The invention relates to rotary screw vacuum pumps.
For basic low cost pumping operations in scientific and industrial markets at rates of up to about 600 m3/hr, the rotary vane pump is still the most commonly used form of vacuum pump. Rotary vane pumps run relatively slowly due to the forces acting on the vanes, which are spring-biased into engagement with a cylindrical wall of the rotor chamber. Rotary screw vacuum pumps may run at higher speeds.
A rotary screw vacuum pump may comprise a housing containing two intersecting bores in which are housed a pair of intermeshing screw rotors. The ends of the housing are closed and provided with suction (inlet) and exhaust (outlet) ports. Working chambers are formed between the walls of the bores and meshing surfaces of the screw rotors. When the screw rotors rotate, the working chambers travel axially along the housing and are progressively limited as they approach the exhaust port end of the housing so that a pulsing pumping action is obtained. Such rotary screw vacuum pumps may be provided with an oil supply system to deliver oil to the screw rotors for lubrication and sealing purposes. Known oil sealed rotary screw vacuum pumps use a Lysholm type screw design that has multiple starts. Typically the screw rotors have at least four starts. The combination of high rotational speeds of the screw rotors and multi-start threads produces a rapidly pulsating output at the exhaust port.
The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the background.
A rotary screw vacuum pump includes a housing having a lower pressure inlet region and a higher pressure outlet region and two intermeshing screw rotors disposed in the housing and configured to cooperably rotate to compress a gas in working chambers formed between said screw rotors and said housing while pumping said gas from said lower pressure inlet region to said higher pressure outlet region. The housing has at least one inlet to admit a liquid into said housing to seal said working chambers, and the intermeshing screw rotors are Quimby-type screw rotors.
In accordance with a further embodiment, a rotary screw vacuum pump includes a housing having walls defining a rotor chamber and two intermeshing screw rotors in said rotor chamber that are configured to cooperably rotate to compress a gas in working chambers formed between respective threads of said screw rotors and at least one said wall, each said thread having a crest, a root, a first flank and a second flank, said. first and second flanks extending from said crest to said root and said second flank comprising a concave cross section. An exhaust port for receiving compressed gas from the working chambers is provided with an exhaust valve operable to prevent gas entry to the rotor chamber via the exhaust port. A liquid feed system is operable to feed a liquid into the rotor chamber to seal the working chambers.
The Summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detail Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In the disclosure that follows, reference will be made to the drawings in which:
Referring to
The housing 12 may take any convenient form and may, for example, comprise a plurality of castings made of a suitable metal. As best seen in
The vacuum pump preferably comprises an oil recirculation system 102 for recirculating oil from the outlet 26, 28 to the pumping mechanism via oil inlet and oil source 20, 21. The oil recirculation system 102 may comprise an oil cleaning device 106, such as a filter, to remove debris from the recirculated oil. The recirculation system 102 also preferably comprises a gas ballast 100 for supplying gas ballast such as air, nitrogen, or, if suitably unreactive, recirculated exhaust gas. The addition of said gas ballast has the two-fold advantage of both promoting the removal of any dissolved solvent (e.g. water) from the recirculated oil and, by forming very small bubbles in the oil, preventing hydraulic lock at the high pressure end of the pump 16. The recirculation system 102 may also comprise an exhaust gas/oil separator (not shown) to separate the exhaust gas from the oil such that the oil is recirculated to the oil inlet and source 20, 21 and the exhaust gas is exhausted via 104.
The Quimby type screw rotors 18, which are well known to those skilled in the art, may be defined by hollow bodies mounted on respective shafts 38. The shafts 38 are configured to protrude beyond the opposed ends of the screw rotors 18 to provide respective end hearing portions that seat in bearings 40 mounted in the housing 12. The screw rotors 18 are disposed with their shafts 38 in axially parallel relation.
As best seen in
The screw rotors 18 each have a single start thread 42, As shown
Referring to
In the illustrated example, the rotary screw vacuum pump 10 is provided with a drive unit 58 that comprises an electric motor 60 and gearing 62. The shafts 38 extend through the inlet end of the housing 12 to connect with the gearing 62. The gearing 62 may include a first spur gear fixed to a primary one of the shafts 38 and a second spur gear of the same size fixed to the other of the shafts and driven by the spur gear on the primary shaft to ensure that the screws 18 rotate at the same speed. In some examples the first and second spur gears may engage directly. The spur gears can thus be regarded as synchronising gears. In other examples, the drive unit 58 may comprise a pulley or similar drive receiving device, rather than an electric motor 60.
In the illustrated example, the at least one oil inlet 20 and oil source 21 comprise an oil feed system to supply oil to lubricate the screw rotors and seal the working chambers defined between the screw rotors and walls of the chamber 22. It is to be understood that the arrangement shown is given purely by way of example and any system by means of which a suitable supply of liquid, or lubricant, can be introduced into the chamber 22 may be used.
In the illustrated example, the suction and exhaust ports are shown disposed in the ends of the housing 12 opposite the end faces of the screw rotors 18. It is to be understood that this is simply by way of illustration and that the suction or exhaust port, or both of them, may be arranged such that they open into the chamber 22 at a position over the circumference of a screw rotor(s).
In use of the rotary screw vacuum pump 10, the electric motor 60 is energised. to cause the screw rotors 18 to rotate. The gearing arrangement 62 ensures that the screw rotors 18 rotate synchronously. Suction pressure gas is drawn into the chamber 22 through the suction port (inlet) 24 from a location that is being pumped, for example a process chamber. Pockets of the gas are trapped in working chambers that form between the screw rotors 18 and the walls of the chamber 22. As the screw rotors 18 rotate, the working chambers travel axially along the pump towards the exhaust port 26. The working chambers are progressively limited in volume as the exhaust port 26 is approached so that the gas is compressed and a relatively higher pressure gas is expelled from the chamber 22 via the exhaust port (outlet) 26. The pressure of the compressed gas is sufficient to raise the valve element 30 from its closed position so that the gas is exhausted from the rotary screw vacuum pump 10. As each working chamber reaches the position at which its gas content is expelled into the exhaust port, the movable valve element 30 is lifted to allow the exhausting of the gas and once the gas has been exhausted the valve element automatically returns towards its closed position under its own bias to close the exhaust port. The effect of the exhaust valve 28 is to ensure that relatively higher pressure gas is not sucked back into the valve after the exhausting of the pockets of higher pressure gas. Exhaust valves, if excessively worked, for example with a high pulsation frequency such as that provided by a multi-start screw form, are both ineffective and/or prone to wear damage. An advantage of being able to using the single start thread 42 of the present invention, as shown in the illustrated examples, is that the screw rotors 18 deliver a single pulse of compressed gas per revolution. This low pulsation frequency enables the effective use of a, previously ineffective, exhaust valve and provides lower power and noise levels, particularly when the pump is operating at low suction pressures.
It is envisaged that a rotary screw vacuum pump such as that illustrated by
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are described as example forms of implementing the claims.
Number | Date | Country | Kind |
---|---|---|---|
1423129.4 | Dec 2014 | GB | national |
This Application is a Section 371 National Stage Application of International Application No. PCT/GB2015/053401, filed Nov. 10, 2015, which is incorporated by reference in its entirety and published as WO 2016/102916 A1 on Jun. 30, 2016 and which claims priority of British Application No. 1423129.4, filed Dec. 23, 2014.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2015/053401 | 11/10/2015 | WO | 00 |