying the shunt pulsation trap apparatus 50 of the present invention is as follows. As illustrated in
Moreover, the hot feedback flow 53 sandwiched between the cored and integrated inner casing 20 and outer casing 28 acts like a water jacket of a piston cylinder in an internal combustion engine, tending to equalize temperature difference between the cool suction port 36 and hot discharge port 38. This would lead to less “banana shaped” thermal distortion of the inner casing 20, which in turn would decrease the internal end clearance and tip clearance. In addition, by getting rid of the serially connected silencer dampening the main discharge flow, the associated dampening losses are eliminated for the main cell flow. At the trap inlet 41, the induced injection flow could be “choked” as pressure ratio across reaches 1.89 seriously limiting flow capacity and creating losses. So using a converging cross-sectional-shaped nozzle 63 or a de Laval converging-diverging cross-sectional-shaped nozzle 65, as shown in
a-15c show some typical arrangements of yet other alternative embodiments of the rotary blower 10 with a shunt pulsation trap apparatus 80. In these embodiments, a diaphragm or a piston 81 is used as an alternative pulsation dampening device for the pulsation trap 80 to additionally provide for energy recovery (pumping).
a-c show embodiments that are similar to those of
a-c show a typical arrangement of yet another alternative embodiment of the rotary blower 10 with a shunt pulsation trap apparatus 80a. In this embodiment, the diaphragm or a piston 81a is used as an alternative pulsation dampening device for the pulsation trap 80a to additionally provide for energy recovery (pumping). In this embodiment as shown in
a-b show a typical arrangement of yet another alternative embodiment of the rotary blower 10 with a shunt pulsation trap apparatus 80b. In this embodiment, a control valve 86 is used as pulsation dampening device for the pulsation trap 80b, one on each side, to additionally provide for pulsation containment.
a-c show a typical arrangement of yet another alternative embodiment of the rotary blower 10 with a shunt pulsation trap apparatus 90a. In this embodiment, a diaphragm or a piston 91a is used as an alternative pulsation dampening device for the pulsation trap 90a, to additionally provide for energy recovery (pumping). Moreover, an inlet filter element 99a is used as an additional dampener in place of the side inlet 93 shown in
a-b show a typical arrangement of yet another alternative embodiment of the rotary blower 10 with a shunt pulsation trap apparatus 90b. In this embodiment, the pulsation trap outlet 98 is a side port and open to atmosphere instead of blower discharge port 38. Like in
It is apparent that there has been provided in accordance with the present invention a rotary blower with a shunt pulsation trap for effectively reducing the high pulsations without increasing overall size of the blower. While the present invention has been described in context of the specific embodiments thereof, other alternatives, modifications, and variations will become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations as fall within the broad scope of the appended claims.
This application claims priority to Provisional U.S. patent application entitled ROTARY LOBE BLOWER (PUMP) OR VACUUM PUMP WITH A SHUNT PULSATION TRAP, filed Jun. 8, 2010, having application No. 61/352,440, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2489887 | Houghton | Nov 1949 | A |
4215977 | Weatherston | Aug 1980 | A |
4558566 | Shirakura | Dec 1985 | A |
4984974 | Naya et al. | Jan 1991 | A |
5051077 | Yanagisawa et al. | Sep 1991 | A |
5218817 | Urata | Jun 1993 | A |
5370512 | Fujitani et al. | Dec 1994 | A |
5614699 | Yashiro et al. | Mar 1997 | A |
5975035 | McWhorter | Nov 1999 | A |
6331103 | Teraoka | Dec 2001 | B1 |
6874486 | Prior et al. | Apr 2005 | B2 |
8172039 | Park et al. | May 2012 | B2 |
20020033302 | Kaneko et al. | Mar 2002 | A1 |
20060243520 | Hertenstein et al. | Nov 2006 | A1 |
20080168961 | Prior et al. | Jul 2008 | A1 |
20100269797 | Prior | Oct 2010 | A1 |
20120020824 | Huang et al. | Jan 2012 | A1 |
20120171069 | Huang et al. | Jul 2012 | A1 |
20120237378 | Huang et al. | Sep 2012 | A1 |
20130247849 | Huang et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
60252117 | Dec 1985 | JP |
01032085 | Feb 1989 | JP |
03124986 | May 1991 | JP |
07332273 | Dec 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20110300014 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61352440 | Jun 2010 | US |