The present teachings generally relate to a vehicle seat recliner and, more particularly, to a rotary recliner mechanism for a vehicle seat.
Rotary recliner mechanisms generally include of a first rotary member having a plurality of teeth and a second rotary member having a plurality of teeth adapted to lockingly engage the teeth to couple the rotary members to one another. Typically, one rotary member is mounted to a quadrant for attachment to a seatback and the second rotary member is mounted to a base plate for attachment to a seat base. The rotary recliner mechanisms are operable to lock the rotary member connected to the seatback, thereby restricting its rotation.
The rotary recliner mechanism is selectively locked by manipulating one of the rotary members between an engaged position, wherein the first and second rotary members meshingly engage, and a disengaged position where one of the rotary members retracts from engagement with the other. Locking rotary recliner mechanisms also may include a device, such as a spring, for releasably urging one of the rotary members into the engaged position so that the default position for the mechanism is a locked condition. Further, the rotary recliner typically includes an activating mechanism that moves one of the mechanisms between the above-described engaged and disengaged positions.
In reclining seats, the seatback functions as an extremely long lever arm. The locking rotary recliner mechanism is relatively small compared to the length of the reclining seatback. Vehicle vibration or movement of an occupant may impose various forces upon the seatback lever during use. These forces impose large moments on the rotary members engaging to lock the rotary recliner mechanism. If the forces are sufficient, or the rotary recliner mechanism is poorly designed, these forces can overcome the capability of the rotary recliner mechanism to anchor the seatback.
A recliner mechanism according to the teachings may include a housing, a back plate, and a locking mechanism. The back plate is rotatably supported in the housing and is selectively locked thereto by the locking mechanism. The locking mechanism may include a cam, a pair of wedges, a pair of pawls, and a plurality of slides. The wedges are displaced radially outward along a first axis by the cam. The pawls are displaced radially outward along a second axis to lockingly engage the housing in response to the cam displacing the wedges, whereby the second axis is generally perpendicular to the first axis. The slides are disposed between the wedges and the pawls for transferring radial displacement of the wedges to the radial displacement of the pawls.
Further areas of applicability of the present teachings will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are not intended to limit the scope of the teachings.
The present teachings will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is in no way intended to limit the teachings, its applications, or uses.
The back plate 20 includes a pivot aperture 38 and an inner surface 40. The inner surface 40 defines a plurality of slide bosses 42 and a pair of guide bosses 44. The plurality of slide bosses 42 includes a first slide boss 42a, a second slide boss 42b, a third slide boss 42c, and a fourth slide boss 42d. As best illustrated in
The cover plate 22 includes generally cylindrical plates having a central aperture 58 and a pair of post apertures 60. As shown in
The pivot pin 24 includes a tenon portion 62, a shoulder portion 64, and a toothed portion 66. The tenon portion 62 includes a pair of diametrically opposed flat surfaces 69. The pivot pin 24 extends through the central aperture 58 of the cover plate 22 and the pivot aperture 38 of the back plate 20. The shoulder portion 64 abuts the cover plate 22 to maintain the axial disposition of the pivot pin 24. As shown in
The locking mechanism 26 includes a locking cam 68, a release cam 70, a pair of wedges 72, a pair of pawls 74, and a plurality of slides 76. The locking mechanism 26 may be moved between an engaged position that selectively prevents relative rotation of the back plate 20, cover plate 22, and pivot pin 24 relative to the housing plate 18 and a disengaged position that permits relative rotation of the back plate 20, cover plate 22, and pivot pin 24 relative to the housing plate 18.
The locking cam 68 is a generally annular member defining a pair of radial arms 78. The radial arms 78 each include a locking surface 80 and a thrust surface 82. As illustrated in
As illustrated in
In operation, when the locking cam 68 is rotated into the engaged position, the wedges 72a, 72b are caused to axially move toward an outer perimeter of the housing plate 18. As the wedges 72a, 72b move, the slides 76a, 76b, 76c, and 76d are compressed between the wedges 72a, 72b and the pawls 74a, 74b, respectively, thereby concurrently causing the pawls 74a, 74b to axially move toward the outer perimeter of the housing plate 18. Once the pawls 74a, 74b have sufficiently moved toward an outer perimeter of the housing plate 18, the teeth 112 of each pawl 74a, 74b engage the teeth 36 of the housing plate 18 to prevent rotation of the housing plate 18.
In the engaged position, the locking cam 68, wedges 72a, 72b, and slides 76a, 76b, 76c, 76d are subjected to compressive loading. Placing the locking cam 68, wedges, 72a, 72b, and slides 76a, 76b, 76c, 76d under compression allows each of the locking cam 68, wedges, 72a, 72b, and slides 76a, 76b, 76c, 76d to be formed from a less-ductile material as each of the locking cam 68, wedges, 72a, 72b, and slides 76a, 76b, 76c, 76d experiences only a minimal a shear load.
For example, each of the locking cam 68, wedges, 72a, 72b, and slides 76a, 76b, 76c, 76d may formed from powder metal. Forming the locking cam 68, wedges, 72a, 72b, and slides 76a, 76b, 76c, 76d from a powder metal allows a reduction in manufacturing tooling complexity and cost and therefore reduces the component part cost. While powder metal is disclosed, it should be understood that the locking cam 68, wedges, 72a, 72b, and slides 76a, 76b, 76c, 76d may be formed from any suitable manufacturing process, such as, but not limited to, fine blanking and the like.
The locking cam 68 is disposed on the pivot pin 24. The first wedge 72a is slidably disposed on the inner surface 40 of the back plate 20 generally between the locking cam 68 and the first guide boss 44a. The second wedge 72b is slidably disposed on the inner surface 40 of the back plate 20 generally between the locking cam 68 and the second guide boss 44b.
The first slide 76a is slidably disposed on the inner surface 40 of the back plate 20 generally adjacent to the first slide boss 42a. The second radially converging surface 120b of the first slide 76a slidably engages the first driving surface 110a of the first wedge 72a. The sliding surface 118 of the first slide 76a slidably engages the sliding surface 48 of the first slide boss 42a. The second slide 76b is disposed on the inner surface 40 of the back plate 20 generally adjacent to the second slide boss 42b. The second radially converging surface 120b of the second slide 76b slidably engages the second driving surface 110b of the first wedge 72a. The sliding surface 118 of the second slide 76b slidably engages the sliding surface 48 of the second slide boss 42b. The third slide 76c is disposed on the inner surface 40 of the back plate 20 generally adjacent to the third slide boss 42c. The second radially converging surface 120b of the third slide 76c slidably engages the first driving surface 110a of the second wedge 72b. The sliding surface 118 of the third slide 76c slidably engages the sliding surface 48 of the third slide boss 42c. The fourth slide 76d is disposed on the inner surface 40 of the back plate 20 generally adjacent to the fourth slide boss 42d. The second radially converging surface 120b of the fourth slide 76d slidably engages the second driving surface 110b of the second wedge 72b. The sliding surface 118 of the fourth slide 76d slidably engages the sliding surface 48 of the fourth slide boss 42d.
The first pawl 74a is disposed on the inner surface 40 of the back plate 20 generally between the first and third slide bosses 42a, 42c. The first driven surface 116a of the first pawl 74a slidably engages the first radially converging surface 120a of the first slide 76a. The second driven surface 116b of the first pawl 74a slidably engages the first radially converging surface 120a of the third slide 76c. The second pawl 74b is disposed on the inner surface 40 of the back plate 20 generally between the second and fourth slide bosses 42b, 42d. The first driven surface 116a of the second pawl 74b slidably engages the first radially converging surface 120a of the second slide 76b. The second driven surface 116b of the second pawl 74b slidably engages the first radially converging surface 120a of the fourth slide 76d.
As best seen in
To disengage the recliner mechanism 16, the lever 67 (shown in
To re-engage the recliner mechanism 16, the lever 67 (shown in
Concurrently, the second driving surface 110b of the first wedge 72a slidably engages and drives the second radially converging surface 120b of the second slide 76b. The first radially converging surface 120a of the second slide 76b slidably engages the first driven surface 116a of the second pawl 74b. The second driving surface 110b of the second wedge 72b slidably engages the second radially converging surface 120b of the fourth slide 76d. The first radially converging surface 120a of the fourth slide 76d slidably engages the second driven surface 116b of the second pawl 74b. This displaces the second pawl 74a radially outward such that the toothed semi-circular surface 112 lockingly engages the plurality of internal teeth 36 on in the central aperture 34 of the housing plate 18.
The normal forces produced at the driving surfaces 110, the driven surfaces 116, and the radially converging surfaces 120 place each of the locking cam 68, wedges 72a, 72b, and slides 76a, 76b, 76c, 76d under compression when in the engaged position. Thus, the locking cam 68, wedges 72a, 72b, and slides 76a, 76b, 76c, 76d are only subjected to a minimal shear force and may be formed from a relatively ductile material, such as powder metal. As previously discussed, use of a powder metal process reduces manufacturing cost and complexity and therefore reduces component cost.
When in the engaged position, the forces applied to the pawls 74a, 74b are applied generally perpendicular to the force applied by the locking cam 68 to the wedges 72a, 72b. When assembled to a vehicle seat 10, the recliner mechanism 16 is positioned such that movement of the wedges 72a, 72b is generally along a first axis that is parallel to the vehicle seatback 12. When the locking mechanism 26 is in the engaged position, the pawls 74a, 74b are extended into engagement with the teeth 36 of the housing plate 18 along a second axis that is generally perpendicular to the first axis.
When the vehicle seat 10 is in use, a force applied to the seatback 12 is applied generally along the second axis and is transmitted by the seatback 12 to the recliner mechanism 16. If the locking mechanism 26 is in the engaged position, the pawls 74a, 74b are in contact with the teeth 36 of the housing plate 18 along the second axis and resist rotation of the seatback 12 relative to the seat bottom 14. By causing the pawls 74a, 74b to engage the housing plate 18 such that the point of contact between the pawls 74a, 74b and the housing plate 18 is generally along the second axis, tight engagement between the pawls 74a, 74b and the housing plate 18 is improved when a force is applied to the seatback 12 along the second axis.
Engagement is improved as at least one of the pawls 74a, 74b is caused to be in closer proximity to the housing plate 18. Causing the pawls 74a, 74b to be in closer proximity to the housing plate 18 improves the ability of the recliner mechanism 16 to prevent rotation of the seatback 12 relative to the seat bottom 14.
The description is merely exemplary in nature and, thus, variations are not to be regarded as a departure from the spirit and scope of the teachings.
This application claims the benefit of U.S. Provisional Application No. 60/598,545, filed on Aug. 3, 2004. The disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60598545 | Aug 2004 | US |