This application relates generally to mechanical circulatory support systems, and more specifically relates to improved rotor designs in axial flow blood pumps.
Ventricular assist devices, known as VADs, are implantable blood pumps used for both short-term (i.e., days, months) and long-term applications (i.e., years or a lifetime) where a patient's heart is incapable of providing adequate circulation, commonly referred to as heart failure or congestive heart failure. According to the American Heart Association, more than five million Americans are living with heart failure, with about 670,000 new cases diagnosed every year. People with heart failure often have shortness of breath and fatigue. Years of living with blocked arteries or high blood pressure can leave your heart too weak to pump enough blood to your body. As symptoms worsen, advanced heart failure develops.
A patient suffering from heart failure, also called congestive heart failure, may use a VAD while awaiting a heart transplant or as a long term destination therapy. In another example, a patient may use a VAD while recovering from heart surgery. Thus, a VAD can supplement a weak heart (i.e., partial support) or can effectively replace the natural heart's function. VADs can be implanted in the patient's body and powered by an electrical power source inside or outside the patient's body.
While blood pumps have been effective for many patients, because patients using such devices are living longer, further improvements that prolong the effectiveness and lifetime of such blood pump devices are desired. One challenge frequently encountered in axial blood pumps is the development of thrombus in the bearing assemblies supporting the rotor. Thus, there is a need for improved blood pump designs that avoid thrombus formation over the lifetime of the device.
An axial flow mechanical circulatory support system having an improved rotor design with a sealed bearing assembly that inhibits thrombus formation is provided herein.
In one aspect, the invention provides an improved rotary seal for sealing a bearing assembly in a pump, particularly implantable pumps such as blood pumps. In some embodiments, such pumps include a pump housing defining a blood flow passage, a rotor including a rotatable shaft that extends into the passage such that a distal portion of the rotor facilitates blood flow through the passage upon rotation of the shaft, a mechanical bearing assembly coupled with a proximal portion of the shaft to allow rotation of the rotor during operation of the pump, and a rotary blood seal disposed at an interface of the bearing assembly and the rotatable shaft. The rotary blood seal can include a first face seal disposed on the rotatable rotor shaft and a second face seal disposed on the pump housing or associated component secured thereto. The first and second face seals are adapted to be being slidably engaged to allow rotation of the rotor shaft. In some embodiments, the rotary blood seal is configured with a preload at an interface between the first and second face seals to inhibit any leakage path therebetween to avoid contact between the bearing assembly and any blood flowing through the blood flow passage during operation of the pump.
In some embodiments, the rotary seal is provided in an associated component of the pump housing, such as a rear cover removably coupleable with the pump housing. The first and second face seals of the rotary seal can be formed of silicon carbide, carbon/tungsten, ceramics or any suitable high wear material.
In some embodiments, the rotary blood seal includes a compliance member adapted to provide the preload at the interface between the first and second face seals when the pump is assembled. In one aspect, the compliance member is deflectable in a direction along which the rotor extends. In another aspect, the compliance member is sufficiently rigid to exert a desired biasing force towards the first seal face of the rotor shaft to ensure engagement between the first and second seal faces of the rotary seal.
In some aspects, the preload on the seal is provided by a biasing member or biasing mechanism. The biasing member or mechanism could be defined by a resilient ridge, one or more resilient pins, a coiled spring, one or more resilient spring arms, a slidable shaft, one or more magnets, a piston, or any suitable means. In some embodiments, the biasing member is defined by a combination of elements such as any of those described herein.
In some aspects, the rotary seal is configured such that the preload on the seal is within a suitable range to ensure a robust seal over the lifetime of the device and to withstand a wide range of expected pump operating pressures. In some embodiments, the preload is a predetermined force level or range of forces between 0.5 N and 200 N, a range between 1 N to 100 N, or a range between 20 and 75 N. In some embodiments, the preload is selected or tuned to a desired force level based on the size and/or application of the device having the rotary seal.
In some embodiments, the rotary seal includes first and second sealing faces and a compliance member defined by a ridge or membrane extending from the housing. The compliance member extends at least partly about an opening through which a proximal portion of the rotor shaft extends. The compliance member can be integral with the rear cover or a separate component that is coupled with the housing such as by a laser weld. The compliance member is defined to be deflectable in a proximal direction of the rotor shaft to exert a reaction force in a distal direction along the rotor shaft thereby increasing the sealing contact forces between the first and second seal faces.
In some embodiments, the rotary seal includes first and second sealing faces with a preload provided by one or more magnets. The magnets are configured such that an associated magnetic force during operation of the pump increases a contact force between first and second face seals. Typically, the one or more magnets are permanent magnets. In some embodiments, the magnets includes a first magnet disposed distally of the first face seal along the rotor and a second magnet disposed proximally of the second face seal along the rotor.
In some embodiments, the rotary seal is defined by a pseudo neointima layer that is formed by use of a bio-absorbable material or a sintered, textured surface along the interface between the rotor shaft and pump housing. The pseudo neointimal layer inhibits passage of blood between the first and second face seal and is maintained by the passage of blood through the flow path of the pump device.
In another aspect, methods of pumping that utilize pumps with a rotary seal are provided herein. Such methods include: operating a blood pump to transport blood along a blood flow path through a pump housing of the blood flow pump, and sealing the bearing assembly from any contact with blood flowing along the blood flow path with a radial seal between the bearing assembly and a portion of the rotatable rotor shaft. Operating the blood pump includes rotating a rotatable shaft of the rotor so that movement of the rotor forces blood along the blood flow path, the rotor being rotatably supported by a bearing assembly. Sealing the bearing assembly includes slidably engaging a first face seal disposed on the rotatable rotor shaft with a second face seal disposed on the pump housing or associated component secured thereto, the first and second face seals being slidably engaged to allow rotation of the rotor shaft. The rotary blood seal can be configured with a preload at an interface between the first and second face seals to inhibit any leakage path therebetween thereby avoiding contact between the bearing assembly and any blood flowing through the blood flow passage during operation of the pump.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification, any or all drawings and each claim. The invention will be better understood upon reading the following description and examining the figures which accompany it.
Further details, aspects, and embodiments of the invention will be described by way of example only and with reference to the drawings. In the drawings, like reference numbers are used to identify like or functionally similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
In some conventional blood pumps, the rotor is suspended by bearing assemblies near opposite ends of the rotor with the rotor blades between. The bearings are disposed within the blood flow path and lubricated, in part, by blood flowing across the bearings. Such bearings are known as blood-washed bearings.
An example of such bearings can be understood by referring to
Studies have revealed that blood-washed bearings tend to develop thrombus over-time at the point of contact between the bearing ball and the cup in which the ball resides. Development of thrombus in the bearings can significantly degrade performance of the pump over time. In twelve chronic in-vivo animal studies, upon completion of the studies, the pumps were explanted and disassembled, after which it was observed that, in 50% of the pumps, either one or both bearings had some level of thrombosis evident.
To address these issues, recent developments include replacing blood washed mechanical bearings in rotary blood pumps that are used to suspend rotors with actively/passively magnetically suspended rotors. This allows for the removal of mechanical bearings in pumps, however, the magnetic levitation of the rotor creates hydrodynamic bearings between the pump housing and rotor. In addition, adding magnetics to VAD's significantly increases the complexity of the design and its operation since the magnets must generally maintain a radial position within the blood flow path as well as a longitudinal position. Due in part to these complexities, current versions of hydrodynamic bearings used in VAD's may still develop thrombus issues.
In one aspect, the invention addresses these challenges associated with conventional designs by reconfiguring the blood pump to include mechanical bearings that are sealed from the blood flow path by a rotary seal. In some embodiments, the mechanical bearing is further excluded from the blood flow path by use of a cantilevered rotor design in which the rotor is supported at one end by a mechanical bearing assembly that remains sealed outside of the blood flow path. The rotary seal can be located between the blood flow path and the bearing assembly. In other embodiments, the bearing assembly can be sealed from blood flow while still maintaining a location within the blood flow path within a cantilevered rotor design or various other rotor designs. In some embodiments, the mechanical bearing assembly is entirely sealed during operation so that there is no need for washing the bearing with blood flow or flushing the assembly with saline. In some embodiments, the rotary seal includes a pair of interfacing face seals attached to the rotor shaft and pump housing or associated component, respectively, such that the face seals maintain a seal between the bearing assembly and the blood flow path while being rotated relative each other. The rotary seal can be maintained by a compliance member that urges one or both face seals to increase sealing contact forces therebetween, a bio-absorbable seal, a silicon carbide id/od bushing seal or any combination thereof.
In some embodiments, the mechanical bearing assembly can include one or more radial bearings at or near one end of the rotor, thereby allowing rotation of the cantilever shaft providing cantilevered support during rotation of the rotor. In some aspects, the radial bearing can be of a metallic (e.g., stainless steel) or non-metallic (e.g., ceramic, polymer) construction. In one aspect, the design allows for the rotor to operate with a single fluid flow path for blood flow through the blood pump, without the need for additional fluid flow paths for saline flushing or waste return. In addition, by reconfiguring the design of the axial flow pump, the blood-washed mechanical ball and cup bearing design used in conventional axial pump designs can be eliminated. As a byproduct, the inlet stator, front bearing set, and rear bearing set can be removed from the design.
In some embodiments, rotor 120 is redesigned such that a circular rotor shaft 121 that extends proximally from the rear of the rotor and outside the blood flow path. Such a configuration allows for use of a traditional mechanical bearing (not blood or saline washed). Mechanical bearing 130 can be assembled within the rear cover 111 of the pump housing 110 such that any contact with the blood flow stream is avoided. In this embodiment, the shaft of rotor 120 slides through back cover 111 and can be press fit into the bearing assembly. At the shaft to plug interface, a mechanical rotary seal 140 can be used to further ensure blood contact is avoided. A design of this nature reduces the static to dynamic interfaces from two to one. Furthermore, unlike blood washed bearings, this design does not rely on blood as a lubricant. Rotary seal 140 keeps the blood from being used as a lubricant, which allows blood to be eliminated as a lubricant within rotary type blood pump devices. Since a sealed mechanical bearing assembly is used, this allows for a bearing design that utilizes various other types of lubricant (e.g., oil-based, silicone) and could use and/or adapt common bearings and lubricants from the mechanical arts as would be understood by one of skill from the description herein. Such mechanical bearings may provide improved performance and durability and increased life-times as compared to saline purged or blood washed designs.
Since mechanical bearings 130 couple the rotor at only one end, it provides cantilevered support and withstands lateral deflection of the rotor by applying a torque through the proximal portion. In some embodiments, the mechanical bearing may be selected to have an axial thickness extending along an axis of the rotor shaft between 0.050″ to 0.500″ to allow the bearing to withstand greater deflecting forces and apply greater reactive torques. In some embodiments, the device may include a mechanical bearing 130 consisting of multiple stacked radial bearing, such as two stacked radial bearings, as shown in
As shown in
In one aspect, the invention provides a methods of creating a fluid tight rotary mechanical seal between the dynamically spinning rotor shaft and the static rear cover of an axial flow cantilevered pump design. Advantageously, the described rotary seals prevent or inhibit blood from making contact with a mechanical bearing, non-blood washed, in the rear cover. In some embodiments, this seal consists of two circular face seals made of a high wear material such as silicon carbide, ceramics, or other like materials. One half of the seal is attached to the spinning rotor shaft and the other is attached to the static rear cover. Upon assembly of the system, the two faces seals are brought into intimate contact with each other. In some embodiments, a slight preload is provided at the seal interface in order to ensure there is no leak path. In order to achieve a preloading of these seals, a compliance member or mechanism can be included. One source of this compliance can be from a precision machined membrane in the rear cover. The static portion of the seal can be attached to this compliant membrane. When the other half of the seal is assembled, the seal presses against this compliant membrane causing the membrane to deflect. The deflection caused by assembly will impart a known reaction force against the mating rotary seal. Such compliant members or membranes can be defined within the aft or rear housing or can be laser welded thereto. Laser welding allows more design freedom around shapes, attachments, and force/deflection characteristics.
Such a configuration allows for the use of a mechanical, non-blood washed, bearing to be used to suspend the rotor in an axial flow cantilevered rotor pump design. Such rotary seals ensure that the bearing stays isolated and free from contaminates and formation of thrombus associated with blood flow. One advantage of the rotary seal configurations described herein, is that a barrier is created between the blood flow path in the pump and other critical components (e.g., bearings, sensors) that cannot interface with blood.
In another aspect, improved sealing between the two halves of the rotary seal can be facilitated by the use of magnets. Such magnets can be integrated into each half of the seal assembly. As the seals are brought together, the magnetic force from each half attract each other which would provide a magnetically coupled preload allowing the seal to operate in a liquid tight manner. Use of magnets in this manner can eliminate the need for a compliant membrane.
In yet another aspect, improved sealing within a rotary seal can be provided by a precision fitment between the shaft (od; outside diameter) and the housing (id; inside diameter) defined to prevent passage of blood. This approach can greatly simplify the rotary seal yet still create a robust enough of a barrier to prevent passage of blood or blood moisture vapors into a bearing assembly of the pump.
Another way to create a rotary blood seal is through the use of an id/od bushing seal. This approach uses a precision manufactured silicon carbide shaft on the outside diameter (od) that marries with a precision manufactured silicon carbide disc with a through hole, which is the inside diameter (id). This can greatly simplify the seal since no compliance is required.
In still yet another aspect, improved sealing within a rotary seal of an implantable device can be provided by use of biologics to create a long term seal. In such embodiments, titanium sintered surfaces can be used to create a pseudo neointima layer that interface well with blood. Use of sintered surfaces within an area around the rotating shaft promotes formation of a pseudo neointima area. This pseudo neointima area can also be initiated through a bio absorbable material. The pseudo neointima plugs the gap around the spinning shaft and stationary rear cover creating a seal.
It is appreciated that the rotary seals described herein are not limited to axial flow pumps, or even blood pumps, and could be used in various implantable or non-implantable pump devices, or any field there is a need for a robust mechanical rotary seal that is liquid tight and has minimal wear over a long period of time.
Examples of such rotary seals that are suitable for use in a cantilevered rotor design are described in the following figures.
In this embodiment, mechanical bearing assembly 130 includes two radial bearings stacked on the proximal portion of the rotor 120. Rotor 120 includes permanent drive magnets 150 to facilitate being rotationally driven by a motor stator 151 having electrically conductive coils. The coils are placed within an enclosure which surrounds the blood flow path and the rotor 120 disposed within pump housing 110. The motor stator 151 serves to rotate rotor 120 by the conventional application of electric power to the coils to drive the permanent drive magnets 150 incorporated into rotor 120. Elastomeric O-rings 153 keep the magnets from rotating in the rotor. Such magnets are selected for magnetic properties, length, and cross-sectional area in order to provide good electromagnetic coupling with the magnetic forces created by the motor stator 151. In some embodiments, the motor is a three phase, brushless DC motor. In other embodiments, the motor can be a toroidal, three phase or wye connected design. The stator may have a back iron design which is consistent with a typical radial flux gap motor. If desired, motor stator 151 can be incorporated within a separate, hermetically sealed enclosure that slides over pump housing into position. In some embodiments, the body of rotor 120 includes a magnetically hard ferromagnetic material, i.e., a material which forms a strong permanent magnet and which is resistant to demagnetization. The material of rotor body 120 is typically selected to be biocompatible and substantially non-thrombogenic. Rotor 120 can be formed as a unitary component or can be formed of separate components joined together. In some embodiments, the rotor body is formed as a unitary mass of a suitable material, such as an alloy of platinum, titanium, and cobalt. In other embodiments, the rotor body may be formed from a magnetic metal such as an iron-nickel alloy with an exterior coating of another material to increase the body's biocompatibility. Further details regarding suitable rotor designs are described in U.S. Pat. No. 5,588,812; 62/084,946; 2016/0144089; 2014/0324165; and U.S. Pat. No. 9,265,870; each of which is incorporated herein by reference in its entirely for all purposes.
While the above embodiments depict axial flow pump device, it is appreciated that the cantilever rotor design may be utilized in various other rotary type blood pumps in accordance with the aspects described herein. In addition, the radial seals may be applied to various other embodiments to isolate various other bearing assembly designs from the blood flow path as desired. It is further appreciated that there are any number of mechanical bearing options that can be integrated within the designs described herein. For example, some embodiments may utilize integral duplex bearings and preloaded bearings that have increased precision. There are also many different types of bearing lubrication options available as well as rotary shaft seals that may be incorporated into various embodiments.
In alternative embodiments, aspects of the invention described above may be used in centrifugal pumps. In centrifugal pumps, the rotors are shaped to accelerate the blood circumferentially and thereby cause blood to move toward the outer rim of the pump, whereas in the axial flow pumps, the rotors are more or less cylindrical with blades that are helical, causing the blood to be accelerated in the direction of the rotor's axis.
In the foregoing specification, the invention is described with reference to specific embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features and aspects of the above-described invention can be used individually or jointly. It is appreciated that any of the aspects or features of the embodiments described herein could be modified, combined or incorporated into any of the embodiments described herein, as well as in various other types and configurations of pumps. Further, the invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive. It will be recognized that the terms “comprising.” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art.
The present application is a U.S. National Stage application of PCT/US2017/042858, filed Jul. 19, 2017; This application which claims the benefit of priority of U.S. Provisional Application No. 62/365,305 filed Jul. 21, 2016, the entire contents of which are incorporated herein by reference. This application relates generally to U.S. application Ser. No. 15/216,528 entitled “Cantilevered Rotor Pump and Methods for Axial Flow Blood Pumping” filed Jul. 21, 2016; U.S. application Ser. No. 14/489,041 entitled “Pump and Method for Mixed Flow Blood Pumping” filed Sep. 17, 2014; U.S. application Ser. No. 13/273,185 entitled “Pumping Blood” filed Oct. 13, 2011; each of which is incorporated herein by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/042858 | 7/19/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/017716 | 1/25/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2712792 | Snyder | Jul 1955 | A |
4082376 | Wehde et al. | Apr 1978 | A |
4458366 | MacGregor | Jul 1984 | A |
4508535 | Joh et al. | Apr 1985 | A |
4625712 | Wampler | Dec 1986 | A |
4643641 | Clausen | Feb 1987 | A |
4688998 | Olsen et al. | Aug 1987 | A |
4704121 | Moise | Nov 1987 | A |
4779614 | Moise | Oct 1988 | A |
4817586 | Wampler | Apr 1989 | A |
4846152 | Wampler et al. | Jul 1989 | A |
4895557 | Moise et al. | Jan 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4908012 | Moise et al. | Mar 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4994078 | Jarvik | Feb 1991 | A |
5098256 | Smith | Mar 1992 | A |
5106273 | Lemarquand et al. | Apr 1992 | A |
5376114 | Jarvik | Dec 1994 | A |
5385581 | Bramm et al. | Jan 1995 | A |
5393207 | Maher et al. | Feb 1995 | A |
5405251 | Sipin | Apr 1995 | A |
5441535 | Takahashi et al. | Aug 1995 | A |
5443503 | Yamane | Aug 1995 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5613935 | Jarvik | Mar 1997 | A |
5695471 | Wampler | Dec 1997 | A |
5707218 | Maher et al. | Jan 1998 | A |
5711753 | Pacella et al. | Jan 1998 | A |
5749855 | Reitan | May 1998 | A |
5755784 | Jarvik | May 1998 | A |
5824070 | Jarvik | Oct 1998 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5904646 | Jarvik | May 1999 | A |
5917297 | Gerster et al. | Jun 1999 | A |
5928131 | Prem | Jul 1999 | A |
5947892 | Benkowski et al. | Sep 1999 | A |
5951263 | Taylor et al. | Sep 1999 | A |
5957672 | Aber | Sep 1999 | A |
6001056 | Jassawalla et al. | Dec 1999 | A |
6018208 | Maher et al. | Jan 2000 | A |
6050975 | Poirier | Apr 2000 | A |
6066086 | Antaki et al. | May 2000 | A |
6071093 | Hart | Jun 2000 | A |
6093001 | Burgreen et al. | Jul 2000 | A |
6116862 | Rau et al. | Sep 2000 | A |
6123659 | le Blanc et al. | Sep 2000 | A |
6135710 | Araki et al. | Oct 2000 | A |
6146325 | Lewis et al. | Nov 2000 | A |
6149683 | Lancisi et al. | Nov 2000 | A |
6186665 | Maher et al. | Feb 2001 | B1 |
6227797 | Watterson et al. | May 2001 | B1 |
6227820 | Jarvik | May 2001 | B1 |
6234772 | Wampler et al. | May 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6264635 | Wampler et al. | Jul 2001 | B1 |
6278251 | Schob | Aug 2001 | B1 |
6293901 | Prem | Sep 2001 | B1 |
6394769 | Bearnson et al. | May 2002 | B1 |
6447266 | Antaki et al. | Sep 2002 | B2 |
6623475 | Siess | Sep 2003 | B1 |
6688861 | Wampler | Feb 2004 | B2 |
6692318 | McBride | Feb 2004 | B2 |
6942611 | Siess | Sep 2005 | B2 |
6991595 | Burke et al. | Jan 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7070398 | Olsen et al. | Jul 2006 | B2 |
7229258 | Wood et al. | Jun 2007 | B2 |
7303553 | Ott | Dec 2007 | B2 |
7338521 | Antaki et al. | Mar 2008 | B2 |
7563225 | Sugiura | Jul 2009 | B2 |
7575423 | Wampler | Aug 2009 | B2 |
7578782 | Miles et al. | Aug 2009 | B2 |
7682301 | Wampler et al. | Mar 2010 | B2 |
7699586 | LaRose et al. | Apr 2010 | B2 |
7699588 | Mendler | Apr 2010 | B2 |
7753645 | Wampler et al. | Jul 2010 | B2 |
7798952 | Tansley et al. | Sep 2010 | B2 |
7802966 | Wampler et al. | Sep 2010 | B2 |
7824358 | Cotter et al. | Nov 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7850594 | Sutton et al. | Dec 2010 | B2 |
7861582 | Miyakoshi et al. | Jan 2011 | B2 |
7862501 | Woodard | Jan 2011 | B2 |
7927068 | McBride et al. | Apr 2011 | B2 |
7959551 | Jarvik | Jun 2011 | B2 |
7963905 | Salmonsen et al. | Jun 2011 | B2 |
7976271 | LaRose et al. | Jul 2011 | B2 |
7988728 | Ayre | Aug 2011 | B2 |
7993260 | Bolling | Aug 2011 | B2 |
7997854 | LaRose et al. | Aug 2011 | B2 |
8002518 | Woodard et al. | Aug 2011 | B2 |
8007254 | LaRose et al. | Aug 2011 | B2 |
8096935 | Sutton et al. | Jan 2012 | B2 |
8118723 | Richardson et al. | Feb 2012 | B2 |
8118724 | Wampler et al. | Feb 2012 | B2 |
8152493 | LaRose et al. | Apr 2012 | B2 |
8152845 | Bourque | Apr 2012 | B2 |
8177703 | Smith et al. | May 2012 | B2 |
8282359 | Ayre et al. | Oct 2012 | B2 |
8323174 | Jeevanandam et al. | Dec 2012 | B2 |
8343028 | Gregoric et al. | Jan 2013 | B2 |
8353686 | Cook | Jan 2013 | B2 |
8366381 | Woodard et al. | Feb 2013 | B2 |
8366599 | Tansley et al. | Feb 2013 | B2 |
8376707 | McBride et al. | Feb 2013 | B2 |
8449444 | Poirier | May 2013 | B2 |
8506471 | Bourque | Aug 2013 | B2 |
8562508 | Dague et al. | Oct 2013 | B2 |
8597350 | Rudser et al. | Dec 2013 | B2 |
8652024 | Yanai et al. | Feb 2014 | B1 |
8657733 | Ayre et al. | Feb 2014 | B2 |
8668473 | LaRose et al. | Mar 2014 | B2 |
8864643 | Reichenbach et al. | Oct 2014 | B2 |
9265870 | Reichenbach et al. | Feb 2016 | B2 |
9533082 | Reichenbach et al. | Jan 2017 | B2 |
9717832 | Taskin et al. | Aug 2017 | B2 |
9717833 | Mcbride et al. | Aug 2017 | B2 |
10029038 | Hodges | Jul 2018 | B2 |
20020147495 | Petroff | Oct 2002 | A1 |
20020149200 | Fumioka | Oct 2002 | A1 |
20030068227 | Yamazaki | Apr 2003 | A1 |
20030100816 | Siess | May 2003 | A1 |
20030135086 | Khaw et al. | Jul 2003 | A1 |
20040236420 | Yamane et al. | Nov 2004 | A1 |
20050004421 | Pacella et al. | Jan 2005 | A1 |
20050071001 | Jarvik | Mar 2005 | A1 |
20050095151 | Wampler et al. | May 2005 | A1 |
20050107657 | Carrier et al. | May 2005 | A1 |
20050147512 | Chen et al. | Jul 2005 | A1 |
20050254976 | Carrier et al. | Nov 2005 | A1 |
20060222533 | Reeves | Oct 2006 | A1 |
20070078293 | Shambaugh et al. | Apr 2007 | A1 |
20070100196 | Larose et al. | May 2007 | A1 |
20070156006 | Smith et al. | Jul 2007 | A1 |
20080021394 | LaRose et al. | Jan 2008 | A1 |
20080269880 | Jarvik | Oct 2008 | A1 |
20090118567 | Siess | May 2009 | A1 |
20090203957 | LaRose et al. | Aug 2009 | A1 |
20100069847 | LaRose et al. | Mar 2010 | A1 |
20100145133 | Bolling | Jun 2010 | A1 |
20100150749 | Horvath | Jun 2010 | A1 |
20100152526 | Pacella et al. | Jun 2010 | A1 |
20110054239 | Sutton et al. | Mar 2011 | A1 |
20110118998 | Loose et al. | May 2011 | A1 |
20110144413 | Foster | Jun 2011 | A1 |
20110152600 | Scott et al. | Jun 2011 | A1 |
20110237863 | Ricci et al. | Sep 2011 | A1 |
20110245582 | Zafirelis et al. | Oct 2011 | A1 |
20120035411 | LaRose et al. | Feb 2012 | A1 |
20120046514 | Bourque | Feb 2012 | A1 |
20120095281 | Reichenbach et al. | Apr 2012 | A1 |
20120134793 | Wu et al. | May 2012 | A1 |
20120134832 | Wu | May 2012 | A1 |
20120172655 | Campbell et al. | Jul 2012 | A1 |
20120253103 | Robert | Oct 2012 | A1 |
20120310036 | Peters et al. | Dec 2012 | A1 |
20130096364 | Reichenbach et al. | Apr 2013 | A1 |
20130121821 | Ozaki et al. | May 2013 | A1 |
20130127253 | Stark et al. | May 2013 | A1 |
20130170970 | Ozaki et al. | Jul 2013 | A1 |
20130225909 | Dormanen et al. | Aug 2013 | A1 |
20130261375 | Callaway | Oct 2013 | A1 |
20130314047 | Eagle et al. | Nov 2013 | A1 |
20140296615 | Franano | Oct 2014 | A1 |
20140324165 | Burke | Oct 2014 | A1 |
20150005572 | Reichenbach et al. | Jan 2015 | A1 |
20150285258 | Foster | Oct 2015 | A1 |
20160074574 | Welsch et al. | Mar 2016 | A1 |
20160144089 | Woo et al. | May 2016 | A1 |
20160369814 | Schibli et al. | Dec 2016 | A1 |
20170021069 | Hodges | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2624704 | Apr 2007 | CA |
101282748 | Oct 2008 | CN |
19854724 | May 1999 | DE |
0 150 320 | May 1990 | EP |
0 583 781 | Feb 1994 | EP |
2009511802 | May 2009 | JP |
20080056754 | Jun 2008 | KR |
0043054 | Jul 2000 | WO |
2007040663 | Apr 2007 | WO |
2008152425 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20190358380 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62365305 | Jul 2016 | US |