Rotary locking apparatus for fiber optic equipment trays and related methods

Information

  • Patent Grant
  • 8625950
  • Patent Number
    8,625,950
  • Date Filed
    Friday, December 18, 2009
    14 years ago
  • Date Issued
    Tuesday, January 7, 2014
    10 years ago
Abstract
A rotary locking apparatus for locking and unlocking a fiber optic equipment tray and related methods are disclosed. The rotary locking apparatus may be a torsional rotary locking apparatus. The torsional rotary locking apparatus includes a rod having at least one protrusion and a torsion spring attached to the rod. The torsion spring may also be attached to a tray mount on the fiber optic equipment tray. The rod can be rotatably actuated such that the at least one protrusion selectively engages or disengages one or more of a plurality of slots in a tray guide to allow the fiber optic equipment tray to move from a closed to an open position. The torsion spring may be configured to lock the fiber optic equipment tray in either the open or the closed position when the at least one protrusion engages one of the plurality of slots in the tray guide.
Description
BACKGROUND

1. Field of the Disclosure


The technology of the disclosure relates to fiber optic modules and fiber optic equipment trays provided in fiber optic equipment to support and manage fiber optic connections.


2. Technical Background


Benefits of optical fiber include extremely high bandwidth and low noise transmission. Because of these advantages, optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. Fiber optic networks employing optical fiber are being developed and used to deliver voice, video, and data transmissions to subscribers over both private and public networks. These fiber optic networks often include separated connection points linking optical fibers to provide “live fiber” from one connection point to another connection point. In this regard, fiber optic connection equipment, which is also referred to as fiber optic equipment, is located in data distribution centers or central offices to support interconnections.


The fiber optic equipment is customized based on application need. The fiber optic equipment is typically included in housings that are mounted in equipment racks for organizational purposes and to optimize use of space. One example of such fiber optic equipment is a fiber optic module. A fiber optic module is designed to provide cable-to-cable fiber optic connections and manage the polarity of fiber optic cable connections. A fiber optic module may be mounted to a chassis or housing which is then mounted inside an equipment rack or cabinet. The chassis may be provided in the form of, or include, a tray that is extendable from the equipment rack like a drawer. This allows a technician access to fiber optic connections and the fiber optic modules mounted in the equipment rack without removing the fiber optic module from the equipment rack.


Even with advancements in access to the fiber optic modules, the labor associated with installing fiber optic modules and making optical connections is significant. For example, for a field technician to install a new fiber optic module, the field technician typically loads trunk cables in the rear section of a fiber optic equipment rack. The field technician then feeds the connectorized fanout legs from the trunk cable to the front of the equipment rack. The field technician then walks around to the front of the equipment rack to connect the fanout legs to a fiber optic module. It may be beneficial to be able to access fiber optic modules and fiber optic connections from both the front and the rear of the equipment rack. In addition, it would be advantageous to be able to load fiber optic modules and other equipment into a fiber optic equipment tray in the equipment rack without the fiber optic equipment tray sliding forward or backward. Otherwise, the force applied to fiber optic modules when establishing fiber optic connections can cause the fiber optic modules or other fiber optic equipment to be moved or be dislodged.


SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed in the detailed description include a rotary locking apparatus for locking a fiber optic equipment tray in both a locked and unlocked position. The fiber optic equipment tray can support fiber optic equipment, including but not limited to a fiber optic module. In one embodiment, the rotary locking apparatus is a torsional rotary locking apparatus. The torsional rotary locking apparatus can be locked to secure the fiber optic equipment tray about a chassis or other apparatus to prevent movement of the fiber optic equipment tray. In this manner, for example, the fiber optic equipment tray can withstand a force exerted when fiber optic modules or other equipment are loaded into the fiber optic equipment tray without the fiber optic equipment tray moving. The rotary locking apparatus can also be unlocked to allow the fiber optic equipment tray to be moved for access to fiber optic equipment supported therein.


In one embodiment, the torsional rotary locking apparatus may include a rod having at least one protrusion. A torsion spring may be attached to one end of the rod, and is configured to rotatably bias the rod. The torsion spring may also be attached to a tray mount that is disposed on the surface of the fiber optic equipment tray. The at least one protrusion can be configured to selectively engage one or more of a plurality of slots in a tray guide disposed on a chassis, where the tray guide is configured to receive the fiber optic equipment tray. The rod can be rotatably actuated such that the at least one protrusion selectively engages or disengages one or more of the plurality of slots in the tray guide. In one embodiment, the torsion spring is configured to lock the fiber optic equipment tray in a closed position when the at least one protrusion engages a first one of the plurality of slots in the tray guide. When the rod is rotatably actuated to allow the protrusion of the rod to be disengaged from a first one of the plurality of slots, the fiber optic equipment tray is movable in the chassis. In one embodiment, the torsion spring is further configured to lock the fiber optic equipment tray in an open position when the at least one protrusion engages a second one of the plurality of slots in the tray guide.


In another embodiment, a fiber optic apparatus is disclosed that comprises at least one tray guide disposed on a chassis, the at least one tray guide having a plurality of slots and configured to receive at least one fiber optic equipment tray having at least one tray mount. The at least one fiber optic equipment tray may include a rod having at least one protrusion, the at least one protrusion configured to selectively engage one or more of the plurality of slots in the tray guide and a torsion spring configured to attach to the rod and to the tray mount on the fiber optic equipment tray. The torsion spring is configured to lock the fiber optic equipment tray in a closed position when the at least one protrusion engages a first one of the plurality of slots in the tray guide. The rod is further configured to be rotatably actuated to allow the protrusion to be disengaged from a first one of the plurality of slots such that the fiber optic equipment tray is movable within the at least one tray guide. In one embodiment, there may be a plurality of tray guides and a plurality of corresponding fiber optic equipment trays. Each of the plurality of fiber optic equipment trays may have a rod with at least one protrusion and a torsion spring as set forth above.


In another embodiment, a method for selectively moving a fiber optic equipment tray using the torsional rotary locking apparatus is disclosed. The method comprises providing at least one tray guide disposed in a chassis, the at least one tray guide having a plurality of slots and configured to receive at least one fiber optic equipment tray. The fiber optic equipment tray may be locked in a closed position by at least one protrusion on a rod engaged in one of the plurality of slots in the tray guide. The rod is attached via a torsion spring to a mount on the least one fiber optic equipment tray and may be rotatably actuated such that the at least one protrusion on the rod is not engaged with one of the plurality of slots of the at least one tray guide. Once the protrusion is not engaged with one of the plurality of slots, the fiber optic equipment tray may be moved in either a forward or backward direction until the at least one protrusion is selectively engaged with one of the plurality of slots. In one embodiment, the method comprises rotatably actuating the rod by turning an actuator 90 degrees to release the at least one protrusion from one of the plurality of slots. In another embodiment, the method comprises releasing the actuator once the at least one protrusion is selectively engaged with the one or more of the plurality of slots.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a front perspective view of an exemplary fiber optic equipment rack with an installed exemplary 1-U size chassis supporting high-density fiber optic modules to provide a given fiber optic connection density and bandwidth capability, according to one embodiment;



FIG. 2 is a rear perspective close-up view of the chassis of FIG. 1 with fiber optic modules installed in fiber optic equipment trays installed in the fiber optic equipment;



FIG. 3 is a front perspective view of one fiber optic equipment tray with installed fiber optic modules configured to be installed in the chassis of FIG. 1;



FIG. 4 is a close-up view of the fiber optic equipment tray of FIG. 3 with an exemplary torsional rotary locking apparatus;



FIG. 5 is a side view of a pair of exemplary torsional rotary locking apparatuses for a pair of fiber optic equipment trays;



FIG. 6 is a close-up view of an exemplary rod, exemplary torsion spring, and exemplary tray mount of the exemplary torsional rotary locking apparatus of FIG. 4;



FIG. 7 is a close-up view of the exemplary torsional rotary locking apparatuses of FIG. 5 showing how a protrusion fits into an slot on a tray guide in one embodiment;



FIG. 8A is a top view of the exemplary torsional rotary locking apparatus of FIG. 4;



FIG. 8B is a top view of another exemplary torsional rotary locking apparatus of FIG. 4;



FIG. 9 is an alternate top view of the exemplary torsional rotary locking apparatus of FIG. 4;



FIG. 10 is a front perspective view of an alternate exemplary 4-U size fiber optic chassis that can support the fiber optic equipment trays and fiber optic modules according to the fiber optic equipment trays and fiber optic modules disclosed herein;



FIG. 11 shows a schematic representation (not to scale) of the refractive index profile of a cross-section of the glass portion of an exemplary embodiment of a multimode optical fiber disclosed herein wherein the depressed-index annular portion is offset from the core and is surrounded by an outer annular portion; and



FIG. 12 is a schematic representation (not to scale) of a cross-sectional view of the optical waveguide fiber of FIG. 11.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the embodiments disclosed herein, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.


Embodiments disclosed in the detailed description include a rotary locking apparatus for locking a fiber optic equipment tray in both a locked and unlocked position. The fiber optic equipment tray can support fiber optic equipment, including but not limited to a fiber optic module. In one embodiment, the rotary locking apparatus is a torsional rotary locking apparatus. The torsional rotary locking apparatus can be locked to secure the fiber optic equipment tray about a chassis or other apparatus to prevent movement of the fiber optic equipment tray. In this manner, for example, the fiber optic equipment tray can withstand a force exerted when fiber optic modules or other equipment are loaded into the fiber optic equipment tray without the fiber optic equipment tray moving. The rotary locking apparatus can also be unlocked to allow the fiber optic equipment tray to be moved for access to fiber optic equipment supported therein.


In one embodiment, a torsional rotary locking apparatus for locking a fiber optic equipment tray in both an open and a closed position is provided. The torsional rotary locking apparatus may include a rod having at least one protrusion. A torsion spring may be attached to one end of the rod, and is configured to rotatably bias the rod. The torsion spring may also be attached to a tray mount that is disposed on the surface of the fiber optic equipment tray. The at least one protrusion can be configured to selectively engage one or more of a plurality of slots in a tray guide disposed on a chassis, where the tray guide is configured to receive the fiber optic equipment tray. The rod can be rotatably actuated such that the at least one protrusion selectively engages or disengages one or more of the plurality of slots in the tray guide. In one embodiment, the torsion spring is configured to lock the fiber optic equipment tray in a closed position when the at least one protrusion engages a first one of the plurality of slots in the tray guide. When the rod is rotatably actuated to allow the protrusion of the rod to be disengaged from a first one of the plurality of slots, the fiber optic equipment tray is movable in the chassis. In one embodiment, the torsion spring is further configured to lock the fiber optic equipment tray in an open position when the at least one protrusion engages a second one of the plurality of slots in the tray guide.


Before disclosing the torsional rotary locking apparatus in greater detail starting with FIG. 4 as discussed below, an exemplary fiber optic equipment environment in which the disclosed torsional rotary locking apparatus may be provided is first discussed with regard to FIGS. 1-3. In this regard, FIG. 1 illustrates an exemplary fiber optic equipment 10 from a front perspective view. The fiber optic equipment 10 supports high-density fiber optic modules that support a high fiber optic connection density and bandwidth in a 1-U or 1-RU space (U and RU hereinafter referred to as “U”), as will be described in greater detail below. The fiber optic equipment 10 may be provided at a data distribution center or central office to support cable-to-cable fiber optic connections and to manage a plurality of fiber optic cable connections. As will be described in greater detail below, the fiber optic equipment 10 has one or more fiber optic equipment trays that each support one or more fiber optic modules. However, the fiber optic equipment 10 could also be adapted to support one or more fiber optic patch panels or other fiber optic equipment that supports fiber optic components and connectivity.


The fiber optic equipment 10 includes a fiber optic equipment chassis 12 (“chassis 12”). The chassis 12 is shown as being installed in a fiber optic equipment rack 14. The fiber optic equipment rack 14 contains two vertical rails 16A, 16B that extend vertically and include a series of apertures 18 for facilitating attachment of the chassis 12 inside the fiber optic equipment rack 14. The chassis 12 is attached and supported by the fiber optic equipment rack 14 in the form of shelves that are stacked on top of each other within the vertical rails 16A, 16B. As illustrated, the chassis 12 is attached to the vertical rails 16A, 16B. The fiber optic equipment rack 14 may support 1-U or 1-RU-sized shelves, with “U” or “RU” equal to a standard 1.75 inches in height and nineteen (19) inches in width. In certain applications, the width of “U” may be twenty-three (23) inches. In this embodiment, the chassis 12 is 1-U in size; however, the chassis 12 could be provided in a size greater than 1-U as well.


As will be discussed in greater detail later below, the fiber optic equipment 10 includes a plurality of extendable fiber optic equipment trays 20 that each carries one or more fiber optic modules 22. The chassis 12 and fiber optic equipment trays 20 support fiber optic modules 22 that support high-density fiber optic modules and a fiber optic connection density and bandwidth connections in a given space, including in a 1-U space. FIG. 1 shows exemplary fiber optic components 23 disposed in the fiber optic modules 22 that support fiber optic connections. For example, the fiber optic components 23 may be fiber optic adapters or fiber optic connectors. As will also be discussed in greater detail later below, the fiber optic modules 22 in this embodiment can be provided such that the fiber optic components 23 can be disposed through a majority (at least eighty-five percent (85%) in one embodiment) of the width of the front side or face of the fiber optic module 22, as an example. The fiber optic components 23 can be disposed through a front opening of the fiber optic module 22. In one embodiment, the front opening may be approximately 90 millimeters (mm) or less. In one embodiment, a fiber optic connection density of at least one fiber optic connection per 7.0 mm of width of the front opening of the fiber optic modules 22 may be obtained for simplex or duplex fiber optic components 23. In this example, six (6) duplex or twelve (12) simplex fiber optic components 23 may be installed in each fiber optic module 22. The fiber optic equipment trays 20 in this embodiment support up to four (4) of the fiber optic modules 22 in approximately the width of a 1-U space, and three (3) fiber optic equipment trays 20 in the height of a 1-U space for a total of twelve (12) fiber optic modules 22 in a 1-U space. Thus, for example, if six (6) duplex fiber optic components 23 were disposed in each of the twelve (12) fiber optic modules 22 installed in fiber optic equipment trays 20 of the chassis 12 as illustrated in FIG. 1, a total of one hundred forty-four (144) fiber optic connections, or seventy-two (72) duplex channels (i.e., transmit and receive channels), would be supported by the chassis 12 in a 1-U space. If five (5) duplex fiber optic adapters are disposed in each of the twelve (12) fiber optic modules 22 installed in fiber optic equipment trays 20 of the chassis 12, a total of one hundred twenty (120) fiber optic connections, or sixty (60) duplex channels, would be supported by the chassis 12 in a 1-U space. The chassis 12 also supports at least ninety-eight (98) fiber optic components 23 in a 1-U space wherein at least one of the fiber optic components is a simplex or duplex fiber optic component 23.


If multi-fiber fiber optic components 23 were installed in the fiber optic modules 22, such as MPO components for example, higher fiber optic connection density and bandwidths would be possible over other chassis 12 that use similar fiber optic components 23. For example, if up to four (4) twelve (12) fiber MPO fiber optic components 23 were disposed in each fiber optic module 22, and twelve (12) of the fiber optic modules 22 were disposed in the chassis 12 in a 1-U space, the chassis 12 would support up to five hundred seventy-six (576) fiber optic connections in a 1-U space. If up to four (4) twenty-four (24) fiber MPO fiber optic components 23 were disposed in each fiber optic module 22, and twelve (12) of the fiber optic modules 22 were disposed in the chassis 12 in a 1-U space, the chassis 12 would support up to one thousand one hundred fifty-two (1152) fiber optic connections in a 1-U space.



FIG. 2 is a rear perspective close-up view of the chassis 12 of FIG. 1 with fiber optic modules 22 loaded with fiber optic components 23 and installed in fiber optic equipment trays 20 installed in the chassis 12. Module rails 28A, 28B are disposed on each side of each fiber optic module 22. The module rails 28A, 28B are configured to be inserted within tray channels 30 of module rail guides 32 disposed in the fiber optic equipment tray 20, as illustrated in more detail in FIG. 3. Note that any number of module rail guides 32 can be provided. The fiber optic module 22 can be installed from both a front end 34 and a rear end 36 of the fiber optic equipment tray 20 in this embodiment. If it is desired to install the fiber optic module 22 in the fiber optic equipment tray 20 from the rear end 36, a front end 33 of the fiber optic module 22 can be inserted from the rear end 36 of the fiber optic equipment tray 20. More specifically, the front end 33 of the fiber optic module 22 is inserted into the tray channels 30 of the module rail guides 32. The fiber optic module 22 can then be pushed forward within the tray channels 30 until the fiber optic module 22 reaches the front end 34 of the fiber optic equipment tray 20. The fiber optic modules 22 can be moved towards the front end 34 until the fiber optic modules 22 reach a stop or locking feature disposed in the front end 34.


The fiber optic module 22 can be locked into place in the fiber optic equipment tray 20 by pushing the fiber optic module 22 forward to the front end 34 of the fiber optic equipment tray 20. A locking feature in the form of a front stop 38 is disposed in the module rail guides 32, as illustrated in FIG. 3. The front stop 38 prevents the fiber optic module 22 from extending beyond the front end 34. When it is desired to remove a fiber optic module 22 from the fiber optic equipment tray 20, a front module tab 40 also disposed in the module rail guides 32 and coupled to the front stop 38 can be pushed downward to engage the front stop 38. As a result, the front stop 38 will move downward away from the fiber optic module 22 such that the fiber optic module 22 is not obstructed from being pulled forward. The fiber optic module 22, and in particular its module rails 28A, 28B (FIG. 2), can be pulled forward along the module rail guides 32 to remove the fiber optic module 22 from the fiber optic equipment tray 20.


The fiber optic module 22 can also be removed from the rear end 36 of the fiber optic equipment tray 20. To remove the fiber optic module 22 from the rear end 36 of the fiber optic equipment tray 20, a latch 44 is disengaged by pushing a lever 46 (see FIGS. 2 and 3) inward towards the fiber optic module 22 to release the latch 44 from the module rail guide 32. To facilitate pushing the lever 46 inward towards the fiber optic module 22, a finger hook 48 is provided adjacent to the lever 46 so the lever 46 can easily be squeezed into the finger hook 48 by a thumb and index finger.


With continuing reference to FIG. 3, the fiber optic equipment tray 20 may also contain extension members 50. Routing guides 52 may be conveniently disposed on the extension members 50 to provide routing for optical fibers or fiber optic cables connected to fiber optic components 23 disposed in the fiber optic modules 22 (FIG. 3). The routing guides 52′ on the ends of the fiber optic equipment tray 20 may be angled with respect to the module rail guides 32 to route optical fibers or fiber optic cables at an angle to the sides of the fiber optic equipment tray 20. Pull tabs 54 may also be connected to the extension members 50 to provide a means to allow the fiber optic equipment tray 20 to easily be pulled out from and pushed into the chassis 12.


As illustrated in FIG. 3, the fiber optic equipment tray 20 also contains tray rails 55. The tray rails 55 are configured to be received in tray guides 56 disposed in the chassis 12 to retain and allow the fiber optic equipment trays 20 to move in and out of the chassis 12, as seen in FIG. 4 and discussed in more detail below.



FIG. 4 is a close-up view of the fiber optic equipment tray 20 of FIG. 3 with an exemplary torsional rotary locking apparatus 59. The fiber optic equipment tray 20 having a module rail guide 32 as discussed above in FIGS. 2 and 3 is shown. On the edge of the fiber optic equipment tray 20, outside the module rail guide 32, the torsional rotary locking apparatus 59 is provided. In this embodiment, the torsional rotary locking apparatus 59 includes a rod 60 having a torsion spring 62 on one end. The torsion spring 62 connects the rod 60 to a tray mount 64 attached to the bottom surface of the fiber optic equipment tray 20. The rod 60 extends through an opening in an end of the fiber optic equipment tray 20 and attaches to an actuator 66. In one embodiment, the actuator 66 may be a knob.


In order to lock the fiber optic equipment tray 20 in the open or closed position, the torsional rotary locking apparatus 59 shown in FIG. 4 may be used. In the closed position, a protrusion 68 of the rod 60 (as discussed more fully with respect to FIG. 5 below) is locked into one of the plurality of slots 58 on the tray guide 56. The torsion spring 62 maintains the rod 60 in the closed position. To open the fiber optic equipment tray 20, a technician can turn the rod 60 in order to unlock the torsional rotary locking apparatus 59. In one embodiment, this may be done by turning the actuator 66 far enough such that the protrusion 68 disengages from the slot 58. In another embodiment, the actuator 66 may be turned ninety (90) degrees in order to unlock the torsional rotary locking apparatus 59. Once the torsional rotary locking apparatus is unlocked, the fiber optic equipment tray 20 can move within the chassis. In one embodiment, the fiber optic equipment tray 20 also contains tray rails 55, which are configured to be received in tray guides 56 disposed in the chassis 12 to retain and allow the fiber optic equipment trays 20 to move in and out of the chassis 12.


In this embodiment, a tray guide 56 disposed in the chassis 12 is configured to receive the fiber optic equipment tray 20. The tray guide 56 may be composed of any material desired, including but not limited to a polymer, plastic, or metal. The tray guide 56 may have a plurality of slots 58 disposed along the length of the tray guide 56. In one embodiment, there are two slots 58, one slot corresponding to the fiber optic equipment tray 20 being in a closed position, and one slot corresponding to the fiber optic equipment tray 20 being in an open position. In one embodiment, the slots 58 may be detents disposed in the tray guides 56 to provide stopping or resting positions. The slots 58 may have chamfers or radii on the edges of the slots 58 in one embodiment. The fiber optic equipment trays 20 can be moved in and out of the chassis 12 by their tray rails 55 moving within the tray guides 56. In this manner, the fiber optic equipment trays 20 can be independently movable about the tray guides 56 in the chassis 12.


Although FIG. 4 shows only a single tray guide 56 on the right side of the fiber optic equipment tray 20, another tray guide 56 may be disposed on the left side of the fiber optic equipment tray 20. The tray guides 56 may be installed opposite and facing each other in the chassis 12 to provide complementary tray guides 56 for the tray rails 55 of the fiber optic equipment trays 20 received therein. If it is desired to access a particular fiber optic equipment tray 20 and/or a particular fiber optic module 22 in a fiber optic equipment tray 20, the pull tab 54 of the desired fiber optic equipment tray 20 can be pulled forward to cause the fiber optic equipment tray 20 to extend forward out from the chassis 12. The fiber optic module 22 can be removed from the fiber optic equipment tray 20 as previously discussed. When access is completed, the fiber optic equipment tray 20 can be pushed back into the chassis 12 wherein the tray rails 55 move within the tray guides 56 disposed in the chassis 12.


In order to be able to access the fiber optic modules 22 on the fiber optic equipment trays 20 from both the front and the rear of the chassis 12, it is desirable that the fiber optic equipment tray 20 slide in both directions, i.e., toward the front and toward the back of the chassis 12. In addition, it is desirable that the fiber optic equipment tray 20 be able to lock in both the open position (where the fiber optic equipment tray 20 has been pulled toward the front or rear of the chassis 12) and in the closed position. In the closed position, the fiber optic equipment tray 20 may be able to withstand a certain force such that a technician can load fiber optic modules 22 or other equipment, or install connectors into adapters in the fiber optic module 22, from the rear of the chassis 12 without fear of the fiber optic equipment trays 20 sliding forward. In the open position, the fiber optic equipment tray 20 may be able to withstand or resist a force consistent with installing fiber optic modules 22 or other equipment, or installing connectors into adapters in the fiber optic module 22, from the front of the chassis 12 without fear of the fiber optic equipment trays 20 sliding backward. In one embodiment, when installing connectors into adapters in the fiber optic module 22, this force may be six (6) to nine (9) pounds. In another embodiment, when loading fiber optic modules 22 into the tray channels 30 of the rail guides 32, this force may be two (2) to three (3) pounds. In order to address these different forces, a torsional rotary locking apparatus 59 as provided in FIG. 4 may be used to lock the fiber optic equipment tray 20 about the chassis 12 or other equipment and to allow the fiber optic equipment tray 20 to be moved in and out of the chassis 12 when unlocked. To provide a specific example of how a torsional rotary locking apparatus 59 as provided in FIG. 4 may be used to lock or unlock one or more fiber optic equipment trays 20, FIG. 5 is provided.


Referring now to FIG. 5, a side view of a pair of exemplary torsional rotary locking apparatuses 59A, 59B is shown for a pair of fiber optic equipment trays 20. In FIG. 5, two fiber optic equipment trays 20 are shown, each having a rod 60 having a torsion spring 62 at one end connected to a tray mount 64. Each of the rods 60 may have at least one protrusion 68 which is configured to be received by the slots 58 on the tray guides 56 (FIG. 4). Although each rod 60 in FIG. 5 is shown as having only one protrusion 68, each rod 60 may have more than one protrusion 68 in certain embodiments. In order to lock the fiber optic equipment tray 20 in the open or closed position, one of the torsional rotary locking apparatuses 59, 59A, or 59B shown in FIGS. 4 and 5 may be used. In the closed position, the protrusion 68 of the rod 60 is locked into one of the plurality of slots 58 on the tray guide 56. The torsion spring 62 maintains the rod 60 in the closed position. In the closed position, the torsion spring 62 and the protrusion 68 being in the slot 58 may be able to withstand a certain force such that a technician can load fiber optic modules 22 or other equipment from the rear of the chassis 12 without fear of the fiber optic equipment tray 20 sliding forward or backward.


To open the fiber optic equipment tray 20, a technician can turn the rod 60 in order to allow the protrusion 68 to disengage from the slot 58. In one embodiment, this may done by turning the actuator 66 ninety (90) degrees. FIG. 5 shows the position of the rod 60 and the protrusion 68 in both the open and closed positions, as seen in the different positioning of the protrusion 68 in the two fiber optic equipment trays 20 in FIG. 5, with the actuator 66 not being shown on the top fiber optic equipment tray 20 so that the turning of the rod 60 can be seen.


When the technician turns the rod 60 so that the protrusion 68 is released from the slot 58, the fiber optic equipment tray 20 may then be pulled forward toward the front of the chassis 12 or pushed backward toward the rear of the chassis 12 by the technician. In one embodiment, the fiber optic equipment tray 20 may be pushed backward until a positive stop 70 (see FIG. 8A) stops the fiber optic equipment tray 20 in the open position. In one embodiment, the positive stop 70 may be located toward the back of the fiber optic equipment tray 20 such that a fixed portion of the torsional rotary locking apparatus 59 will make contact with the positive stop 70 and the protrusion 68 can engage with one of the plurality of slots 58 in the tray guide 56. In this manner, the positive stop 70 will keep the fiber optic equipment tray 20 from being pushed completely out of the chassis 12.


In another embodiment, shown in FIG. 8B, an overhang stop 72 may be added to an edge of the tray guide 56 in order to stop the fiber optic equipment tray 20 from being pushed completely out of the chassis 12. In the embodiment of FIG. 8B, the overhang stop 72 will stop the protrusion 68 of the rod 60 from going past the slot 58 when the fiber optic equipment tray 20 is being moved by the technician.


In either embodiment of FIG. 8A or FIG. 8B, when the positive stop 70 or the overhang stop 72 stops the fiber optic equipment tray 20, the technician may then release the actuator 66 and the protrusion 68 of the rod 60 can engage a second one of the plurality of slots 58 in the tray guide 56 in order to lock the fiber optic equipment tray 20 in the open position. In another embodiment, there may be a plurality of positive stops 70 and/or overhang stops 72. For example, there may be a positive stop 70 or a overhang stop 72 positioned toward the front of the fiber optic equipment tray 20 such that the fiber optic equipment tray 20 may be pulled forward until the positive stop 70 or overhang stop 72 stops the fiber optic equipment tray 20 in order to keep the fiber optic equipment tray 20 from being pulled completely out of the front of the chassis 12.


In one embodiment, a first one of the plurality of slots 58 and a second one of the plurality of slots 58 are spaced a certain fixed distance apart. In another embodiment, there may be more than two slots 58. In some embodiments, the distance between slots 58 may vary. The distance between the first and second slots 58 may be between 3 and 4 inches in one embodiment. In one embodiment, the distance between the first and second slots is 3.6 inches. When the protrusion 68 of the rod 60 fits into the second one of the plurality of slots 58 in the tray guide 56, the fiber optic equipment tray 20 is locked in the open position and the fiber optic equipment tray 20 may be able to resist a force consistent with installing fiber optic modules 22 or other equipment, or installing connectors into adapters in the fiber optic module 22, from the front of the chassis 12 without fear of the fiber optic equipment tray 20 sliding backward.



FIG. 6 is a close-up view of the tray mount 64 and the torsion spring 62 of the torsional rotary locking apparatus of FIG. 4. In one embodiment, the torsion spring 62 is attached at one end to the protrusion 68 of the rod 60. The torsion spring 62 is attached at the other end to the tray mount 64. In one embodiment, part of the torsion spring 62 may fit over the protrusion 68 of the rod 60. In this manner, when the rod 60 is rotated, the torsion spring 62 attached to the protrusion 68 will allow the protrusion 68 to also rotate and disengage from a slot 58 of the tray guide 56, as shown in more detail below in FIG. 7.



FIG. 7 is a close-up view of how the torsional rotary locking apparatuses of FIG. 5 fit into the slots 58 of the tray guides 56 in this embodiment. There are two (2) slots 58 labeled in FIG. 7. Looking at the slot 58 on the top of FIG. 7, the protrusion 68 of the rod 60 is about to engage or has just disengaged with the slot 58 of the tray guide 56, such that the fiber optic equipment tray 20 associated with this rod 60 would be movable within the tray guide 56. Looking at the second labeled slot 58 on the bottom of FIG. 7, the protrusion 68 of a second rod 60 (which is mostly hidden) is already engaged with the slot 58 of the tray guide 56, and the fiber optic equipment tray 20 associated with this protrusion 58 is locked into position.



FIGS. 8A, 8B, and 9 are top views of the torsional rotary locking apparatus of FIG. 4. In certain embodiments, as shown in FIGS. 8A and 8B, the torsion spring 62 is attached at one end to the protrusion 68. The torsion spring 62 is attached at the other end to the tray mount 64. The protrusion 68 fits into the slot 58 of the tray guide 56. Referring to FIG. 5 and either FIG. 8A or 8B together, when the technician turns the rod 60 (as shown in FIG. 5) so that the protrusion 68 is released from the slot 58, the fiber optic equipment tray 20 may then be pulled forward by the technician. In one embodiment, the fiber optic equipment tray 20 may be pulled forward until a front stop 70 stops the fiber optic equipment tray 20 in the open position. Referring to FIG. 5 and either FIG. 8A or 8B together, the technician may then release the actuator 66 and the protrusion 68 of the rod 60 can engage a second one of the plurality of slots 58 in tray guide 56 in order to lock the fiber optic equipment tray 20 in the open position. In one embodiment, as shown in FIG. 9, the rod 60 may extend through the tray mount 64.


In one embodiment, the length of the rod 60 may vary in order to provide different sliding distances for the fiber optic equipment tray 20. In addition, the diameter of the rod 60 may vary in one embodiment in order to provide improved stiffness. The rod 60 may be composed of various metals, polymers, or plastics. Further, in one embodiment, the force of the torsion spring 62 can vary.



FIG. 10 illustrates another embodiment of fiber optic equipment 260 that can include fiber optic equipment trays previously described above and illustrated to support fiber optic modules. The fiber optic equipment 260 in this embodiment includes a 4-U sized chassis 262 configured to hold fiber optic equipment trays each supporting one or more fiber optic modules. The supported fiber optic equipment trays may be any of the fiber optic equipment trays 20 previously described above. The supported fiber optic modules may be any of the fiber optic modules 22 previously described above. In this example, the chassis 262 is illustrated as supporting twelve (12) fiber optic equipment trays 20 each capable of supporting fiber optic modules 22.


Tray guides similar to the tray guides 56 described above may be used in the chassis 262 to support tray rails similar to the tray rails 55 of the fiber optic equipment trays 20 described above therein and to allow each fiber optic equipment tray 20 to be independently extended out from and retracted back into the chassis 262. A front door 264 is attached to the chassis 262 and is configured to close about the chassis 262 to secure the fiber optic equipment trays 20 contained in the chassis 262. A cover 266 is also attached to the chassis 262 to secure the fiber optic equipment trays 20. Up to twelve (12) fiber optic equipment trays 20 can be provided in the chassis 262. However, the fiber optic connection densities and connection bandwidths are still the same per 1-U space. The fiber optic connection densities and connection bandwidth capabilities have been previously described and are equally applicable for the chassis 262 of FIG. 10.


Using the torsional rotary locking apparatus disclosed herein allows the fiber optic equipment tray to be locked in both a closed position and in an open position. When the protrusion is locked in one of the plurality of slots on the tray guide, the torsion spring maintains the rod in the closed position such that the fiber optic equipment tray can withstand a force exerted when fiber optic modules or other equipment are loaded into the fiber optic equipment tray from the rear of the chassis without the fiber optic equipment tray sliding forward. When the rod is attached is rotatably actuated such that the at least one protrusion on the rod is not engaged with one of the plurality of slots in the at least one tray guide, the fiber optic equipment tray may be moved in either a forward or backward direction until the at least one protrusion is selectively engaged with one of the plurality of slots. In one embodiment, the fiber optic equipment tray may be pulled forward until the protrusion on the rod is engaged with one of the plurality of slots, which then locks the fiber optic equipment tray in the open position. In the locked open position, the fiber optic equipment tray can withstand a force exerted when fiber optic modules or other equipment are loaded into the fiber optic equipment tray from the front of the chassis without the fiber optic equipment tray sliding backward. In this manner, the disclosed torsional rotary locking apparatus allows for bidirectional movement of the fiber optic equipment tray between a locked closed position and a locked open position, such that the fiber optic equipment tray is accessible from both the front and the rear of the chassis. The disclosed torsional rotary locking apparatus is not dependent on pressure and does not degrade over time.


Many modifications and other embodiments besides the embodiments set forth herein will come to mind to one skilled in the art to which the disclosed embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. These modifications include, but are not limited to, number or type of fiber optic equipment, fiber optic module, fiber optic equipment tray, features included in the fiber optic equipment tray. Any size equipment, including but not limited to 1-U, 2-U and 4-U sizes may include some or all of the aforementioned features and fiber optic modules disclosed herein and some or all of their features. Further, the modifications are not limited to the type of fiber optic equipment tray or the means or device to support fiber optic modules installed in the fiber optic equipment trays. The fiber optic modules can include any fiber optic connection type, including but not limited to fiber optic connectors and adapters, and number of fiber optic connections, density, etc.


Further, as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more bare optical fibers, loose-tube optical fibers, tight-buffered optical fibers, ribbonized optical fibers, bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® optical fiber, manufactured by Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163.


Bend resistant multimode optical fibers may comprise a graded-index core region and a cladding region surrounding and directly adjacent to the core region, the cladding region comprising a depressed-index annular portion comprising a depressed relative refractive index relative to another portion of the cladding. The depressed-index annular portion of the cladding is preferably spaced apart from the core. Preferably, the refractive index profile of the core has a parabolic or substantially curved shape. The depressed-index annular portion may, for example, comprise a) glass comprising a plurality of voids, or b) glass doped with one or more downdopants such as fluorine, boron, individually or mixtures thereof. The depressed-index annular portion may have a refractive index delta less than about −0.2% and a width of at least about 1 micron, said depressed-index annular portion being spaced from said core by at least about 0.5 microns.


In some embodiments that comprise a cladding with voids, the voids in some preferred embodiments are non-periodically located within the depressed-index annular portion. By “non-periodically located” we mean that when one takes a cross section (such as a cross section perpendicular to the longitudinal axis) of the optical fiber, the non-periodically disposed voids are randomly or non-periodically distributed across a portion of the fiber (e.g. within the depressed-index annular region). Similar cross sections taken at different points along the length of the fiber will reveal different randomly distributed cross-sectional hole patterns, i.e., various cross sections will have different hole patterns, wherein the distributions of voids and sizes of voids do not exactly match for each such cross section. That is, the voids are non-periodic, i.e., they are not periodically disposed within the fiber structure. These voids are stretched (elongated) along the length (i.e. generally parallel to the longitudinal axis) of the optical fiber, but do not extend the entire length of the entire fiber for typical lengths of transmission fiber. It is believed that the voids extend along the length of the fiber a distance less than about 20 meters, more preferably less than about 10 meters, even more preferably less than about 5 meters, and in some embodiments less than 1 meter.


The multimode optical fiber disclosed herein exhibits very low bend induced attenuation, in particular very low macrobending induced attenuation. In some embodiments, high bandwidth is provided by low maximum relative refractive index in the core, and low bend losses are also provided. Consequently, the multimode optical fiber may comprise a graded index glass core; and an inner cladding surrounding and in contact with the core, and a second cladding comprising a depressed-index annular portion surrounding the inner cladding, said depressed-index annular portion having a refractive index delta less than about −0.2% and a width of at least 1 micron, wherein the width of said inner cladding is at least about 0.5 microns and the fiber further exhibits a 1 turn, 10 mm diameter mandrel wrap attenuation increase of less than or equal to about 0.4 dB/turn at 850 nm, a numerical aperture of greater than 0.14, more preferably greater than 0.17, even more preferably greater than 0.18, and most preferably greater than 0.185, and an overfilled bandwidth greater than 1.5 GHz-km at 850 nm.


50 micron diameter core multimode fibers can be made which provide (a) an overfilled (OFL) bandwidth of greater than 1.5 GHz-km, more preferably greater than 2.0 GHz-km, even more preferably greater than 3.0 GHz-km, and most preferably greater than 4.0 GHz-km at an 850 nm wavelength. These high bandwidths can be achieved while still maintaining a 1 turn, 10 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.5 dB, more preferably less than 0.3 dB, even more preferably less than 0.2 dB, and most preferably less than 0.15 dB. These high bandwidths can also be achieved while also maintaining a 1 turn, 20 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.2 dB, more preferably less than 0.1 dB, and most preferably less than 0.05 dB, and a 1 turn, 15 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength, of less than 0.2 dB, preferably less than 0.1 dB, and more preferably less than 0.05 dB. Such fibers are further capable of providing a numerical aperture (NA) greater than 0.17, more preferably greater than 0.18, and most preferably greater than 0.185. Such fibers are further simultaneously capable of exhibiting an OFL bandwidth at 1300 nm which is greater than about 500 MHz-km, more preferably greater than about 600 MHz-km, even more preferably greater than about 700 MHz-km. Such fibers are further simultaneously capable of exhibiting minimum calculated effective modal bandwidth (Min EMBc) bandwidth of greater than about 1.5 MHz-km, more preferably greater than about 1.8 MHz-km and most preferably greater than about 2.0 MHz-km at 850 nm.


Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 3 dB/km at 850 nm, preferably less than 2.5 dB/km at 850 nm, even more preferably less than 2.4 dB/km at 850 nm and still more preferably less than 2.3 dB/km at 850 nm. Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 1.0 dB/km at 1300 nm, preferably less than 0.8 dB/km at 1300 nm, even more preferably less than 0.6 dB/km at 1300 nm.


In some embodiments, the numerical aperture (“NA”) of the optical fiber is preferably less than 0.23 and greater than 0.17, more preferably greater than 0.18, and most preferably less than 0.215 and greater than 0.185.


In some embodiments, the core extends radially outwardly from the centerline to a radius R1, wherein 10≦R1≦40 microns, more preferably 20≦R1≦40 microns. In some embodiments, 22≦R1≦34 microns. In some preferred embodiments, the outer radius of the core is between about 22 to 28 microns. In some other preferred embodiments, the outer radius of the core is between about 28 to 34 microns.


In some embodiments, the core has a maximum relative refractive index, less than or equal to 1.2% and greater than 0.5%, more preferably greater than 0.8%. In other embodiments, the core has a maximum relative refractive index, less than or equal to 1.1% and greater than 0.9%.


In some embodiments, the optical fiber exhibits a 1 turn, 10 mm diameter mandrel attenuation increase of no more than 1.0 dB, preferably no more than 0.6 dB, more preferably no more than 0.4 dB, even more preferably no more than 0.2 dB, and still more preferably no more than 0.1 dB, at all wavelengths between 800 and 1400 nm.



FIG. 11 shows a schematic representation of the refractive index profile of a cross-section of the glass portion of an exemplary embodiment of a multimode optical fiber 400 comprising a glass core 320 and a glass cladding 300, the cladding comprising an inner annular portion 330, a depressed-index annular portion 350, and an outer annular portion 360. FIG. 12 is a schematic representation (not to scale) of a cross-sectional view of the optical waveguide fiber of FIG. 11. The core 320 has outer radius R1 and maximum refractive index delta Δ1MAX. The inner annular portion 330 has width W2 and outer radius R2. Depressed-index annular portion 350 has minimum refractive index delta percent Δ3MIN, width W3 and outer radius R3. The depressed-index annular portion 350 is shown offset, or spaced away, from the core 320 by the inner annular portion 330. The annular portion 350 surrounds and contacts the inner annular portion 330. The outer annular portion 360 surrounds and contacts the annular portion 350. The clad layer 300 is surrounded by at least one coating 410, which may in some embodiments comprise a low modulus primary coating and a high modulus secondary coating.


The inner annular portion 330 has a refractive index profile Δ2(r) with a maximum relative refractive index Δ2MAX, and a minimum relative refractive index Δ2MIN, where in some embodiments Δ2MAX=Δ2MIN. The depressed-index annular portion 350 has a refractive index profile Δ3(r) with a minimum relative refractive index Δ3MIN. The outer annular portion 360 has a refractive index profile Δ4(r) with a maximum relative refractive index Δ4MAX, and a minimum relative refractive index Δ4MIN, where in some embodiments Δ4MAX=Δ4MIN. Preferably, Δ1MAX>Δ2MAX>Δ3MIN. In some embodiments, the inner annular portion 330 has a substantially constant refractive index profile, as shown in FIG. 11 with a constant Δ2(r); in some of these embodiments, Δ2(r)=0%. In some embodiments, the outer annular portion 360 has a substantially constant refractive index profile, as shown in FIG. 11 with a constant Δ4(r); in some of these embodiments, Δ4(r)=0%. The core 320 has an entirely positive refractive index profile, where Δ1(r)>0%. R1 is defined as the radius at which the refractive index delta of the core first reaches value of 0.05%, going radially outwardly from the centerline. Preferably, the core 320 contains substantially no fluorine, and more preferably the core 320 contains no fluorine. In some embodiments, the inner annular portion 330 preferably has a relative refractive index profile Δ2(r) having a maximum absolute magnitude less than 0.05%, and Δ2MAX<0.05% and Δ2MIN>−0.05%, and the depressed-index annular portion 350 begins where the relative refractive index of the cladding first reaches a value of less than −0.05%, going radially outwardly from the centerline. In some embodiments, the outer annular portion 360 has a relative refractive index profile Δ4(r) having a maximum absolute magnitude less than 0.05%, and Δ4MAX<0.05% and Δ4MIN>−0.05%, and the depressed-index annular portion 350 ends where the relative refractive index of the cladding first reaches a value of greater than −0.05%, going radially outwardly from the radius where Δ3MIN is found.


Therefore, it is to be understood that the embodiments are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A locking apparatus for a fiber optic apparatus, comprising: a rod having at least one protrusion configured to selectively engage one or more of a plurality of slots in a tray guide disposed on a chassis; anda torsion spring configured to attach to the rod and to a tray mounted on a fiber optic equipment tray disposed in the chassis along a first direction parallel to a longitudinal axis of the rod, and further configured to lock the fiber optic equipment tray in a closed position when the at least one protrusion engages a first one of the plurality of slots in the tray guide.
  • 2. The locking apparatus of claim 1, wherein the rod is further configured to be rotatably actuated to allow the at least one protrusion to be disengaged from the first one of the plurality of slots in the tray guide such that the fiber optic equipment tray is movable in the chassis along the first direction.
  • 3. The locking apparatus of claim 1, wherein the torsion spring is further configured to lock the fiber optic equipment tray in an open position when the at least one protrusion engages a second one of the plurality of slots in the tray guide.
  • 4. The locking apparatus of claim 2 further comprising an actuator for rotating the rod such that the at least one protrusion is disengaged from the first one of the plurality of slots in the tray guide.
  • 5. The locking apparatus of claim 4, wherein the actuator comprises a knob.
  • 6. The locking apparatus of claim 1, wherein the rod has a plurality of protrusions.
  • 7. The locking apparatus of claim 3 further comprising a front stop configured to stop the fiber optic equipment tray in the open position.
  • 8. The locking apparatus of claim 2, wherein the fiber optic equipment tray is movable along the first direction both toward a front and toward a rear of the chassis.
  • 9. The locking apparatus of claim 1, wherein the torsion spring is further configured to withstand a force when the fiber optic equipment tray is locked in the closed position such that fiber optic modules may be loaded from a rear of the chassis without the fiber optic equipment tray sliding forward.
  • 10. The locking apparatus of claim 9, wherein the force is at least two (2) pounds.
  • 11. The locking apparatus of claim 3, wherein the torsion spring is further configured to withstand a force when the fiber optic equipment tray is locked in the open position such that fiber optic modules may be loaded from a front of the chassis without the fiber optic equipment tray sliding backward.
  • 12. The locking apparatus of claim 11, wherein the force is at least two (2) pounds.
  • 13. The locking apparatus of claim 1, wherein at least two of the plurality of slots in the tray guide are spaced a fixed distance apart.
  • 14. The locking apparatus of claim 13, wherein the fixed distance is between 3 and 4 inches.
  • 15. A fiber optic apparatus, comprising: at least one tray guide disposed in a chassis having a plurality of slots and configured to receive at least one fiber optic equipment tray along a first direction, the at least one fiber optic equipment tray having at least one tray mount;a rod having a longitudinal axis parallel to the first direction and at least one protrusion, the at least one protrusion configured to selectively engage one or more of the plurality of slots in the at least one tray guide; anda torsion spring configured to attach to the rod and to the at least one tray mount on the at least one fiber optic equipment tray, wherein the torsion spring is further configured to lock the at least one fiber optic equipment tray in a closed position when the at least one protrusion engages a first one of the plurality of slots in the at least one tray guide.
  • 16. The fiber optic apparatus of claim 15, wherein the rod is further configured to be rotatably actuated to allow the at least one protrusion to be disengaged from the first one of the plurality of slots such that the at least one fiber optic equipment tray is movable along the first direction within the at least one tray guide.
  • 17. The fiber optic apparatus of claim 15, further comprising at least one module rail guide disposed on the at least one fiber optic equipment tray and configured to receive at least one fiber optic module from a rear of the chassis along the first direction.
  • 18. The fiber optic apparatus of claim 17, wherein the at least one fiber optic equipment tray is locked in the closed position due to the at least one protrusion engaging the first one of the plurality of slots in the at least one tray guide.
  • 19. The fiber optic apparatus of claim 15, wherein the torsion spring is further configured to lock the at least one fiber optic equipment tray in an open position when the at least one protrusion engages a second one of the plurality of slots in the at least one tray guide.
  • 20. The fiber optic apparatus of claim 19, further comprising at least one module rail guide disposed on the at least one fiber optic equipment tray and configured to receive at least one fiber optic module from a front of the chassis along the first direction.
  • 21. The fiber optic apparatus of claim 20, wherein the at least one fiber optic equipment tray is locked in the open position due to the at least one protrusion engaging the second one of the plurality of slots in the at least one tray guide.
  • 22. A fiber optic apparatus, comprising: a plurality of tray guides disposed in a chassis, each of the plurality of tray guides having a plurality of slots and configured to receive a fiber optic equipment tray along a first direction;a plurality of fiber optic equipment trays, each of the plurality of fiber optic equipment trays comprising: a rod having a longitudinal axis parallel to the first direction and at least one protrusion, the at least one protrusion configured to selectively engage one or more of the plurality of slots of the tray guide;a torsion spring configured to attach to the rod and to at least one tray mount disposed on the fiber optic equipment tray, wherein the torsion spring is further configured to lock the fiber optic equipment tray in a closed position when the at least one protrusion engages a first one of the plurality of slots in the tray guide; andwherein the rod is further configured to be rotatably actuated to allow the at least one protrusion to be disengaged from the first one of the plurality of slots in the tray guide such that the fiber optic equipment tray is movable along the first direction within the at least one tray guide.
  • 23. A method for selectively moving a fiber optic equipment tray, comprising: providing at least one tray guide disposed in a chassis, the at least one tray guide having a plurality of slots and configured to receive at least one fiber optic equipment tray along a first direction;rotatably actuating a rod attached via a torsion spring to a tray mount on the least one fiber optic equipment tray about a longitudinal axis of the rod parallel to the first direction such that at least one protrusion on the rod is not engaged with one of the plurality of slots in the at least one tray guide; andmoving the at least one fiber optic equipment tray in the first direction until the at least one protrusion is selectively engaged with a first one of the plurality of slots in the at least one tray guide.
  • 24. The method of claim 23, wherein rotatably actuating the rod further comprises turning an actuator to release the at least one protrusion from one of the plurality of slots in the at least one tray guide.
  • 25. The method of claim 24, wherein the actuator is turned ninety (90) degrees.
  • 26. The method of claim 24, further comprising releasing the actuator once the at least one protrusion is selectively engaged with the one or more of the plurality of slots in the at least one tray guide.
  • 27. The method of claim 23, further comprising loading fiber optic modules in the at least one fiber optic equipment tray along the first direction when the at least one protrusion is selectively engaged with one or more of the plurality of slots in the at least one tray guide.
  • 28. The method of claim 27, further comprising loading the fiber optic modules in the at least one fiber optic equipment tray along the first direction from a front of the chassis.
  • 29. The method of claim 27, further comprising loading fiber optic modules in the at least one fiber optic equipment tray along the first direction from a rear of the chassis.
  • 30. The method of claim 23, further comprising moving the at least one fiber optic equipment tray in a second along the first direction until the at least one protrusion is selectively engaged with a second one of the plurality of slots in the at least one tray guide.
US Referenced Citations (803)
Number Name Date Kind
620013 Barnes Feb 1899 A
2614685 Miller Oct 1952 A
3175873 Blomquist et al. Mar 1965 A
3212192 Bachmann et al. Oct 1965 A
3433886 Myers Mar 1969 A
3568263 Meehan Mar 1971 A
3646244 Cole Feb 1972 A
3880396 Freiberger et al. Apr 1975 A
3906592 Sakasegawa et al. Sep 1975 A
4047797 Arnold et al. Sep 1977 A
4059872 Delesandri Nov 1977 A
4119285 Bisping et al. Oct 1978 A
4239316 Spaulding Dec 1980 A
4285486 Von Osten et al. Aug 1981 A
4354731 Mouissie Oct 1982 A
4457482 Kitagawa Jul 1984 A
4525012 Dunner Jun 1985 A
4597173 Chino et al. Jul 1986 A
4611875 Clarke et al. Sep 1986 A
4645292 Sammueller Feb 1987 A
4657340 Tanaka et al. Apr 1987 A
4702551 Coulombe Oct 1987 A
4736100 Vastagh Apr 1988 A
4744629 Bertoglio et al. May 1988 A
4747020 Brickley et al. May 1988 A
4752110 Blanchet et al. Jun 1988 A
4787706 Cannon, Jr. et al. Nov 1988 A
4792203 Nelson et al. Dec 1988 A
4798432 Becker et al. Jan 1989 A
4808774 Crane Feb 1989 A
4824193 Maeda et al. Apr 1989 A
4824196 Bylander Apr 1989 A
4826277 Weber et al. May 1989 A
4838643 Hodges et al. Jun 1989 A
4865280 Wollar Sep 1989 A
4898448 Cooper Feb 1990 A
4900123 Barlow Feb 1990 A
4911662 Debortoli et al. Mar 1990 A
4948220 Violo et al. Aug 1990 A
4949376 Nieves et al. Aug 1990 A
4971421 Ori Nov 1990 A
4991928 Zimmer Feb 1991 A
4995688 Anton et al. Feb 1991 A
5001602 Suffi et al. Mar 1991 A
5005941 Barlow et al. Apr 1991 A
5017211 Wenger et al. May 1991 A
5023646 Ishida et al. Jun 1991 A
5024498 Becker et al. Jun 1991 A
5028114 Krausse et al. Jul 1991 A
5037175 Weber Aug 1991 A
5048918 Daems et al. Sep 1991 A
5066149 Wheeler et al. Nov 1991 A
5067784 Debortoli et al. Nov 1991 A
5071211 Debortoli et al. Dec 1991 A
5071220 Ruello et al. Dec 1991 A
5073042 Mulholland et al. Dec 1991 A
5074635 Justice et al. Dec 1991 A
5076688 Bowen et al. Dec 1991 A
5080459 Wettengel et al. Jan 1992 A
5100221 Carney et al. Mar 1992 A
5104336 Hatanaka et al. Apr 1992 A
5125060 Edmundson Jun 1992 A
5127082 Below et al. Jun 1992 A
5127851 Hilbert et al. Jul 1992 A
5129030 Petrunia Jul 1992 A
5133039 Dixit Jul 1992 A
5138678 Briggs et al. Aug 1992 A
5138688 Debortoli Aug 1992 A
5142598 Tabone Aug 1992 A
5142607 Petrotta et al. Aug 1992 A
5150277 Bainbridge et al. Sep 1992 A
D330368 Bourgeois et al. Oct 1992 S
5152760 Latina Oct 1992 A
5153910 Mickelson et al. Oct 1992 A
5157749 Briggs et al. Oct 1992 A
5167001 Debortoli et al. Nov 1992 A
5170452 Ott Dec 1992 A
5189723 Johnson et al. Feb 1993 A
5204929 Machall et al. Apr 1993 A
5209572 Jordan May 1993 A
5214735 Henneberger et al. May 1993 A
5224186 Kishimoto et al. Jun 1993 A
5231687 Handley Jul 1993 A
5231688 Zimmer Jul 1993 A
5233674 Vladic Aug 1993 A
5239609 Auteri Aug 1993 A
5243679 Sharrow et al. Sep 1993 A
5253320 Takahashi et al. Oct 1993 A
5260957 Hakimi et al. Nov 1993 A
5261633 Mastro Nov 1993 A
5265187 Morin et al. Nov 1993 A
5274731 White Dec 1993 A
5280138 Preston et al. Jan 1994 A
5285515 Milanowski et al. Feb 1994 A
5315679 Baldwin et al. May 1994 A
5317663 Beard et al. May 1994 A
5323478 Milanowski et al. Jun 1994 A
5323480 Mullaney et al. Jun 1994 A
5333193 Cote et al. Jul 1994 A
5333221 Briggs et al. Jul 1994 A
5333222 Belenkiy et al. Jul 1994 A
5337400 Morin et al. Aug 1994 A
5339379 Kutsch et al. Aug 1994 A
5347603 Belenkiy et al. Sep 1994 A
5353367 Czosnowski et al. Oct 1994 A
5359688 Underwood Oct 1994 A
5363466 Milanowski et al. Nov 1994 A
5363467 Keith Nov 1994 A
5366388 Freeman et al. Nov 1994 A
5367598 Devenish, III et al. Nov 1994 A
5373421 Detsikas et al. Dec 1994 A
5383051 Delrosso et al. Jan 1995 A
5390272 Repta et al. Feb 1995 A
5398295 Chang et al. Mar 1995 A
5398820 Kiss Mar 1995 A
5399814 Staber et al. Mar 1995 A
5401193 Lo Cicero et al. Mar 1995 A
5402515 Vidacovich et al. Mar 1995 A
5408557 Hsu Apr 1995 A
RE34955 Anton et al. May 1995 E
5412751 Siemon et al. May 1995 A
5416837 Cote et al. May 1995 A
5418874 Carlisle et al. May 1995 A
5420956 Grugel et al. May 1995 A
5420958 Henson et al. May 1995 A
5438641 Malacarne Aug 1995 A
5442725 Peng Aug 1995 A
5442726 Howard et al. Aug 1995 A
5443232 Kesinger et al. Aug 1995 A
5444804 Yui et al. Aug 1995 A
5448015 Jamet et al. Sep 1995 A
5450518 Burek et al. Sep 1995 A
5458019 Trevino Oct 1995 A
5471555 Braga et al. Nov 1995 A
5479505 Butler et al. Dec 1995 A
5481634 Anderson et al. Jan 1996 A
5481939 Bernardini Jan 1996 A
5490229 Ghandeharizadeh et al. Feb 1996 A
5497416 Butler, III et al. Mar 1996 A
5497444 Wheeler Mar 1996 A
5511144 Hawkins et al. Apr 1996 A
5511798 Kawamoto et al. Apr 1996 A
5519804 Burek et al. May 1996 A
5542015 Hultermans Jul 1996 A
5546495 Bruckner et al. Aug 1996 A
5548641 Butler et al. Aug 1996 A
5553183 Bechamps Sep 1996 A
5553186 Allen Sep 1996 A
5572617 Bernhardt et al. Nov 1996 A
5575680 Suffi Nov 1996 A
5577151 Hoffer Nov 1996 A
5590234 Pulido Dec 1996 A
5595507 Braun et al. Jan 1997 A
5596670 Debortoli et al. Jan 1997 A
5600020 Wehle et al. Feb 1997 A
5602954 Nolf et al. Feb 1997 A
5608606 Blaney Mar 1997 A
5613030 Hoffer et al. Mar 1997 A
5617501 Miller et al. Apr 1997 A
5638474 Lampert et al. Jun 1997 A
5640476 Womack et al. Jun 1997 A
5640482 Barry et al. Jun 1997 A
5647043 Anderson et al. Jul 1997 A
5647045 Robinson et al. Jul 1997 A
5650334 Zuk et al. Jul 1997 A
5668911 Debortoli Sep 1997 A
5671273 Lanquist Sep 1997 A
5689605 Cobb et al. Nov 1997 A
5689607 Vincent et al. Nov 1997 A
5694511 Pimpinella et al. Dec 1997 A
5701380 Larson et al. Dec 1997 A
5708742 Beun et al. Jan 1998 A
5708751 Mattei Jan 1998 A
5710851 Walter et al. Jan 1998 A
5717810 Wheeler Feb 1998 A
5734776 Puetz Mar 1998 A
5740300 Hodge Apr 1998 A
5742982 Dodd et al. Apr 1998 A
5751874 Chudoba et al. May 1998 A
5751882 Daems et al. May 1998 A
5758003 Wheeler et al. May 1998 A
5758004 Alarcon et al. May 1998 A
5761026 Robinson et al. Jun 1998 A
5769908 Koppelman Jun 1998 A
5774612 Belenkiy et al. Jun 1998 A
5778122 Giebel et al. Jul 1998 A
5778130 Walters et al. Jul 1998 A
5781686 Robinson et al. Jul 1998 A
5790741 Vincent et al. Aug 1998 A
5793920 Wilkins et al. Aug 1998 A
5793921 Wilkins et al. Aug 1998 A
5796908 Vicory Aug 1998 A
5823646 Arizpe et al. Oct 1998 A
5825955 Ernst et al. Oct 1998 A
5825961 Wilkins et al. Oct 1998 A
5828807 Tucker et al. Oct 1998 A
5832162 Sarbell Nov 1998 A
5835657 Suarez et al. Nov 1998 A
5835658 Smith Nov 1998 A
5862290 Burek et al. Jan 1999 A
5870519 Jenkins et al. Feb 1999 A
5874733 Silver et al. Feb 1999 A
5877565 Hollenbach et al. Mar 1999 A
5880864 Williams et al. Mar 1999 A
5881200 Burt Mar 1999 A
5883995 Lu Mar 1999 A
5884003 Cloud et al. Mar 1999 A
5887095 Nagase et al. Mar 1999 A
5887106 Cheeseman et al. Mar 1999 A
5892877 Meyerhoefer Apr 1999 A
5894540 Drewing Apr 1999 A
5901220 Garver et al. May 1999 A
5903693 Brown May 1999 A
5909298 Shimada et al. Jun 1999 A
5913006 Summach Jun 1999 A
5914976 Jayaraman et al. Jun 1999 A
5915055 Bennett et al. Jun 1999 A
5923804 Rosson Jul 1999 A
5930425 Abel et al. Jul 1999 A
5933557 Ott Aug 1999 A
5943460 Mead et al. Aug 1999 A
5945633 Ott et al. Aug 1999 A
5946440 Puetz Aug 1999 A
5949946 Debortoli et al. Sep 1999 A
5953962 Hewson Sep 1999 A
5956439 Pimpinella Sep 1999 A
5956444 Duda et al. Sep 1999 A
5956449 Otani et al. Sep 1999 A
5966492 Bechamps et al. Oct 1999 A
5969294 Eberle et al. Oct 1999 A
5975769 Larson et al. Nov 1999 A
5978540 Bechamps et al. Nov 1999 A
5980303 Lee et al. Nov 1999 A
5993071 Hultermans Nov 1999 A
5995700 Burek et al. Nov 1999 A
5999393 Brower Dec 1999 A
6001831 Papenfuhs et al. Dec 1999 A
6009224 Allen Dec 1999 A
6009225 Ray et al. Dec 1999 A
6011831 Nieves et al. Jan 2000 A
6027252 Erdman et al. Feb 2000 A
6044193 Szentesi et al. Mar 2000 A
6058235 Hiramatsu et al. May 2000 A
6061492 Strause et al. May 2000 A
6078661 Arnett et al. Jun 2000 A
6079881 Roth Jun 2000 A
6127627 Daoud Oct 2000 A
6130983 Cheng Oct 2000 A
6134370 Childers et al. Oct 2000 A
6149313 Giebel et al. Nov 2000 A
6149315 Stephenson Nov 2000 A
6151432 Nakajima et al. Nov 2000 A
6160946 Thompson et al. Dec 2000 A
6181861 Wenski et al. Jan 2001 B1
6188687 Mussman et al. Feb 2001 B1
6188825 Bandy et al. Feb 2001 B1
6192180 Kim et al. Feb 2001 B1
6201920 Noble et al. Mar 2001 B1
6208796 Williams Vigliaturo Mar 2001 B1
6212324 Lin et al. Apr 2001 B1
6215938 Reitmeier et al. Apr 2001 B1
6227717 Ott et al. May 2001 B1
6234683 Waldron et al. May 2001 B1
6234685 Carlisle et al. May 2001 B1
6236795 Rodgers May 2001 B1
6240229 Roth May 2001 B1
6243522 Allan et al. Jun 2001 B1
6245998 Curry et al. Jun 2001 B1
6263141 Smith Jul 2001 B1
6265680 Robertson Jul 2001 B1
6269212 Schiattone Jul 2001 B1
6275641 Daoud Aug 2001 B1
6278829 BuAbbud et al. Aug 2001 B1
6278831 Henderson et al. Aug 2001 B1
D448005 Klein, Jr. et al. Sep 2001 S
6292614 Smith et al. Sep 2001 B1
6301424 Hwang Oct 2001 B1
6307997 Walters et al. Oct 2001 B1
6318824 LaGrotta et al. Nov 2001 B1
6321017 Janus et al. Nov 2001 B1
6322279 Yamamoto et al. Nov 2001 B1
6325549 Shevchuk Dec 2001 B1
RE37489 Anton et al. Jan 2002 E
6343313 Salesky et al. Jan 2002 B1
6347888 Puetz Feb 2002 B1
6353696 Gordon et al. Mar 2002 B1
6353697 Daoud Mar 2002 B1
6359228 Strause et al. Mar 2002 B1
6363200 Thompson et al. Mar 2002 B1
6370309 Daoud Apr 2002 B1
6377218 Nelson et al. Apr 2002 B1
6379052 De Jong et al. Apr 2002 B1
6385374 Kropp May 2002 B2
6385381 Janus et al. May 2002 B1
6389214 Smith et al. May 2002 B1
6397166 Leung et al. May 2002 B1
6398149 Hines et al. Jun 2002 B1
6411767 Burrous et al. Jun 2002 B1
6418262 Puetz et al. Jul 2002 B1
6424781 Puetz et al. Jul 2002 B1
6425694 Szilagyi et al. Jul 2002 B1
6427045 Matthes et al. Jul 2002 B1
6431762 Taira et al. Aug 2002 B1
6434313 Clapp, Jr. et al. Aug 2002 B1
6438310 Lance et al. Aug 2002 B1
6452925 Sistanizadeh et al. Sep 2002 B1
6456773 Keys Sep 2002 B1
6464402 Andrews et al. Oct 2002 B1
6466724 Glover et al. Oct 2002 B1
6469905 Hwang Oct 2002 B1
D466087 Cuny et al. Nov 2002 S
6478472 Anderson et al. Nov 2002 B1
6480487 Wegleitner et al. Nov 2002 B1
6480660 Reitmeier et al. Nov 2002 B1
6483977 Battey et al. Nov 2002 B2
6484958 Xue et al. Nov 2002 B1
6496640 Harvey et al. Dec 2002 B1
6504988 Trebesch et al. Jan 2003 B1
6507980 Bremicker Jan 2003 B2
6510274 Wu et al. Jan 2003 B1
6532332 Solheid et al. Mar 2003 B2
6533472 Dinh et al. Mar 2003 B1
6535397 Clark et al. Mar 2003 B2
6539147 Mahony Mar 2003 B1
6539160 Battey et al. Mar 2003 B2
6542688 Battey et al. Apr 2003 B1
6550977 Hizuka Apr 2003 B2
6554485 Beatty et al. Apr 2003 B1
6560334 Mullaney et al. May 2003 B1
6567601 Daoud et al. May 2003 B2
6571048 Bechamps et al. May 2003 B1
6577595 Counterman Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6579014 Melton et al. Jun 2003 B2
6584267 Caveney et al. Jun 2003 B1
6587630 Spence et al. Jul 2003 B2
6588938 Lampert et al. Jul 2003 B1
6591051 Solheid et al. Jul 2003 B2
6592266 Hankins et al. Jul 2003 B1
6597670 Tweedy et al. Jul 2003 B1
6600866 Gatica et al. Jul 2003 B2
6601997 Ngo Aug 2003 B2
6612515 Tinucci et al. Sep 2003 B1
6614978 Caveney Sep 2003 B1
6614980 Mahony Sep 2003 B1
6621975 Laporte et al. Sep 2003 B2
6625374 Holman et al. Sep 2003 B2
6625375 Mahony Sep 2003 B1
6631237 Knudsen et al. Oct 2003 B2
6640042 Araki et al. Oct 2003 B2
RE38311 Wheeler Nov 2003 E
6644863 Azami et al. Nov 2003 B1
6647197 Marrs et al. Nov 2003 B1
6648520 McDonald et al. Nov 2003 B2
6654536 Battey et al. Nov 2003 B2
6668127 Mahony Dec 2003 B1
6677520 Kim et al. Jan 2004 B1
6679604 Bove et al. Jan 2004 B1
6687450 Kempeneers et al. Feb 2004 B1
6701056 Burek et al. Mar 2004 B2
6710366 Lee et al. Mar 2004 B1
6715619 Kim et al. Apr 2004 B2
6719149 Tomino Apr 2004 B2
6741784 Guan May 2004 B1
6741785 Barthel et al. May 2004 B2
6746037 Kaplenski et al. Jun 2004 B1
6748154 O'Leary et al. Jun 2004 B2
6748155 Kim et al. Jun 2004 B2
6758600 Del Grosso et al. Jul 2004 B2
6768860 Liberty Jul 2004 B2
6771861 Wagner et al. Aug 2004 B2
6773297 Komiya Aug 2004 B2
6778525 Baum et al. Aug 2004 B1
6778752 Laporte et al. Aug 2004 B2
6786647 Hinds et al. Sep 2004 B1
6788871 Taylor Sep 2004 B2
6792190 Xin et al. Sep 2004 B2
6798751 Voit et al. Sep 2004 B1
6804447 Smith et al. Oct 2004 B2
6810194 Griffiths et al. Oct 2004 B2
6813412 Lin Nov 2004 B2
6816660 Nashimoto Nov 2004 B2
6819856 Dagley et al. Nov 2004 B2
6819857 Douglas et al. Nov 2004 B2
6826174 Erekson et al. Nov 2004 B1
6826346 Sloan et al. Nov 2004 B2
6839428 Brower et al. Jan 2005 B2
6839438 Riegelsberger et al. Jan 2005 B1
6840815 Musolf et al. Jan 2005 B2
6845207 Schray Jan 2005 B2
6848862 Schlig Feb 2005 B1
6850685 Tinucci et al. Feb 2005 B2
6853637 Norrell et al. Feb 2005 B1
6854894 Yunker et al. Feb 2005 B1
6856334 Fukui Feb 2005 B1
6865331 Mertesdorf Mar 2005 B2
6865334 Cooke et al. Mar 2005 B2
6866541 Barker et al. Mar 2005 B2
6868216 Gehrke Mar 2005 B1
6869227 Del Grosso et al. Mar 2005 B2
6870734 Mertesdorf et al. Mar 2005 B2
6870997 Cooke Mar 2005 B2
6879545 Cooke et al. Apr 2005 B2
6915058 Pons Jul 2005 B2
6920273 Knudsen Jul 2005 B2
6920274 Rapp et al. Jul 2005 B2
6925241 Bohle et al. Aug 2005 B2
6934451 Cooke Aug 2005 B2
6934456 Ferris et al. Aug 2005 B2
6937807 Franklin et al. Aug 2005 B2
6944383 Herzog et al. Sep 2005 B1
6944389 Giraud et al. Sep 2005 B2
6952530 Helvajian et al. Oct 2005 B2
6963690 Kassal et al. Nov 2005 B1
6968107 Belardi et al. Nov 2005 B2
6968111 Trebesch et al. Nov 2005 B2
6985665 Baechtle Jan 2006 B2
6993237 Cooke et al. Jan 2006 B2
7000784 Canty et al. Feb 2006 B2
7005582 Muller et al. Feb 2006 B2
7006748 Dagley et al. Feb 2006 B2
7007296 Rakib Feb 2006 B2
7027695 Cooke et al. Apr 2006 B2
7027706 Diaz et al. Apr 2006 B2
7031588 Cowley et al. Apr 2006 B2
7035510 Zimmel et al. Apr 2006 B2
7038137 Grubish et al. May 2006 B2
7054513 Herz et al. May 2006 B2
7066748 Bricaud et al. Jun 2006 B2
7068907 Schray Jun 2006 B2
7070459 Denovich et al. Jul 2006 B2
7079744 Douglas et al. Jul 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7094095 Caveney Aug 2006 B1
7097047 Lee et al. Aug 2006 B2
7101093 Hsiao et al. Sep 2006 B2
7102884 Mertesdorf et al. Sep 2006 B2
7103255 Reagan et al. Sep 2006 B2
7110654 Dillat Sep 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7113686 Bellekens et al. Sep 2006 B2
7113687 Womack et al. Sep 2006 B2
7116491 Willey et al. Oct 2006 B1
7116883 Kline et al. Oct 2006 B2
7118281 Chiu et al. Oct 2006 B2
7118405 Peng Oct 2006 B2
7120347 Blackwell, Jr. et al. Oct 2006 B2
7120348 Trebesch et al. Oct 2006 B2
7120349 Elliott Oct 2006 B2
7128471 Wilson Oct 2006 B2
7139462 Richtman Nov 2006 B1
7171099 Barnes et al. Jan 2007 B2
7171121 Skarica et al. Jan 2007 B1
7181142 Xu et al. Feb 2007 B1
7193783 Willey et al. Mar 2007 B2
7194181 Holmberg et al. Mar 2007 B2
7195521 Musolf et al. Mar 2007 B2
7200314 Womack et al. Apr 2007 B2
7200316 Giraud et al. Apr 2007 B2
7220065 Han et al. May 2007 B2
7228036 Elkins, II et al. Jun 2007 B2
7231125 Douglas et al. Jun 2007 B2
7234878 Yamauchi et al. Jun 2007 B2
7236677 Escoto et al. Jun 2007 B2
7239789 Grubish et al. Jul 2007 B2
7245809 Gniadek et al. Jul 2007 B1
7259325 Pincu et al. Aug 2007 B2
7266283 Kline et al. Sep 2007 B2
7270485 Robinson et al. Sep 2007 B1
7272291 Bayazit et al. Sep 2007 B2
7274852 Smrha et al. Sep 2007 B1
7289731 Thinguldstad Oct 2007 B2
7292769 Watanabe et al. Nov 2007 B2
7298950 Frohlich Nov 2007 B2
7300216 Morse et al. Nov 2007 B2
7300308 Laursen et al. Nov 2007 B2
7302149 Swam et al. Nov 2007 B2
7302153 Thom Nov 2007 B2
7302154 Trebesch et al. Nov 2007 B2
7308184 Barnes et al. Dec 2007 B2
7310471 Bayazit et al. Dec 2007 B2
7310472 Haberman Dec 2007 B2
7315681 Kewitsch Jan 2008 B2
7325975 Yamada et al. Feb 2008 B2
7330625 Barth Feb 2008 B2
7330626 Kowalczyk et al. Feb 2008 B2
7330629 Cooke et al. Feb 2008 B2
7331718 Yazaki et al. Feb 2008 B2
7340145 Allen Mar 2008 B2
7349615 Frazier et al. Mar 2008 B2
7373071 Douglas et al. May 2008 B2
7376321 Bolster et al. May 2008 B2
7376323 Zimmel May 2008 B2
7391952 Ugolini et al. Jun 2008 B1
7397996 Herzog et al. Jul 2008 B2
7400813 Zimmel Jul 2008 B2
7409137 Barnes Aug 2008 B2
7414198 Stansbie et al. Aug 2008 B2
7417188 McNutt et al. Aug 2008 B2
7418182 Krampotich Aug 2008 B2
7418184 Gonzales et al. Aug 2008 B1
7421182 Bayazit et al. Sep 2008 B2
7428363 Leon et al. Sep 2008 B2
7437049 Krampotich Oct 2008 B2
7439453 Murano et al. Oct 2008 B2
7454113 Barnes Nov 2008 B2
7460757 Hoehne et al. Dec 2008 B2
7460758 Xin Dec 2008 B2
7461981 Yow, Jr. et al. Dec 2008 B2
7462779 Caveney et al. Dec 2008 B2
7463810 Bayazit et al. Dec 2008 B2
7463811 Trebesch et al. Dec 2008 B2
7469090 Ferris et al. Dec 2008 B2
7471867 Vogel et al. Dec 2008 B2
7474828 Leon et al. Jan 2009 B2
7477824 Reagan et al. Jan 2009 B2
7477826 Mullaney et al. Jan 2009 B2
7480438 Douglas et al. Jan 2009 B2
7488205 Spisany et al. Feb 2009 B2
7493002 Coburn et al. Feb 2009 B2
7496269 Lee Feb 2009 B1
7499622 Castonguay et al. Mar 2009 B2
7499623 Barnes et al. Mar 2009 B2
7507111 Togami et al. Mar 2009 B2
7509015 Murano Mar 2009 B2
7509016 Smith et al. Mar 2009 B2
7522804 Araki et al. Apr 2009 B2
7526171 Caveney et al. Apr 2009 B2
7526172 Gniadek et al. Apr 2009 B2
7526174 Leon et al. Apr 2009 B2
7529458 Spisany et al. May 2009 B2
7534958 McNutt et al. May 2009 B2
7536075 Zimmel May 2009 B2
7542645 Hua et al. Jun 2009 B1
7555193 Rapp et al. Jun 2009 B2
7558458 Gronvall et al. Jul 2009 B2
7565051 Vongseng Jul 2009 B2
7567744 Krampotich et al. Jul 2009 B2
7570860 Smrha et al. Aug 2009 B2
7570861 Smrha et al. Aug 2009 B2
7577331 Laurisch et al. Aug 2009 B2
7603020 Wakileh et al. Oct 2009 B1
7607938 Clark et al. Oct 2009 B2
7609967 Hochbaum et al. Oct 2009 B2
7613377 Gonzales et al. Nov 2009 B2
7620287 Appenzeller et al. Nov 2009 B2
7641398 O'Riorden et al. Jan 2010 B2
7668430 McClellan et al. Feb 2010 B2
7668433 Bayazit et al. Feb 2010 B2
7672561 Keith et al. Mar 2010 B1
7676135 Chen Mar 2010 B2
7697811 Murano et al. Apr 2010 B2
7715125 Willey May 2010 B2
7715683 Kowalczyk et al. May 2010 B2
7740409 Bolton et al. Jun 2010 B2
7743495 Mori et al. Jun 2010 B2
7751674 Hill Jul 2010 B2
7751675 Holmberg et al. Jul 2010 B2
7756382 Saravanos et al. Jul 2010 B2
7760984 Solheid et al. Jul 2010 B2
7764858 Bayazit et al. Jul 2010 B2
7764859 Krampotich et al. Jul 2010 B2
7805044 Reagan et al. Sep 2010 B2
7809235 Reagan et al. Oct 2010 B2
7822310 Castonguay et al. Oct 2010 B2
7850372 Nishimura et al. Dec 2010 B2
7853112 Zimmel et al. Dec 2010 B2
7856166 Biribuze et al. Dec 2010 B2
7914332 Song et al. Mar 2011 B2
7942589 Yazaki et al. May 2011 B2
7945135 Cooke et al. May 2011 B2
7945136 Cooke et al. May 2011 B2
7945138 Hill et al. May 2011 B2
7970250 Morris Jun 2011 B2
8014171 Kelly et al. Sep 2011 B2
8014646 Keith et al. Sep 2011 B2
8020813 Clark et al. Sep 2011 B1
8059932 Hill et al. Nov 2011 B2
8107785 Berglund et al. Jan 2012 B2
8206058 Vrondran et al. Jun 2012 B2
8537477 Shioda Sep 2013 B2
20010010741 Hizuka Aug 2001 A1
20010029125 Morita et al. Oct 2001 A1
20020010818 Wei et al. Jan 2002 A1
20020012353 Gerszberg et al. Jan 2002 A1
20020034290 Pershan Mar 2002 A1
20020037139 Asao et al. Mar 2002 A1
20020064364 Battey et al. May 2002 A1
20020131730 Keeble et al. Sep 2002 A1
20020136519 Tinucci et al. Sep 2002 A1
20020141724 Ogawa et al. Oct 2002 A1
20020150372 Schray Oct 2002 A1
20020181918 Spence et al. Dec 2002 A1
20020181922 Xin et al. Dec 2002 A1
20020194596 Srivastava Dec 2002 A1
20030007743 Asada Jan 2003 A1
20030007767 Douglas et al. Jan 2003 A1
20030021539 Kwon et al. Jan 2003 A1
20030066998 Lee Apr 2003 A1
20030086675 Wu et al. May 2003 A1
20030095753 Wada et al. May 2003 A1
20030147604 Tapia et al. Aug 2003 A1
20030174996 Henschel et al. Sep 2003 A1
20030180012 Deane et al. Sep 2003 A1
20030183413 Kato Oct 2003 A1
20030199201 Mullaney et al. Oct 2003 A1
20030210882 Barthel et al. Nov 2003 A1
20030223723 Massey et al. Dec 2003 A1
20030235387 Dufour Dec 2003 A1
20040013389 Taylor Jan 2004 A1
20040013390 Kim et al. Jan 2004 A1
20040074852 Knudsen et al. Apr 2004 A1
20040086238 Finona et al. May 2004 A1
20040086252 Smith et al. May 2004 A1
20040147159 Urban et al. Jul 2004 A1
20040151465 Krampotich et al. Aug 2004 A1
20040175090 Vastmans et al. Sep 2004 A1
20040192115 Bugg Sep 2004 A1
20040208459 Mizue et al. Oct 2004 A1
20040228598 Allen et al. Nov 2004 A1
20040240882 Lipski et al. Dec 2004 A1
20040264873 Smith et al. Dec 2004 A1
20050002633 Solheid et al. Jan 2005 A1
20050008131 Cook Jan 2005 A1
20050026497 Holliday Feb 2005 A1
20050036749 Vogel et al. Feb 2005 A1
20050074990 Shearman et al. Apr 2005 A1
20050076149 McKown et al. Apr 2005 A1
20050083959 Binder Apr 2005 A1
20050107086 Tell et al. May 2005 A1
20050111809 Giraud et al. May 2005 A1
20050111810 Giraud et al. May 2005 A1
20050123261 Bellekens et al. Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050175293 Byers et al. Aug 2005 A1
20050201073 Pincu et al. Sep 2005 A1
20050232566 Rapp et al. Oct 2005 A1
20050233647 Denovich et al. Oct 2005 A1
20050254757 Ferretti, III et al. Nov 2005 A1
20050281526 Vongseng et al. Dec 2005 A1
20060007562 Willey et al. Jan 2006 A1
20060018448 Stevens et al. Jan 2006 A1
20060018622 Caveney Jan 2006 A1
20060039290 Roden et al. Feb 2006 A1
20060044774 Vasavda et al. Mar 2006 A1
20060072606 Posthuma Apr 2006 A1
20060077968 Pitsoulakis et al. Apr 2006 A1
20060093303 Reagan et al. May 2006 A1
20060110118 Escoto et al. May 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060160377 Huang Jul 2006 A1
20060165365 Feustel et al. Jul 2006 A1
20060165366 Feustel et al. Jul 2006 A1
20060191700 Herzog et al. Aug 2006 A1
20060193590 Puetz et al. Aug 2006 A1
20060193591 Rapp et al. Aug 2006 A1
20060198098 Clark et al. Sep 2006 A1
20060215980 Bayazit et al. Sep 2006 A1
20060269194 Luther et al. Nov 2006 A1
20060269206 Zimmel Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060275008 Xin Dec 2006 A1
20060275009 Ellison et al. Dec 2006 A1
20060285812 Ferris et al. Dec 2006 A1
20070003204 Makrides-Saravanos et al. Jan 2007 A1
20070025070 Jiang et al. Feb 2007 A1
20070031099 Herzog et al. Feb 2007 A1
20070033629 McGranahan et al. Feb 2007 A1
20070047894 Holmberg et al. Mar 2007 A1
20070104447 Allen May 2007 A1
20070127201 Mertesdorf et al. Jun 2007 A1
20070131628 Mimlitch et al. Jun 2007 A1
20070189692 Zimmel et al. Aug 2007 A1
20070196071 Laursen et al. Aug 2007 A1
20070221793 Kusuda et al. Sep 2007 A1
20070237484 Reagan et al. Oct 2007 A1
20070274718 Bridges et al. Nov 2007 A1
20080011514 Zheng et al. Jan 2008 A1
20080025683 Murano Jan 2008 A1
20080031585 Solheid et al. Feb 2008 A1
20080063350 Trebesch et al. Mar 2008 A1
20080068788 Ozawa et al. Mar 2008 A1
20080069511 Blackwell, Jr. et al. Mar 2008 A1
20080069512 Barnes et al. Mar 2008 A1
20080080826 Leon et al. Apr 2008 A1
20080080827 Leon et al. Apr 2008 A1
20080080828 Leon et al. Apr 2008 A1
20080085094 Krampotich Apr 2008 A1
20080089656 Wagner et al. Apr 2008 A1
20080095541 Dallesasse Apr 2008 A1
20080100440 Downie et al. May 2008 A1
20080106871 James May 2008 A1
20080112681 Battey et al. May 2008 A1
20080118207 Yamamoto et al. May 2008 A1
20080121423 Vogel et al. May 2008 A1
20080124039 Gniadek et al. May 2008 A1
20080131068 Mertesdorf et al. Jun 2008 A1
20080145013 Escoto et al. Jun 2008 A1
20080152294 Hirano et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080166131 Hudgins et al. Jul 2008 A1
20080175550 Coburn et al. Jul 2008 A1
20080175551 Smrha et al. Jul 2008 A1
20080175552 Smrha et al. Jul 2008 A1
20080193091 Herbst Aug 2008 A1
20080205823 Luther et al. Aug 2008 A1
20080205844 Castonguay et al. Aug 2008 A1
20080212928 Kowalczyk et al. Sep 2008 A1
20080219632 Smith et al. Sep 2008 A1
20080219634 Rapp et al. Sep 2008 A1
20080236858 Quijano Oct 2008 A1
20080247723 Herzog et al. Oct 2008 A1
20080267573 Douglas et al. Oct 2008 A1
20080285934 Standish et al. Nov 2008 A1
20080292261 Kowalczyk et al. Nov 2008 A1
20080298763 Appenzeller et al. Dec 2008 A1
20080304803 Krampotich et al. Dec 2008 A1
20080310810 Gallagher Dec 2008 A1
20090010607 Elisson et al. Jan 2009 A1
20090016685 Hudgins et al. Jan 2009 A1
20090022470 Krampotich Jan 2009 A1
20090060439 Cox et al. Mar 2009 A1
20090060440 Wright et al. Mar 2009 A1
20090067800 Vazquez et al. Mar 2009 A1
20090074371 Bayazit et al. Mar 2009 A1
20090097813 Hill Apr 2009 A1
20090136194 Barnes May 2009 A1
20090136196 Trebesch et al. May 2009 A1
20090146342 Haney et al. Jun 2009 A1
20090148117 Laurisch Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175588 Brandt et al. Jul 2009 A1
20090180749 Douglas et al. Jul 2009 A1
20090185782 Parikh et al. Jul 2009 A1
20090191891 Ma et al. Jul 2009 A1
20090194647 Keith Aug 2009 A1
20090196563 Mullsteff et al. Aug 2009 A1
20090202214 Holmberg et al. Aug 2009 A1
20090207577 Fransen et al. Aug 2009 A1
20090208178 Kowalczyk et al. Aug 2009 A1
20090208210 Trojer et al. Aug 2009 A1
20090214171 Coburn et al. Aug 2009 A1
20090220200 Sheau Tung Wong et al. Sep 2009 A1
20090220204 Ruiz Sep 2009 A1
20090226142 Barnes et al. Sep 2009 A1
20090238531 Holmberg et al. Sep 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090252472 Solheid et al. Oct 2009 A1
20090257726 Redmann et al. Oct 2009 A1
20090257727 Laurisch et al. Oct 2009 A1
20090257754 Theodoras, II et al. Oct 2009 A1
20090263096 Solheid et al. Oct 2009 A1
20090263122 Helkey et al. Oct 2009 A1
20090267865 Miller et al. Oct 2009 A1
20090269016 Korampally et al. Oct 2009 A1
20090269018 Frohlich et al. Oct 2009 A1
20090274429 Krampotich et al. Nov 2009 A1
20090274430 Krampotich et al. Nov 2009 A1
20090274432 Iwaya Nov 2009 A1
20090290842 Bran De Leon et al. Nov 2009 A1
20090297111 Reagan et al. Dec 2009 A1
20090304342 Adomeit et al. Dec 2009 A1
20090324189 Hill et al. Dec 2009 A1
20100012671 Vrondran et al. Jan 2010 A1
20100054681 Biribuze et al. Mar 2010 A1
20100054682 Cooke et al. Mar 2010 A1
20100054685 Cooke et al. Mar 2010 A1
20100061691 Murano et al. Mar 2010 A1
20100061693 Bran De Leon et al. Mar 2010 A1
20100074587 Loeffelholz et al. Mar 2010 A1
20100080517 Cline et al. Apr 2010 A1
20100086274 Keith Apr 2010 A1
20100111483 Reinhardt et al. May 2010 A1
20100119201 Smrha et al. May 2010 A1
20100142544 Chapel et al. Jun 2010 A1
20100142910 Hill et al. Jun 2010 A1
20100150518 Leon et al. Jun 2010 A1
20100158467 Hou et al. Jun 2010 A1
20100166377 Nair et al. Jul 2010 A1
20100178022 Schroeder et al. Jul 2010 A1
20100202745 Sokolowski et al. Aug 2010 A1
20100220967 Cooke et al. Sep 2010 A1
20100247051 Kowalczyk et al. Sep 2010 A1
20100278499 Mures et al. Nov 2010 A1
20100296790 Cooke et al. Nov 2010 A1
20100310225 Anderson et al. Dec 2010 A1
20100310226 Wakileh et al. Dec 2010 A1
20100316334 Kewitsch Dec 2010 A1
20100322582 Cooke et al. Dec 2010 A1
20100322583 Cooke et al. Dec 2010 A1
20110073730 Kitchen Mar 2011 A1
20110085774 Murphy et al. Apr 2011 A1
20110085776 Biribuze et al. Apr 2011 A1
20110097053 Smith et al. Apr 2011 A1
20110097977 Bubnick et al. Apr 2011 A1
20110280537 Cowen et al. Nov 2011 A1
20120051707 Barnes et al. Mar 2012 A1
20120057838 Hill et al. Mar 2012 A1
20120183263 Wu Jul 2012 A1
20130077927 O'Connor Mar 2013 A1
Foreign Referenced Citations (130)
Number Date Country
2029592 May 1992 CA
2186314 Apr 1997 CA
688705 Jan 1998 CH
8711970 Oct 1987 DE
3726718 Feb 1989 DE
3726719 Feb 1989 DE
4030301 Mar 1992 DE
4231181 Aug 1993 DE
20115940 Jan 2002 DE
10338848 Mar 2005 DE
202005009932 Nov 2005 DE
0250900 Jan 1988 EP
0408266 Jan 1991 EP
0474091 Aug 1991 EP
0468671 Jan 1992 EP
0490698 Jun 1992 EP
0529830 Mar 1993 EP
0544004 Jun 1993 EP
0547778 Jun 1993 EP
0581527 Feb 1994 EP
0620462 Oct 1994 EP
0693699 Jan 1996 EP
0720322 Jul 1996 EP
0940700 Sep 1999 EP
0949522 Oct 1999 EP
1041417 Oct 2000 EP
1056177 Nov 2000 EP
1065542 Jan 2001 EP
1203974 May 2002 EP
1289319 Mar 2003 EP
1316829 Jun 2003 EP
1777563 Apr 2007 EP
2378378 Aug 1978 FR
2241591 Sep 1991 GB
2277812 Nov 1994 GB
3172806 Jul 1991 JP
5045541 Feb 1993 JP
06018749 Jan 1994 JP
7308011 Nov 1995 JP
8007308 Jan 1996 JP
8248235 Sep 1996 JP
8248237 Sep 1996 JP
3487946 Oct 1996 JP
8254620 Oct 1996 JP
3279474 Oct 1997 JP
9258033 Oct 1997 JP
9258055 Oct 1997 JP
2771870 Jul 1998 JP
3448448 Aug 1998 JP
10227919 Aug 1998 JP
3478944 Dec 1998 JP
10332945 Dec 1998 JP
10339817 Dec 1998 JP
11023858 Jan 1999 JP
2000098138 Apr 2000 JP
2000098139 Apr 2000 JP
2000241631 Sep 2000 JP
2001004849 Jan 2001 JP
3160322 Apr 2001 JP
2001133636 May 2001 JP
3173962 Jun 2001 JP
3176906 Jun 2001 JP
2001154030 Jun 2001 JP
2001159714 Jun 2001 JP
2002022974 Jan 2002 JP
2002169035 Jun 2002 JP
3312893 Aug 2002 JP
2002305389 Oct 2002 JP
3344701 Nov 2002 JP
2003029054 Jan 2003 JP
3403573 May 2003 JP
2003169026 Jun 2003 JP
2003215353 Jul 2003 JP
2003344701 Dec 2003 JP
3516765 Apr 2004 JP
2004144808 May 2004 JP
2004514931 May 2004 JP
3542939 Jul 2004 JP
2004246147 Sep 2004 JP
2004361652 Dec 2004 JP
2004361893 Dec 2004 JP
3107704 Feb 2005 JP
2005055748 Mar 2005 JP
2005062569 Mar 2005 JP
2005084241 Mar 2005 JP
2005148327 Jun 2005 JP
3763645 Apr 2006 JP
3778021 May 2006 JP
2006126513 May 2006 JP
2006126516 May 2006 JP
3794540 Jul 2006 JP
2006227041 Aug 2006 JP
3833638 Oct 2006 JP
3841344 Nov 2006 JP
3847533 Nov 2006 JP
200747336 Feb 2007 JP
3896035 Mar 2007 JP
2007067458 Mar 2007 JP
3934052 Jun 2007 JP
3964191 Aug 2007 JP
3989853 Oct 2007 JP
4026244 Dec 2007 JP
4029494 Jan 2008 JP
4065223 Mar 2008 JP
4093475 Jun 2008 JP
4105696 Jun 2008 JP
4112437 Jul 2008 JP
4118862 Jul 2008 JP
2008176118 Jul 2008 JP
2008180817 Aug 2008 JP
4184329 Nov 2008 JP
2008542822 Nov 2008 JP
2009503582 Jan 2009 JP
9105281 Apr 1991 WO
9326070 Dec 1993 WO
9520175 Jul 1995 WO
9636896 Nov 1996 WO
9712268 Apr 1997 WO
9744605 Nov 1997 WO
9825416 Jun 1998 WO
0005611 Feb 2000 WO
0127660 Apr 2001 WO
0242818 May 2002 WO
03009527 Jan 2003 WO
2004052066 Jun 2004 WO
2007050515 May 2007 WO
2007079074 Jul 2007 WO
2007149215 Dec 2007 WO
2008063054 May 2008 WO
2009120280 Oct 2009 WO
Non-Patent Literature Citations (183)
Entry
Page-Numbered Consolidation of NPL submitted by Applicant on Dec. 28, 2012.
Non-Final Rejection mailed Sep. 7, 2010, for U.S. Appl. No. 12/323,423, 18 pages.
Notice of Allowance for U.S. Appl. No. 12/323,423 mailed Jan. 24, 2012, 8 pages.
Examiner's Answer mailed Mar. 4, 2011, for U.S. Appl. No. 12/323,415, 11 pages.
Final Rejection mailed Jun. 25, 2010, for U.S. Appl. No. 12/323,415, 10 pages.
Non-Final Rejection mailed Aug. 5, 2011, for U.S. Appl. No. 12/323,415, 41 pages.
Non-final Office Action for U.S. Appl. No. 12/323,415 mailed Apr. 23, 2012, 11 pages.
Non-Final Rejection mailed Dec. 10, 2009, for U.S. Appl. No. 12/323,415, 7 pages.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 11/320,062 mailed Dec. 8, 2011, 8 pages.
Final Office Action for U.S. Appl. No. 11/320,062 mailed Mar. 8, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 11/320,062 mailed Jan. 15, 2010, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/320,062 mailed Sep. 30, 2010, 7 pages.
Final Office Action for U.S. Appl. No. 11/439,086 mailed Feb. 4, 2010, 14 pages.
Non-final Office Action for U.S. Appl. No. 11/439,086 mailed May 3, 2010, 11 pages.
Non-final Office Action for U.S. Appl. No. 11/439,086 mailed Sep. 21, 2009, 10 pages.
Final Office Action for U.S. Appl. No. 12/079,481 mailed Mar. 18, 2010, 10 pages.
Non-final Office Action for U.S. Appl. No. 12/079,481 mailed Dec. 26, 2008, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/079,481 mailed Sep. 16, 2009, 10 pages.
Notice of Allowance for U.S. Appl. No. 12/079,481 mailed Jun. 3, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/079,481 mailed Oct. 4, 2010, 4 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Dec. 22, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Mar. 16, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Sep. 1, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/323,373 mailed May 3, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 11/809,474 mailed Apr. 8, 2008, 13 pages.
Non-final Office Action for U.S. Appl. No. 11/809,474 mailed Nov. 13, 2008, 10 pages.
Notice of Allowance for U.S. Appl. No. 11/809,474 mailed Jul. 6, 2009, 6 pages.
Final Office Action for U.S. Appl. No. 11/320,031 mailed Mar. 8, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 11/320,031 mailed Jan. 5, 2010, 16 pages.
Non-final Office Action for U.S. Appl. No. 11/320,031 mailed Sep. 30, 2010, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/320,031 mailed Nov. 15, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/157,622 mailed Mar. 31, 2009, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/157,622 mailed Oct. 15, 2009, 9 pages.
Notice of Allowance for U.S. Appl. No. 12/157,622 mailed Apr. 22, 2010, 4 pages.
Non-final Office Action for U.S. Appl. No. 12/323,395 mailed Dec. 8, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/415,454 mailed Mar. 2, 2012, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/415,454 mailed Sep. 6, 2011, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/415,454 mailed Jan. 13, 2012, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/576,769 mailed Feb. 2, 2012, 23 pages.
Notice of Allowance for U.S. Appl. No. 12/415,454 mailed Jun. 19, 2012, 5 pages.
International Search Report for PCT/US2009/066779 mailed Aug. 27, 2010, 3 pages.
“MPO Fiber Optic Rack Panels now available from L-com Connectivity Products,” article dated Jun. 4, 2007, 16 pages, http://www.l-com.com/content/Article.aspx?Type=P&ID=438.
“19″ Rack Panel with 16 MPO Fiber Optic Couplers—1U high,” product pages, accessed Oct. 23, 2012, 2 page, http://www.l-com.com/item.aspx?id=9767#.UlbgG8XXay5.
“Drawing for L-com 1U Panel with 16 MTP couplers,” May 15, 2007, 1 page, http://www.1-com.com/multimedia/eng—drawings/PR17516MTP.pdf.
“RapidNet Fibre MTP VHD Cassette,” Brochure, Date Unknown, 1 page, http://www.hellermanntyton.se/documents/5000/576—fiber—1U.pdf.
“MPO for Gigabit Ethernet/FAS-NET MTP Solution,” Brochure, Date Unknown, 11 pages, http://www.infinique.com/upload/13182286190.pdf.
“Hubbell OptiChannel High Density 144 Port 1U Fiber Enclosure,” Brochure, Date Unknown, 2 pages, http://www.hubbell-premise.com/literature/PLDF010.pdf.
Non-final Office Action for U.S. Appl. No. 12/771,473 mailed Oct. 4, 2012, 6 pages.
Non-final Office Action for U.S. Appl. No. 12/819,081 mailed Aug. 21, 2012, 12 pages.
International Search Report for PCT/US2010/038986 mailed Aug. 18, 2010, 1 page.
Notice of Allowance for U.S. Appl. No. 12/417,325 mailed Aug. 22, 2012, 7 pages.
Notice of Panel Decision for Pre-Appeal Brief for U.S. Appl. No. 12/417,325 mailed Aug. 8, 2012, 2 pages.
Advisory Action for U.S. Appl. No. 12/417,325 mailed Jun. 29, 2012, 3 pages.
Advisory Action for U.S. Appl. No. 12/417,325 mailed Jun. 12, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/417,325 mailed Apr. 16, 2012, 6 pages.
Final Office Action for U.S. Appl. No. 12/417,325 mailed Feb. 7, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/417,325 mailed Jun. 15, 2011, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/487,929 mailed Sep. 12, 2012, 4 pages.
Notice of Allowance for U.S. Appl. No. 12/487,929 mailed Jun. 13, 2012, 8 pages.
Advisory Action for U.S. Appl. No. 12/487,929 mailed Apr. 17, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/487,929 mailed Feb. 14, 2012, 6 pages.
Final Office Action for U.S. Appl. No. 12/487,929 mailed Dec. 5, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/487,929 mailed May 23, 2011, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/415,253 mailed Mar. 11, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/415,253 mailed Jul. 12, 2010, 11 pages.
Final Office Action for U.S. Appl. No. 12/415,253 mailed Apr. 16, 2010, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/415,253 mailed Sep. 30, 2009, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/641,617 mailed Oct. 5, 2012, 21 pages.
Final Office Action for U.S. Appl. No. 12/630,938 mailed Jun. 1, 2012, 18 pages.
Non-final Office Action for U.S. Appl. No. 12/630,938 mailed Dec. 19, 2011, 15 pages.
Non-final Office Action for U.S. Appl. No. 12/751,884 mailed Jul. 2, 2012, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/871,052 mailed Aug. 13, 2012, 8 pages.
Annex to Form PCT/ISA/2006, Communication Relating to the Results of the Partial International Search, for PCT/US2009/004549 mailed Feb. 10, 2010, 2 pages.
Annex to Form PCT/ISA/206, Communication Relating to the Results of the Partial International Search, for PCT/US2009/004548 mailed Jan. 19, 2010, 2 pages.
Corning Cable Systems, “Corning Cable Systems Products for BellSouth High Density Shelves,” Jun. 2000, 2 pages.
Corning Cable Systems, “Corning Cable Systems Quick Reference Guide for Verizon FTTP FDH Products,” Jun. 2005, 4 pages.
Conner, M. “Passive Optical Design for RFOG and Beyond,” Braodband Properties, Apr. 2009, pp. 78-81.
Corning Evolant, “Eclipse Hardware Family,” Nov. 2009, 1 page.
Corning Evolant, “Enhanced Management Frame,” Dec. 2009, 1 page.
Corning Evolant, “Enhanced Management Frame (EMF),” Specification Sheet, Nov. 2009, 24 pages.
Corning Cable Systems, “Evolant Solutions for Evolving Networks: Fiber Optic Hardware,” Oct. 2002, 2 pages.
Corning Cable Systems, “Fiber Optic Hardware with Factory-Installed Pigtails: Features and Benefits,” Nov. 2010, 12 pages.
Corning Cable Systems, “FiberManager System 1- and 3-Position Compact Shelves,” Jan. 2003, 4 pages.
Corning Cable Systems, “FiberManager System Frame and Components,” Jan. 2003, 12 pages.
Corning Cable Systems, “High Density Frame,” Jul. 2001, 2 pages.
Corning Cable Systems, “High Density Frame (HDF) Connector-Splice Shelves and Housings,” May 2003, 4 pages.
International Search Report for PCT/US10/35529 mailed Jul. 23, 2010, 2 pages.
International Search Report for PCT/US10/35563 mailed Jul. 23, 2012, 1 page.
International Search Report for PCT/US2008/002514 mailed Aug. 8, 2008, 2 pages.
International Search Report for PCT/US2008/010317 mailed Mar. 4, 2008, 2 pages.
International Search Report for PCT/US2009/001692 mailed Nov. 24, 2009, 5 pages.
International Search Report for PCT/US2010/024888 mailed Jun. 23, 2010, 5 pages.
International Search Report for PCT/US2010/027402 mailed Jun. 16, 2010, 2 pages.
Corning Cable Systems, “MTX Frames and Accessories,” Feb. 2006, 4 pages.
Panduit, “Lock-in LC Duplex Clip,” Accessed Mar. 22, 2012, 1 page.
International Search Report for PCT/US06/49351 mailed Apr. 25, 2008, 1 page.
International Search Report for PCT/US09/57069 mailed Mar. 24, 2010, 2 pages.
International Search Report for PCT/US2009/057244 mailed Nov. 9, 2009 3 pages.
International Search Report for PCTUS2009004548 mailed Mar. 19, 2010, 5 pages.
International Search Report for PCTUS2009004549 mailed Apr. 20, 2010, 6 pages.
Siecor, “Single Shelf HDF with Slack Storage and Heat Shield (HH1-CSH-1238-1V-BS),” Jan. 1998, 12 pages.
Corning Cable Systems, “Mass Termination Xchange (MTX) Frame System Equipment Office Planning and Application Guide,” SRP003-664, Issue 1, Mar. 2005, 57 pages.
Corning Cable Systems, “Mass Termination Xchange (MTX) Equipment Patch Cord Interbay Vertical Channel,” SRP003-684, Issue 1, Mar. 2005, 8 pages.
Corning Cable Systems, “High Density Frame (HDF) Installation,” SRP003-355, Issue 4, Sep. 2002, 18 pages.
Written Opinion for PCT/US2010/023901 mailed Aug. 25, 2011, 8 pages.
Advisory Action for U.S. Appl. No. 12/221,117 mailed Aug. 24, 2011, 3 pages.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 12/221,117 mailed Mar. 29, 2012, 16 pages.
Final Office Action for U.S. Appl. No. 12/221,117 mailed Feb. 19, 2010, 7 pages.
Final Office Action for U.S. Appl. No. 12/221,117 mailed Jun. 10, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Jul. 14, 2010, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Jun. 9, 2009, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Dec. 21, 2010, 7 pages.
Advisory Action for U.S. Appl. No. 12/394,483 mailed Feb. 16, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/394,483 mailed Dec. 6, 2011, 14 pages.
Non-final Office Action for U.S. Appl. No. 12/394,483 mailed Jun. 17, 2011, 11 pages.
Advisory Action for U.S. Appl. No. 12/950,234 mailed Dec. 21, 2011, 3 pages.
Non-final Office Action for U.S. Appl. No. 12/950,234 mailed Jun. 17, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/950,234 mailed Mar. 12, 2012, 10 pages.
Final Office Action for U.S. Appl. No. 12/950,234 mailed Oct. 14, 2011, 10 pages.
Advisory Action mailed May 12, 2011, for U.S. Appl. No. 12/323,423, 3 pages.
Final Rejection mailed Mar. 3, 2011, for U.S. Appl. No. 12/323,423, 17 pages.
Non-Final Rejection mailed Aug. 5, 2011, for U.S. Appl. No. 12/323,423, 13 pages.
Unknown, Author, “QuickNet SFQ Series MTP Fiber Optic Cassettes,” Panduit Specification Sheet, Jan. 2009, 2 pages.
Unknown Author, “Cellular Specialties introduces the first simulated in-building location-based tracking solution,” smart-grid.tmenet.com/news, Sep. 14, 2009, 2 pages.
Unknown Author, “CDMA Co-Pilot Transmitter,” Cellular Specialties, Inc., Aug. 2009, 2 pages.
Non-Final Office Action for U.S. Appl. No. 12/953,039 mailed Jan. 11, 2013, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/952,912 mailed Dec. 28, 2012, 9 pages.
Non-Final Office Action for U.S. Appl. No. 12/953,118 mailed Jan. 7, 2013, 9 pages.
International Search Report for PCT/US2010/023901 mailed Jun. 11, 2010, 3 pages.
Notice of Allowance for U.S. Appl. No. 12/576,769 mailed May 31, 2012, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/576,806 mailed Dec. 13, 2011, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/576,806 mailed Apr. 18, 2012, 5 pages.
Non-Final Office Action for U.S. Appl. No. 12/707,889 mailed Jan. 2, 2013, 7 pages.
Non-Final Office Action for U.S. Appl. No. 12/953,536 mailed Jan. 2, 2013, 20 pages.
Final Office Action for U.S. Appl. No. 12/946,139 mailed Feb. 15, 2013, 17 pages.
Non-final Office Action for U.S. Appl. No. 12/751,884 mailed Feb. 15, 2013, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Feb. 27, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/819,065 mailed Mar. 4, 2013, 7 pages.
Final Office Action for U.S. Appl. No. 12/952,960 mailed Mar. 7, 2013, 13 pages.
Notice of Allowance for U.S. Appl. No. 12/732,487 mailed Mar. 19, 2013, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/953,134 mailed Mar. 21, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/090,621 mailed Apr. 22, 2013, 8 pages.
Final Office Action for U.S. Appl. No. 12/953,039 mailed May 1, 2013, 8 pages.
Final Office Action for U.S. Appl. No. 12/953,118 mailed May 3, 2013, 11 pages.
Final Office Action for U.S. Appl. No. 12/915,682 mailed Apr. 18, 2013, 9 pages.
Advisory Action for U.S. Appl. No. 12/952,960 mailed May 15, 2013, 2 pages.
Non-final Office Action for U.S. Appl. No. 12/952,960 mailed Jun. 20, 2013, 13 pages.
Non-final Office Action for U.S. Appl. No. 12/953,536 mailed Jun. 6, 2013, 21 pages.
Non-final Office Action for U.S. Appl. No. 11/820,300 mailed Apr. 25, 2012, 10 pages.
Final Office Action for U.S. Appl. No. 12/871,052 mailed Jul. 1, 2013, 12 pages.
Non-final Office Action for U.S. Appl. No. 12/940,699 mailed Jun. 26, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/090,621 mailed Jun. 25, 2013, 8 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Oct. 25, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/732,487 mailed Sep. 19, 2012, 22 pages.
Non-final Office Action for U.S. Appl. No. 12/818,986 mailed Feb. 3, 2012, 12 pages.
Final Office Action for U.S. Appl. No. 12/818,986 mailed Oct. 18, 2012, 13 pages.
Non-final Office Action for U.S. Appl. No. 12/952,960 mailed Oct. 4, 2012, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/953,134 mailed Sep. 25, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/915,682 mailed Oct. 24, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/946,139 mailed Jul. 26, 2012, 12 pages.
Examination Report for European patent application 09789090.9-2216 mailed Aug. 29, 2011, 4 pages.
Examination Report for European patent application 09789090.9-2216 mailed Mar. 30, 2012, 6 pages.
Written Opinion of the International Searching Authority for International patent application PCT/US2009004548, mailed Apr. 5, 2011, 6 pages.
European Search Report for European patent application 09789090.9-2217 mailed Jan. 24, 2013, 5 pages.
European Search Report for patent application 10790017.7 mailed Nov. 8, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/956,475 mailed Oct. 4, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/302,067 mailed Jun. 7, 2013, 13 pages.
Final Office Action for U.S. Appl. No. 12/771,473 mailed Jul. 19, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/751,884 mailed Jul. 17, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/940,585 mailed Aug. 16, 2013, 14 pages.
Final Office Action for U.S. Appl. No. 12/953,134 mailed Aug. 23, 2013, 11 pages.
Ex parte Quayle Action for U.S. Appl. No. 12/953,164 mailed Aug. 16, 2013, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/732,487 mailed Jul. 17, 2013, 22 pages.
Non-final Office Action and Interview Summary for U.S. Appl. No. 12/707,889 mailed Aug. 8, 2013, 15 pages.
Advisory Action for U.S. Appl. No. 12/953,039 mailed Jul. 12, 2013, 3 pages.
Advisory Action for U.S. Appl. No. 12/953,118 mailed Jul. 12, 2013, 3 pages.
Final Office Action for U.S. Appl. No. 12/952,912 mailed Aug. 30, 2013, 15 pages.
Advisory Action for U.S. Appl. No. 12/771,473 mailed Oct. 2, 2013, 3 pages.
Notice of Allowance for U.S. Appl. No. 12/871,052 mailed Sep. 18, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/953,039 mailed Sep. 12, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/946,139 mailed Oct. 2, 2013, 18 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Oct. 4, 2013, 10 pages.
Non-final Office Action for U.S. Appl. No. 12/818,986 mailed Oct. 4, 2013, 19 pages.
Related Publications (1)
Number Date Country
20110150407 A1 Jun 2011 US