The present invention relates to a printing machine, and more particularly to a rotary printing machine, with which a workpiece can be printed only once or be repeated printed multiple times in a continuous manner.
Generally, a screen printing machine includes only one clamping unit on a printing cylinder thereof. When the clamping unit is located at a feeding position, it clamps a workpiece in place on the printing cylinder. Then, the printing cylinder continuously rotates and brings the workpiece to a position corresponding to a screen carrier, and the screen carrier is caused to move horizontally while the printing cylinder rotates, so that a printed pattern is formed on the workpiece that is located between the printing cylinder and the screen carrier. Thereafter, when the workpiece is moved to an unloading position, the clamping unit releases the workpiece, so that the workpiece leaves from the printing cylinder and the screen printing procedure is completed. Thereafter, the printing cylinder keeps rotating and reaches at the feeding position again. At this point, the clamping unit is in an open state and ready for clamping a next workpiece. Since the screen printing machine with one single clamping unit can complete only one printing operation when the printing cylinder rotates a full circle of 360 degrees, the printing efficiency thereof is very low.
To improve the performance of the conventional screen printing machine, an improved screen printing machine 1 with multiple clamping units as shown in
When the printing starts, the first clamping unit 12 located at a feeding position is in an open state, allowing a workpiece to be moved into the first clamping unit 12. Then, the first clamping unit 1 is closed, bringing the workpiece to move circumferentially along with the rotating printing cylinder 10. Then, printing and unloading procedures are sequentially performed. When the first clamping unit 12 completes the unloading procedure, the second clamping unit 13 is located at the feeding position and ready for clamping a next workpiece. When the second clamping unit 13 completes the printing and the unloading procedures, the first clamping unit 12 is returned to the feed position again and starts a new cycle of clamping, printing and unloading procedures. That is, the improved screen printing machine 1 is able to complete printing on two workpieces when the printing cylinder 10 rotates one full circle of 360 degrees. This largely increases the printing efficiency of the screen printing machine.
However, most screen printing machines available in the market are designed for the workpiece to be printed only once. That is, the printed pattern formed on the workpiece is a two-dimensional pattern having one single layer of ink. Therefore, when the conventional screen printing machine is to be used to form a three-dimensional printed pattern including multiple layers of ink on the workpiece, the workpiece must be manually removed from an unloading unit of the screen printing machine each time one printing procedure is completed and then, be manually put in a feeding unit of the screen printing machine to repeat the screen printing until the three-dimensional printed pattern is obtained. By doing this, the time for printing is increased and it is uneasy to control the accuracy of manual printing registration. Accordingly, the printing quality and productivity are relatively low, and the complicated procedures for the three-dimensional printing also largely increase the cost of the screen printed pattern. In view that the conventional screen printing machine has a lot of disadvantage in use, it is really desirable to improve the structure of the currently available rotary screen printing machine.
A primary object of the present invention is to provide a rotary printing machine, with which a workpiece can be printed only once or be repeatedly print multiple times in a continuous manner, so that only one rotary printing machine is needed to print on a workpiece for forming a two-dimensional printed pattern with one single layer of ink or forming a three-dimensional printed pattern with multiple stacked layers of ink, depending on actual need in use. Therefore, the rotary printing machine can have increased applications and the conventional complicated procedures for creating a three-dimensional printed pattern can be simplified.
Another object of the present invention is to provide a rotary printing machine, of which a printing cylinder has a plurality of clamping units provided thereon, so that multiple workpieces can be printed in one revolution of the printing cylinder to largely upgrade the printing efficiency of the rotary printing machine.
To achieve the above and other objects, the rotary printing machine provided according to the present invention includes a printing cylinder, a printing unit, a feeding control mechanism and an unloading control mechanism. By controlling the feeding control mechanism and the unloading control mechanism corresponding to the rotation of the printing cylinder, a workpiece can be printed only once or be repeatedly printed multiple times in a continuous manner.
In the present invention, the printing cylinder is provided on a surface thereof with at least one clamping unit. The clamping unit includes a rotary shaft, on which a swing member, a reset unit and a plurality of clampers are provided. The clampers are normally maintained in a closed state on the surface of the printing cylinder, and can be switched to an open state when the rotary shaft of the clamping unit is rotated. When the clampers are in the closed state, a clamping surface formed by the clampers overlaps with the surface of the printing cylinder to provide a clamping effect. When the clampers are in the open state, an angle is formed between the clamping surface of the clampers and the surface of the printing cylinder to provide a releasing effect.
In a preferred embodiment of the present invention, the clamper includes a clamping section and a pushing section, both of which are fixedly mounted on the rotary shaft. The pushing section overlaps with the printing cylinder when the rotary shaft is acted on by the feeding control unit. On the other hand, an angle is formed between the pushing section and the surface of the printing cylinder when the rotary shaft is acted on by the unloading control unit. An angle formed between the clamping unit and the printing cylinder when the rotary shaft is acted on by the feeding control mechanism is different from an angle that is formed between the clamping section and the printing cylinder when the rotary shaft is acted on by the unloading control mechanism.
In the present invention, the printing unit is located over and adjacent to the surface of the printing cylinder for performing printing on the workpiece in cooperation with the printing cylinder. In an operable embodiment, the printing unit uses an inkjet member to jet ink directly onto the workpiece. In another operable embodiment, the printing unit uses a screen carrier to perform screen printing on the workpiece.
In the present invention, the feeding control mechanism includes a driving source, a feeding linkage and a feeding control unit. The driving source drives the feeding linkage to change between a first position, in which the feeding linkage can touch the swing member when the printing cylinder is rotating, and a second position, in which the feeding linkage can not touch the swing member when the printing cylinder is rotating. The feeding control unit is able to separate the feeding linkage from the driving source, such that the feeding linkage is maintained at the second position.
In a preferred embodiment, the driving source is configured as a cam. The cam has a first curved portion and a second curved portion that are different in curvature. The clampers are brought to quickly change from the closed state into the open state when the first curved portion and the second curved portion of the cam sequentially act on the feeding linkage; and the clampers are brought to gently change from the open state into the closed state when the second curved portion and the first curved portion of the cam sequentially act on the feeding linkage.
The feeding linkage includes a first link and a second link. The first and the second link are fixedly connected to each other at their adjacent ends, which together form a pivot center. The driving source and the feeding control unit are operatively mounted on the first link, and another opposite end of the second link is movable to touch the swing member for rotating the rotary shaft.
The second link includes a swing link body, a push head connected to one side of a distal end of the swing link body for causing the swing member to swing, and a length-adjustment mechanism located between the swing link body and the push head.
The length-adjustment mechanism includes a first limiting rail and a first locking member. The first limiting rail is formed on one of the swing link body and the push head while the first locking member is mounted the other one of the swing link body and the push head; and the push head is movable in along the first limiting rail to thereby change an overall length of the second link.
In the present invention, the feeding control unit includes a first driving unit and a first controller. The first driving unit is normally in a retracted state, and the first controller is electrically connected to the first driving unit for controlling the first driving unit to change from the retracted state into an extended state.
The unloading control mechanism includes an unloading unit and an unloading control unit. The unloading unit is mounted to the first position, in which the unloading unit can touch the swing member when the printing cylinder is rotating; and the unloading control unit is able to switch the unloading unit from the first position to the second position, in which the unloading unit can not touch the swing member when the printing cylinder is rotating.
The unloading unit has an end fixed to the printing cylinder to serve as a pivot center and another opposite end connected to the unloading control unit. A raised area is formed on the unloading unit between the pivot center and the unloading control unit, and the raised area is higher than other areas of the unloading unit located at two lateral sides of the raised area.
The unloading unit includes a curved arm portion, a raised arm portion that forms the raised area, and a position-adjustment mechanism formed on between the curved arm portion and the raised arm portion.
The position-adjustment mechanism includes a second limiting rail and a second locking member. The second limiting rail is formed on one of the curved arm portion and the raised arm portion while the second locking member is mounted on the other one of the curved arm portion and the raised arm portion. The raised arm portion is movable in along the second limiting rail when the second locking member is in a loosened state, enabling a change in a connection position of the raised arm portion relative to the curved arm portion.
The unloading control unit includes a second driving unit and a second controller. The second driving unit is normally in an extended state, and the second controller is electrically connected to the second driving unit for controlling the second driving unit to change from the extended state into a retracted state.
When the first driving unit of the rotary printing machine of the present invention is controlled to the retracted state and the second driving unit is controlled to the extended state, the printing cylinder can circumferentially move the workpiece for the printing unit to print on the workpiece once only. On the other hand, when the first driving unit of the rotary printing machine of the present invention is controlled to the extended state and the second driving unit is controlled to the retracted state, the printing cylinder can circumferentially move the workpiece for the printing unit to repeat printing on the workpiece multiple times in a continuous manner.
The rotary printing machine of the present invention can further include a drying unit disposed over the unloading control mechanism for curing ink that has been printed onto the workpiece to form a pattern, so that the cured printed pattern is stably held to the workpiece. After the curing operation, the workpiece is still in a clamped state and attached to the printing cylinder, so as to be circumferentially moved by the rotating printing cylinder for a next printing operation. The same steps are repeated multiple times to form a user-required three-dimensional printed pattern on the workpiece. In a preferred embodiment, the drying unit is configured as an ultraviolet (UV) lamp.
The rotary printing machine of the present invention is characterized in that the clamping units provided on the printing cylinder work in cooperation with the mechanically operated feeding control mechanism and unloading control mechanism, it is therefore possible to determine the operating states of the clamping units at the feeding position and the unloading position. With these arrangements, the workpiece on the rotary printing machine can be printed only once without the need of adjusting the rotary printing machine. On the other hand, when the workpiece on the rotary printing machine is to be repeatedly printed multiple times, simply adjust the feeding control mechanism and the unloading control mechanism for the clamping units to maintain the clamped state, and a three-dimensional printed pattern with multiple layers of ink can be formed on the workpiece.
Moreover, in the rotary printing machine of the present invention, the use of dual clamping units along with the inkjet member or a screen carrier enables a fully automatic three-dimensional electronic printing operation, which can effectively reduce the labor and time costs to upgrade the printing efficiency.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiment and the accompanying drawings, wherein
The present invention will now be described with a preferred embodiment thereof and by referring to the accompanying drawings.
Please refer to
The printing cylinder 4 is driven to rotate by a servomotor (not shown), which enables precisely controlled rotational speed and accuracy of the printing cylinder 4. The printing unit 5 is installed over the printing cylinder 4 and located adjacent to a printing surface A of the printing cylinder 4. The printing unit 5 performs printing on the workpiece 3 corresponding to the rotation of the printing cylinder 4. In the embodiment illustrated in
The feeding control mechanism 6 and the unloading control mechanism 7 are mounted to a non-printing surface B located at one lateral side of the printing cylinder 4. The drying unit 8 is disposed over the unloading control mechanism 7 for performing an ink curing operation on the workpiece 3 that has printed patterns formed thereon.
The printing cylinder 4 includes a driving shaft 40, a cylinder body 41, and at least one clamping unit 42. In an operable embodiment, two clamping units 42 are provided on the cylinder body 41 at two diametrically opposite positions thereof. With these arrangements, the printing on two workpieces 3 can be completed in one revolution of the cylinder body 41. However, it is understood the provision of two clamping units 42 is only illustrative. That is, the designed number of the clamping units 42 can be three, four or more, depending on actual need.
Please refer to
Please refer to
Referring to
As shown in
In an operable embodiment of the present invention, each of the clampers 45 includes a clamping section 451 and a pushing section 452, both of which are fixedly mounted on the rotary shaft 43. The clamping section 451 and the pushing section 452 are spaced from each other, so that a receiving space 453 is formed between them and the workpiece 3 can be fed into the receiving space 453. The reset unit 44 includes a fixing seat 441 and an elastic element 442. The fixing seat 441 is fixedly fitted on the rotary shaft 43. The elastic element 442 has two ends separately pressing against the fixing seat 441 and a surface of the printing cylinder 4, such that the elastic element 442 always pushes against the fixing seat 441.
When the rotary shaft 43 is acted on by the feeding control mechanism 6, the pushing section 452 overlaps with the printing cylinder 4 while a first angle is formed between the clamping section 451 and the surface of the printing cylinder 4. As can be seen
Referring to
As shown in
The feeding control unit 62 is connected to the feeding linkage 61 for separating the feeding linkage 61 from the driving source 60, so that the feeding linkage 61 is maintained at the second position 91 without touching the swing member 46.
In a preferred embodiment as shown in
The cam 601 has a first curved portion 602 and a second curved portion 603, which are different in curvature. The first curved portion 602 has a curvature larger than that of the second curved portion 603. Therefore, when the first curved portion 602 and the second curved portion 603 of the cam 601 sequentially act on the feeding linkage 61, the clampers 45 are brought to quickly change from the closed state into the open state. On the other hand, when the second curved portion 603 and the first curved portion 602 of the cam 601 sequentially act on the feeding linkage 61, the clampers 45 are brought to gently change from the open state into the closed state.
The first link 611 and the second link 612 are pivotally connected at their adjacent ends to a fixed bar 613 to form a pivot center at the adjacent ends. Another opposite end of the second link 612 can bring the swing member 46 to swing.
Please refer to
The length-adjustment mechanism 616 includes a first limiting rail 617 and a first locking member 618 extended into the first limiting rail 617. The first limiting rail 617 can be formed on one of the swing link body 614 and the push head 615 while the first locking member 618 is mounted on the other one of the swing link body 614 and the push head 615.
The first locking member 618 includes a first bolt 619 and a first fastening element (not shown). When the first fastening element is loosened from the first bolt 619, the push head 615 can be moved in along the first limiting rail 617 relative to the swing link body 614, so as to change an overall length and an angular position of the second link 612. In this manner, it is able to control the size of the angle formed between the clampers 45 and the cylinder body 41 when the clampers 45 are in the open state.
Further, the first driving unit 621 is normally in a retracted state, enabling the cam 601 and the first link 611 to maintain a contacted and linked relation between them. Please refer to
Please refer to
As can be seen in
As shown in
The position-adjustment mechanism 713 includes at least one second limiting rail 714 and at least one second locking member 715. The second limiting rail 714 is formed on one of the curved arm portion 711 and the raised arm portion 712 while the second locking member 715 is mounted on the other one of the curved arm portion 711 and the raised arm portion 712.
the second locking member 715 includes a second bolt 716 and a second fastening element (not shown). When the second fastening element is loosened from the second bolt 716, the raised arm portion 712 can be moved in along the second limiting rail 714 on the curved arm portion 711, so as to change an overall height of the unloading unit 71. In this manner, it is able to control the size of the angle formed between the clampers 45 and the cylinder body 41 when the clampers 45 are in the open state.
Please refer to
In the present invention, the drying unit 8 is configured as an ultraviolet (UV) lamp for curing the ink that has been printed onto the workpiece 3 to form a pattern. The ink on the workpiece 3 is cured when the UV lamp irradiates UV light to heat and dry the ink. The cured ink is then stably held to the workpiece 3.
As shown in
However, in the case the workpiece 3 is to be repeatedly printed multiple times in a continuous manner on the rotary printing machine 2 of the present invention, the first driving unit 621 is controlled to the extended state and the second driving unit 721 is controlled to the retracted state. At this point, the printing cylinder 4 will circumferentially move the workpiece 3 repeatedly for the printing unit 5 to continuously print on the workpiece 3 multiple times. When a three-dimensional pattern formed of a predetermined ink layers has been printed on the workpiece 3, the second driving unit 721 is switched from the retracted state to the extended state, allowing the workpiece 3 to be released from the clampers 45 at the unloaded position.
The present invention has been described with a preferred embodiment thereof and it is understood that many changes and modifications in the described embodiment can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.