The invention relates to a rotary locking cylinder for a safety lock, comprising a stator and at least one rotor having a key channel, comprising tumblers which are to be arranged in place for the rotary release of the rotor using an associated key and which each have a core pin and a spring-loaded housing pin.
Rotary locking cylinders of this type have been known for a long time. They ensure high security. Like other safety devices, they are subject to manipulations for unauthorized opening. In particular simple and cheap locking cylinders are often unable to withstand such manipulations. One of these opening methods is known as “bump technique”. This opening method is difficult to detect and basically does not damage the rotary locking cylinder.
Used in this method is a blank which has a profiled portion which corresponds to that of the cylinder to be manipulated. Since the profiled portions of the cylinders are different, a corresponding set of blanks is required. The matching blank is selected from this set. The corresponding associated blank is inserted into the key channel and is held under pressure at the key handle with a suitable torque in the desired rotary position of the rotor. A blow is now simultaneously applied to the handle using a bump tool. An impulse is exerted on the respective rotor pins by the blank. According to the percussion principle, the core pins each transmit the impulse to the associated housing pin. The core pins are left behind in the process. Due to the impulse received, the housing pins are briefly moved outward beyond the separating line into the stator against the reactive force of the housing spring. Since the housing springs now no longer lock the rotor, the latter is free and can be rotated and thus the rotary locking cylinder can be opened. The blank can be removed and used for further manipulations.
The object of the invention is to provide a rotary locking cylinder of the abovementioned type which reliably prevents this opening method and which nonetheless can be produced in a functionally reliable and favorable manner.
In a rotary locking cylinder of the generic type, this object is achieved in that at least one core pin consists of at least one inner part and one outer part, the length of the outer part and the length of the associated housing pin together resulting in a length which is greater than a length of a hole in which the housing pin is mounted. In the rotary locking cylinder according to the invention, the housing pins can continue to be moved outward into the stator during a manipulation according to the abovementioned principle. However, the inner part of the core pin moves outward at the same time as the housing pins. On account of said length ratios, this inner part assumes the locking of the rotor. In principle, it is sufficient if only one tumbler of this kind has a core with an outer part and an inner part. However, greater security is achieved if a plurality of tumblers of this kind are formed at the same time. The costs for the production of the rotary locking cylinder are not substantially higher than in the case of a rotary locking cylinder which permits said manipulations.
According to a development of the invention, the inner part is the same length in all the two-part core pins. The inner part is preferably made of a hard material, for example hardened steel. Since all these parts can be of identical design, their production and the corresponding assembly is simple or cost-effective. The inner part may be made of a comparatively soft material, for example brass or nickel silver, since this part is subjected to less stress than the inner part, which is in engagement with the key. The effective length of the core pins is therefore determined by the inner parts. These inner parts are accordingly of different length.
The outer part of the core pin and also the inner part are preferably cylindrical and can be completely separated from one another radially.
According to a development of the invention, the outer part of the core pin is undercut. This gives even greater security and also prevents other opening methods. If such an undercut part is moved outward into the stator during said manipulation, it can no longer, as a rule, with canted rotor, move back into the rotor and remains in the locking position. This is even intensified if, according to a development of the invention, the hole in the stator is also undercut.
The housing pins are preferably in each case mounted in slides. The housing pins and the associated springs can then be put into the slides outside the stator. The core pins are inserted into the stepped holes of the rotor. The fitting of the core pins is simplified when, according to a development of the invention, the two parts of the core pin have a recess and a corresponding extension, respectively, at the surfaces in contact with one another.
According to a development of the invention, provision is made for the housing pin and the outer part of the core pin to be magnetically connected to one another, at least at one tumbler. This is done in particular by magnetic pins which are firmly inserted into said parts. The magnetic connection ensures that the housing pin and the outer part are reliably connected to one another and are simultaneously moved outward during said manipulation. The housing pin and the inner part thus form a type of stack which is released from the inner part and shifts outward during said manipulation.
The bump technique can be prevented even more effectively if the two parts of the core pin have a recess and a corresponding extension, respectively, at the surfaces in contact with one another. After separation of the two parts, it is then scarcely possible to arrange these two parts in place with canted rotor.
Exemplary embodiments of the invention are explained in more detail below with reference to the drawing, in which:
The rotary locking cylinder 1 shown in
The rotor R forms a key channel 24, into which the shank of the associated key can be pushed for arranging the tumblers Z1 to Z4 in place. The key (not shown here) may be of any desired design as such, i.e. it may be, in particular, a reversible key with holes or a “serrated key”. In
The rotor R has radially stepped holes 21 in which core pins K1 to K4 are mounted. As can be seen, these core pins K1 to K4 project into the key channel 24 in the rest position. The core pins K1 to K4 are held by the springs 5 in the rest position shown. These positions are defined by the shoulders of the stepped holes 21.
The core pins K1 to K4 each consist of an inner part 20 and one of the outer parts 10 to 13. As can be seen, the inner parts 20 are all the same length and are of identical design. At a rear end, they have a respective collar 27 which is directed radially outward and bears against said shoulder in the stepped hole. The inner parts 20 are preferably made of a hard material, in particular hardened steel. The rear side of the core pins 20 is formed by a respective flat surface 28. One of the outer parts 10 to 13 bears in each case with a flat inner surface 15 (
According to
If the core pins K1 to K4 are acted upon by a blank as mentioned above, a radial impulse is simultaneously exerted on said core pins K1 to K4. This impulse is transmitted in each case from the inner part 20 to the corresponding outer part 10 to 13 and finally to the corresponding housing pin 6 to 9. According to the percussion principle, the inner parts 20 are left essentially in the position shown in
The state shown in
The outer parts 10 to 13 and the housing pins 6 to 9 are in each case provided with an inner radial hole 16 or 17, respectively, into which a magnet pin 18 or 19, respectively, is firmly inserted. The magnets 18 and 19 are in each case permanent magnets and are fixed in the corresponding hole 16 or 17, respectively. These magnet pins 18 and 19 connect the outer parts 10 to 13 in each case to one of the housing pins 6 to 9. However, the magnetic force only acts radially in each case, so that the inner parts 10 to 13 can readily be separated from the housing pins 6 to 9 during the rotation of the rotor R. However, the magnetic connection has the advantage that the inner parts 10 to 13 and the housing pins 6 to 9, during the exertion of said radial impulse, can be moved with one another in an even more reliable manner and therefore cannot be separated from one another with said percussion principle.
The outer parts 10 to 12 are each undercut. As a result, an inner margin 31 and an outer margin 32, which each project radially, is formed in each case. If the outer parts 10 to 12 according to
The lengths L1, L2, L3 and L4 shown in
In the case of the tumbler Z1″ shown in
In the case of the tumblers Z1′ and Z1″, the parts 10′ and 20′ and respectively 10″ and 20″ also bear in each case loosely against one another and can therefore be completely separated from one another according to said percussion principle.
In addition, the recesses 22 and 26 and also the cylindrical stem 23 and the cone 25 are effective during application of the abovementioned bump technique and can prevent the latter. If the two parts 10′ and 20′ and respectively 10″ and 20″ of the core pin are separated on account of said bump technique, as is shown in
List of Designations
Number | Date | Country | Kind |
---|---|---|---|
04 405 554.9 | Sep 2004 | EP | regional |