Rotary speed detector

Information

  • Patent Grant
  • 6463398
  • Patent Number
    6,463,398
  • Date Filed
    Monday, December 21, 1998
    25 years ago
  • Date Issued
    Tuesday, October 8, 2002
    21 years ago
Abstract
A rotary speed detector includes a rotating angle sensor for outputting digital signals which constitute rotating angle data of a rotating member, an angle variation calculator for calculating an angle variation with respect to a predetermined interval of time and a revolving speed calculator for calculating rotary speeds from the angle variation.
Description




FIELD OF THE INVENTION




The present invention relates to a rotary speed detector and, in particular, to a rotary speed detector which calculates revolutions per minute (rpm) of an electric motor of a vehicle.




BACKGROUND OF THE INVENTION




A conventional rotary speed detector includes a resolver, a transforming means, a measuring means and a calculating means. The resolver is fixed to an output shaft of an electric motor and outputs analog signals which represent rotational angle data of the shaft, that is, data pertaining to the degree of rotation with respect to a known baseline. The transforming means transforms the analog signals into angle pulse signals. The angle pulse signal is equal to or occurs at some fraction of a revolution. For example, the angle pulse signal provides that one cycle should be equal to one-quarter revolution of the shaft. The measuring means measures each output cycle, from the start of an angle pulse signal until the end of the angle pulse signal. The calculating means calculates the revolving speed of the electric motor from the cycle period.




However, in using the detector described above, as the speed of the electric motor becomes lower, the measuring period for each cycle becomes longer. Therefore, calculating the rotary speed requires a long time, when the revolutions per minute (rpm) of the electric motor are low.




In addition, the measuring means further includes a counting pulse source for measuring the cycle period. The counting pulse source outputs counting pulses at regular intervals. The output of the counting pulses is without regard to the angle pulse signals. As a result, the accuracy of the measuring cycle period is not constant between a low revolving speed and a high revolving speed.




SUMMARY OF THE INVENTION




The present invention provides a rotary speed detector without the foregoing drawbacks.




In accordance with the present invention, a rotary speed detector comprise a rotating angle sensor outputting digital signals which constitute rotating angle data of a rotary member, an angle variation calculating means for calculating an angle variation with respect to a predetermined interval of time and a rotary speed calculating means for calculating rotary speeds from the angle variation.











BRIEF DESCRIPTION OF THE DRAWING FIGURES




The foregoing and additional features of the present invention will become more apparent from the following detailed description of a preferred embodiment thereof when considered with reference to the attached drawings, in which:





FIG. 1

is a block diagram showing an embodiment of a rotary speed detector in accordance with the present invention; and





FIG. 2

is a diagram showing the relation between angle variations (A) AND REVOLUTIONS PER SECOND (N) in accordance with the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A rotary speed detector in accordance with a preferred embodiment of the present invention will be described with reference to the attached drawings.




As shown in

FIG. 1

, the rotary speed detector


10


detects the rotating speed of an electric motor M which drives a wheel of a vehicle (not shown). The rotary speed detector


10


includes a rotating angle sensor


11


, a gate array (G/A)


12


which constitutes an angle variation calculating means and a central processing unit (CPU)


13


which constitutes a rotary speed calculating means. The rotating angle sensor


11


has a conventional resolver


11




a


and a resolver/digital (R/D) converter ll


b


. The R/D converter


11




b


converts analog signals which are output by the resolver


1


l


a


into 12 bit digital signals. The digital signals which are output by the R/D converter


1


l


b


are rotating angle data A of the electric motor M. Every 90 degree revolution of the electric motor M contains variables ranging (point-by-point, sequentially) from 0 to 4095, which are the base for the rotating angle data A.




The G/A


12


latches the rotating angle data A which are output by the rotating angle sensor


11


at 250 μs (microsecond) intervals. In detail, the G/A


12


includes latch portions


12




a


and


12




b


, a angle variation calculating portion


12




c


and a buffer


12




d


. The G/A


12


latches the present rotating angle data A(n) at the latch portion


12




a


and the last rotating angle data A(n−1) at the latch portion


12




b


. The angle variation calculating portion


12




c


calculates an amount of an angle variation Δ A. The angle variation Δ A is obtained by subtracting the present rotating angle data A(n) from the last rotating angle data A(n−1). The buffer


12


is a four-layer type of buffer such that the buffer hangs four angle variations Δ A(n), Δ A(n−1), Δ A(n−2) and Δ A(n−3) in order.




A set of four angle variations Δ A(n), Δ A(n−1), Δ A(n−2) and Δ A(n−3) transfers from the buffer


12




d


to CPU


13


at 1 ms (millisecond) intervals. The CPU


13


hangs four sets of four angle variations from Δ A(n) to Δ A(n−15) in order. The CPU


13


calculates the sum total sixteen angle variations from Δ A(n) to Δ A(n−15) at 4 ms (millisecond) intervals.




Further, the CPU


13


calculates revolutions per minute N (rpm) by the formula below.








N


=(the sum total sixteen angle variations÷4096×4)×(60000÷4)






In this embodiment, as shown in

FIG. 2

, the relation between the angle variation Δ A and the revolutions per minute N is a direct proportion. Therefore, it is possible to calculate the revolutions per minute N quickly. In addition, the accuracy of the calculation is constant whether the motor M is operating at a low rotating speed or a high rotating speed.




While the preferred embodiments have been described, variations thereto will occur to those skilled in the art within the scope of the present inventive concepts which are delineated by the following claims.



Claims
  • 1. A rotary speed detector comprising:a rotary angle sensor for outputting signals which comprise rotating angle data of a rotating member; an angle variation latch which latches an angle variation of the rotating angle data for a predetermined interval and which holds a set of sequential angle variations of the rotating angle data; and a rotary speed calculating means for importing the set of sequential angle variations holding a plurality of sets of sequential angle variations, estimating a sum of the angle variations, and calculating a rotary speed of the rotating member based on the sum of the angle variations.
Priority Claims (1)
Number Date Country Kind
9-353414 Dec 1997 JP
US Referenced Citations (2)
Number Name Date Kind
4527248 Takase et al. Jul 1985 A
4569027 Nakano et al. Feb 1986 A
Foreign Referenced Citations (3)
Number Date Country
3709395 Sep 1988 DE
3821938 Jan 1990 DE
4320108 Dec 1994 DE