Referring now to the drawings, in particular referring to
Pin 10 further includes a knob 24 that can be configured in any one of a number of configurations, including any configuration known in the art, and/or other designs and configurations. Knob 24 has a thumb end 26, which is configured to be pressed by the end user thereby rotating knob 24 in direction A3, and a shaft end 28 that can be opposite to thumb end as is shown in these figures. The knob and handle are preferably fabricated from plastic or metal in each of the embodiments discussed herein.
Actuator button or knob 24 is fixed to the shaft 22 by any means known in the art. The handle 14 is secured to the shank 12 by any convenient means such as, for example by press fitting, brazing, swaging or screw threading. In the particular connection illustrated in the drawings, the shank and handle are connected by means of a threaded fit along inner surfaces of the shank and handle.
Shaft end 28 of knob 24 is configured to interengage with shaft 22 at first end 22a. First end 22a of the shaft has a smaller diameter than the second end 22b. The shaft can be joined to knob 24 by any means known in the art including, but not limited to, press fitting, brazing, swaging, screw threading and/or crimping the knob to the shaft. As a result, rotational movement of the knob is translated to the shaft.
Shaft end 22b has a pair of recessed openings or notches 28, 29 which serves to hold a pair of radially movable balls 30, 32 in their fully retracted position. The balls are preferably made of metal in each embodiment described herein. The recessed openings are shown as rectangular in shape, but they can be of other configurations as well without departing from the scope of the invention. In a fully projected position, the balls move radially outwardly into lateral bores or openings 34, 36, respectively, in an outer wall 38 of shank 12, as shown in
In one embodiment, shown in
To place the pin back into a locked position, the user again moves pin 52 radially inwardly to release the pin from engaging UNLOCK opening 58 or 59. Then, the knob is rotated clockwise or counterclockwise 90 degrees until the pin 52 is aligned with one of LOCK openings 54 or 60. Then, the pin is released and snapped into engagement with one of openings 54 or 60. The balls are pushed radially outwardly by outer surface 40 of shaft 22 until they move into openings 34, 36 of shank 12 and protrude beyond outer surface 38 of shank 12.
In accordance with another embodiment of the invention, referring to
Shaft end 80 of knob 70 is configured to interengage with shaft 82 at first end 82a. First end 82a of the shaft has a smaller diameter than a second end 82b. The shaft can be joined to knob 70 by any means known in the art including, but not limited to, press fitting, brazing, swaging, screw threading and/or crimping the knob to the shaft. As a result, rotational movement of the knob is translated to the shaft.
Shaft end 82b has a pair of recessed openings or notches 84, 86 which serves to hold a pair of radially movable balls 88, 89 in their fully retracted position. The recessed openings are shown as rectangular in shape, but they can be of other configurations as well without departing from the scope of the invention. In a fully projected position, the balls move radially outwardly into lateral bores or openings 90, 92, respectively, in an outer wall 94 of shank 96, as shown in
Rotational movement in direction A4 is by the force or thumb pressure exerted by the end user on knob 70. The user presses or moves the resiliently biased arm 72 of knob 70 radially inwardly so that pin 74 on an end of arm 72 is released from locked engagement with LOCK opening 76 of upper end 100 of handle 102. Then, the knob is rotated 90 degrees either clockwise or counterclockwise until the pin 74 is aligned with the UNLOCK opening 78. Then, the user releases the arm, and the arm snaps into opening 78 in the unlocked position. When the knob is being rotated 90 degrees, the balls move radially inwardly into recesses or slots 84, 86 of the shaft 82.
To place the pin back into a locked position, the user again moves pin 74 radially inwardly to release the pin from engaging opening 78. Then, the knob is rotated counterclockwise 90 degrees until the pin 74 is aligned with LOCK opening 76. Then, the pin is released and snapped into engagement with opening 76. The balls are pushed radially outwardly by outer surface 98 of shaft 82 until they move into openings 90, 92 of shank 96 and protrude beyond outer surface 94.
In accordance with another embodiment of the invention, referring to
Shaft end 126 of knob 110 is configured to interengage with shaft 128 at first end 128a. First end 128a of the shaft has a smaller diameter than a second end 128b. The shaft can be joined to knob 110 by any means known in the art including, but not limited to, press fitting, brazing, swaging, screw threading and/or crimping the knob to the shaft. As a result, rotational movement of the knob is translated to the shaft.
Shaft end 128b has a pair of recessed openings or notches 130, 132 which serves to hold a pair of radially movable balls 134, 136 in their fully retracted position. The recessed openings are shown as rectangular in shape, but they can be of other configurations as well without departing from the scope of the invention. In a fully projected position, the balls move radially outwardly into lateral bores or openings 138, 140, respectively, in an outer wall 142 of shank 144, as shown in
Rotational movement in direction A5 is by the force or thumb pressure exerted by the end user on knob 110. The user presses or moves the resiliently biased arm 112 of knob 110 radially inwardly so that pin 114 on an end of arm 112 is released from locked engagement with LOCK opening 116 of upper end 120 of handle 122. Then, the knob is rotated 90 degrees clockwise until the pin 114 is aligned with UNLOCK marking adjacent the end of groove 118. Then, the user has to hold the arm in the unlocked position. When the knob is being rotated 90 degrees, the balls move radially inwardly into recesses or slots 130, 132 of the shaft 128.
To place the pin back into a locked position, the user releases pin 114. Then, the knob rotates counterclockwise 90 degrees until the pin 114 is aligned with LOCK opening 116. Then, the pin is released and snapped into engagement with opening 116. The balls are pushed radially outwardly by outer surface 131 of shaft 128 until they move into openings 138, 140 of shank 144 and protrude beyond outer surface 142.
In accordance with another embodiment of the invention, referring to
Shaft end 164 of knob 150 is configured to interengage with shaft 166 at first end 166a. First end 166a of the shaft has a smaller diameter than a second end 166b. The shaft can be joined to knob 150 by any means known in the art including, but not limited to, press fitting, brazing, swaging, screw threading and/or crimping the knob to the shaft. As a result, rotational movement of the knob is translated to the shaft.
Shaft end 166b has a pair of recessed openings or notches 168, 169 which serves to hold a pair of radially movable balls 170, 172 in their fully retracted position. The recessed openings are shown as rectangular in shape, but they can be of other configurations as well without departing from the scope of the invention. In a fully projected position, the balls move radially outwardly into lateral bores or openings 174, 176, respectively, in an outer wall 178 of shank 180, as shown in
Rotational movement in direction A6 is by the thumb pressure or force exerted by the end user on knob 150. The user rotates the knob 150 by holding pin 152 and rotating the tab 90 degrees from the LOCK position to the UNLOCK position. The tab 154 is aligned with the UNLOCK marking at an edge of the groove 156. The user must continue to hold pin 152 to maintain the tab in the UNLOCK position. When the knob is being rotated 90 degrees, the balls move radially inwardly into recesses or slots 168, 169 of the shaft 166.
To place the pin back into a locked position, the user releases pin 152 which releases the spring 162 which causes the knob to rotate counterclockwise 90 degrees until the tab 154 is aligned with the LOCK position. Spring 162 biases the knob in the LOCK position. The balls are pushed radially outwardly by outer surface 182 of shaft 166 until they move into openings 174, 176 of shank 180 and protrude beyond outer surface 178.
In accordance with another embodiment of the invention, referring to Figures 6A-6D, rotational movement of knob 190 is by a force or thumb pressure exerted by a user on knob 190. The user rotates the knob 90 degrees clockwise by holding a wedge shaped tab 192 between a LOCK position and one end of groove 194 formed in upper surface 196 of handle 198 and an UNLOCK position on an opposite edge of groove 194. The user rotates the knob 90 degrees clockwise until the tab 192 is aligned with the end of groove 194 adjacent the label “UNLOCK”. A coiled spring 200 underneath the knob between a surface 202 of the knob and an inner surface 204 of the handle biases the knob to the locked position. As the knob is rotated to the UNLOCK position, the spring is pulled and is extended. The user must hold the tab in the UNLOCK position. Then, when the user releases the knob, the spring becomes released and biases the knob back to the LOCK position.
Shaft end 206 of knob 190 is configured to interengage with shaft 208 at first end 208a. First end 208a of the shaft has a smaller diameter than a second end 208b. The shaft can be joined to knob 190 by any means known in the art including, but not limited to, press fitting, brazing, swaging, screw threading and/or crimping the knob to the shaft. As a result, rotational movement of the knob is translated to the shaft.
Shaft end 208b has a pair of recessed openings or notches 210, 212 which serves to hold a pair of radially movable balls 214, 216 in their fully retracted position. The recessed openings are shown as rectangular in shape, but they can be of other configurations as well without departing from the scope of the invention. In a fully projected position, the balls move radially outwardly into lateral bores or openings 218, 220, respectively, in an outer wall 222 of shank 224, as shown in
Rotational movement in direction A7 is by the force or thumb pressure exerted by the end user on knob 190. The user rotates knob 90 degrees clockwise so that tab 192 is aligned with the UNLOCK position on groove 194. When the knob is being rotated 90 degrees, the balls move radially inwardly into recesses or slots 210, 22 of the shaft.
To place the tab back into a locked position, the user releases the tab 192. Then, the spring 200 is released and the knob is rotated counterclockwise 90 degrees until the tab 192 is aligned with LOCK position of groove 194. The balls are pushed radially outwardly by outer surface 226 of the shaft until they move into openings 218, 220 of the shank and protrude beyond outer surface 222.
In accordance with another embodiment of the invention, referring to
Shaft end 256 of knob 240 is configured to interengage with shaft 260 at first end 260a. First end 260a of the shaft has a smaller diameter than a second end 260b. The shaft can be joined to knob 240 by any means known in the art including, but not limited to, press fitting, brazing, swaging, screw threading and/or crimping the knob to the shaft. As a result, rotational movement of the knob is translated to the shaft.
Shaft end 260b has a pair of recessed openings or notches 262, 264 which serves to hold a pair of radially movable balls 266, 268 in their fully retracted position. The recessed openings are shown as rectangular in shape, but they can be of other configurations as well without departing from the scope of the invention. In a fully projected position, the balls move radially outwardly into lateral bores or openings 270, 272, respectively, in an outer wall 274 of shank 276, as shown in
Rotational movement in direction A8 is by the thumb pressure exerted by the end user on knob 240. The user presses and rotates the knob 90 degrees clockwise until the knob is aligned with the UNLOCK position or groove 244. The user continues to press on the indentation 242 to hold the knob in the UNLOCK position. When the knob is being rotated 90 degrees, the balls move radially inwardly into recesses or slots 262, 264 of the shaft.
To place the pin back into a locked position, the user releases the knob which releases spring 250 which rotates the knob counterclockwise 90 degrees until knob 240 is aligned with LOCK position. The balls are pushed radially outwardly by outer surface 278 of the shaft until they move into openings 270, 272 of the shank and protrude beyond outer surface 274.
Referring to
While considerable emphasis has been placed on the preferred embodiments of the invention illustrated and described herein, it will be appreciated that other embodiments and/or equivalents thereof can be made, and that many changes can be made in the preferred embodiments without departing from the principles of the invention. Accordingly, it is to be distinctly understood that the foregoing descriptive matter is to be interpreted merely as illustrative of the invention and not as a limitation.
This application claims priority from Provisional Application Serial No. 60/841,623 filed on Aug. 31, 2006.
Number | Date | Country | |
---|---|---|---|
60841623 | Aug 2006 | US |