The present application is a U.S. National Stage patent application of International Patent Application No. PCT/US2017/033414, filed on May 18, 2017, the disclosure of which is hereby incorporated by reference in its entirety.
The present disclosure relates generally to rotary steerable systems (RSS), e.g., drilling systems employed for directionally drilling wellbores in oil and gas exploration and production. More particularly, embodiments of the disclosure relate to a hybrid rotary steerable system having characteristics of both push the bit and point the bit systems.
Directional drilling operations involve controlling the direction of a wellbore as it is being drilled. Usually the goal of directional drilling is to reach a target subterranean destination with a drill string, and often the drill string will need to be turned through a tight radius to reach the target destination. Generally, an RSS changes direction either by pushing against one side of a wellbore wall with steering pads to thereby cause the drill bit to push on the opposite side (in a push-the-bit system), or by bending a main shaft running through a non-rotating housing to point the drill bit in a particular direction with respect to the rest of the tool (in a point-the-bit system). In a push-the-bit system, the wellbore wall is generally in contact with the drill bit, the steering pads and a stabilizer. The steering capability of such a system is predominantly defined by a curve that can be fitted through each of the drill bit, steering pads and the stabilizer.
The disclosure is described in detail hereinafter, by way of example only, on the basis of examples represented in the accompanying figures, in which:
The present disclosure includes a hybrid RSS system having both exterior steering pads as in push-the-bit system and, internal shaft pistons as in a point-the-bit system. The steering pads and the shaft pistons cooperate to permit the RSS to achieve tighter turning radii. The steering pads and the shaft pistons may be independently or collectively controllable by diverting a portion of drilling fluid flowing through the RSS. In some embodiments, the steering pads and shaft pistons may extend in opposite directions to steer the drill bit, and on other embodiments, the steering pads and shaft pistons may extend in the same direction.
A drill bit 30 is attached to the distal, downhole end of the drill string 20. When rotated, e.g., via the rotary table 14, the drill bit 30 operates to break up and generally disintegrate the geological formation 32. The drill string 20 is coupled to a “drawworks” hoisting apparatus 34, for example, via a kelly joint 36, swivel 38, and line 39 through a pulley system (not shown). During a drilling operation, the drawworks 34 can be operated, in some embodiments, to control the weight on drill bit 30 and the rate of penetration of the drill string 20 into the borehole 24.
During drilling operations, a suitable drilling fluid 41 or “mud” can be circulated, under pressure, out from a mud pit 42 and into the borehole 24 through the drill string 20 by a hydraulic “mud pump” 44. Drilling fluid 41 passes from the mud pump 44 into the drill string 20 via a fluid conduit (commonly referred to as a “mud line”) 48 and the kelly joint 36. The mud 31 is discharged at the borehole bottom 26 through an opening or nozzle in the drill bit 30, and circulates in an “uphole” direction towards the surface through an annular space 50 between the drill string 20 and the side 52 of the borehole 24. As the drilling fluid 41 approaches the rotary table 14, it is discharged via a return line 55 into the mud pit 42. A variety of surface sensors 58, which are appropriately deployed on the surface of the borehole 24, operate alone or in conjunction with downhole sensors 60 deployed within the borehole 24, to provide information about various drilling-related parameters, such as fluid flow rate, weight on bit, hook load, etc.
A surface control unit 62 may receive signals from surface sensors 58 and downhole sensors, 60 and other devices via a sensor or transducer 63, which can be placed on the mud line 48. The surface control unit 62 can be operable to process such signals according to programmed instructions provided to surface control unit 62. Surface control unit 62 may present to an operator desired drilling parameters and other information via one or more output devices 64, such as a display, a computer monitor, speakers, lights, etc., which may be used by the operator to control the drilling operations. Surface control unit 62 may contain a computer, memory for storing data, a data recorder, and other known and hereinafter developed peripherals. Surface control unit 62 may also include models and may process data according to programmed instructions, and respond to user commands entered through a suitable input device 66, which may be in the nature of a keyboard, touchscreen, microphone, mouse, joystick, etc.
In some embodiments of the present disclosure, the rotatable drill bit 30 is attached at a distal end of a bottom hole assembly (BHA) 70 including the rotary steerable system (RSS) 100. The RSS 100 may be a hybrid system having both exterior steering pads 102 and internal shaft pistons 104 (
The BHA 70 and or/the RSS 100 may comprise a Measurement While Drilling (MWD) System and/or a Logging While Drilling (LWD) System, with various sensors to provide information about the formation 32 and downhole drilling parameters. The MWD and or LWD sensors in the BHA 70 may include, but are not limited to, a device for measuring the formation resistivity near the drill bit, a gamma ray device for measuring the devices for determining the inclination and azimuth of the drill string, and pressure sensors for measuring drilling fluid pressure downhole. The MWD System may also include additional/alternative sensing devices for measuring shock, vibration, torque, telemetry, etc. The above-noted devices may transmit data to a downhole communicator 74, which in turn transmits the data uphole to the surface control unit 62.
The transducer 63 can be placed in the mud line 48 to detect the mud pulses responsive to the data transmitted by the downhole communicator 74. The transducer 63 in turn generates electrical signals, for example, in response to the mud pressure variations and transmits such signals to the surface control unit 62. Alternatively, other telemetry techniques such as electromagnetic and/or acoustic techniques or any other suitable techniques known or hereinafter developed may be utilized. By way of example, hard wired drill pipe may be used to communicate between the surface and downhole devices. In another example, combinations of the techniques described may be used. A surface transmitter/receiver 76 communicates with downhole tools using, for example, any of the transmission techniques described, such as a mud pulse telemetry technique. This can enable two-way communication between the surface control unit 62 and the downhole communicator 74 and other downhole tools.
The RSS 100 generally provides three points of contact with the borehole 24. Specifically, the drill bit 30, the exterior steering pads 102 and the stabilizer are arranged to engage a side 52 of the borehole in operation. The RSS 100 may be operable to maintain contact with the borehole 24 while rotating. For example, a first one of three radially spaced exterior steering pads 102 may be extended to engage a lower side 52 of the wellbore 24 while the other two exterior steering pads 102 on an upper side of the RSS are retracted. As the RSS 100 is rotated, e.g., by rotary table 14 (
The main bypass flow channel 124 extends through the articulating shaft 118 and delivers drilling fluid 41 (
Similarly, when drilling fluid 41 is diverted to a biasing flow channel 126 (not shown) extending to the internal shaft piston 104, the drilling fluid 41 pressurizes a chamber 142 defined between the internal shaft piston 104 and hatch cover 116. The internal shaft piston 104 is thereby driven in a lateral direction as indicated by arrow A2. The movement of the internal shaft piston 104 causes the articulating shaft 118 to pivot about CV joint 144 such that an axis X2 of the articulating shaft is offset from the axis X1 of the steering head 110. A distal end 146 of the articulating shaft 118 is thereby driven in a steering direction, e.g., the direction of arrow A3 with respect to the housing 114. The distal end 146 of the articulating shaft 118 includes a threaded box connector thereon for coupling the drill bit 30 (
In some embodiments, the external steering pads 102 and the internal shaft pistons 104 may be tied together such that a particular external steering pad 102 and internal shaft piston 104 move together between extended and retracted positions. For example, the chambers 132, 142 may be fluidly coupled to one another such that the two chambers 132, 142 may be collectively pressurized to drive the pad piston 134 and shaft piston 104 together in the directions of arrows A1 and A2 together. In other embodiments, the external steering pads 102 and the internal shaft pistons 104 may be independently controllable. Arrangements for collective and independent control of the pad pistons 134 and internal shaft pistons 104 are discussed below, e.g., with reference to
In some embodiments, the articulating shaft 118 rotates with the housing 114, e.g., the articulating shaft 118 and the housing 114 both rotate about axis X1 when the housing 114 is rotated, e.g., with the rotary table 14 (
The hatch cover 116 fluidly isolates the annular space 50 from the chamber 142, and the interior flow channel 120 is fluidly isolated from the chamber 156 and the second pressure surface 158 by a seal member 160 defined between the housing 114 and the internal shaft piston 104. Thus, the valve 122 is operable to control a pressure differential between the first and second pressure surfaces 152, 158 of the internal shaft piston 104. Generally, in operation, the standpipe pressure PS is greater than the annulus pressure PA, and the valve 122 may be opened to apply the greater standpipe pressure PS to the first pressure surface 152 while the lower annulus pressure PA is applied to the second pressure surface 158. This pressure differential urges the internal shaft piston 104 in the direction of arrow A2 against a proximal end of the articulating shaft 118 to induce the articulating shaft 118 to pivot about CV joint 144. The seal member 160 accommodates the lateral movement of the internal shaft piston 104 with respect to the housing.
The valve 122 is again operable to control a pressure differential between the first and second pressure surfaces 152, 158 of the internal shaft piston 104. Since the oil in chamber 174 is applied against the second pressure surface 158 at the annulus pressure PA, the valve 122 may be opened to apply the greater standpipe pressure PS to the first pressure surface 150 thereby urge the internal shaft piston 104 in the direction of arrow A2. The articulating shaft 118 may pivot about CV joint 144 and the bellows seal may expand to accommodate the pivotal motion.
In some embodiments, the pad piston 134 includes a cleaning port 80 extending therethrough. Drilling fluid 41 may be directed from the chamber 132 to clean the pivot pin 178 to facilitate the pivotal motion of the external biasing pad 102. The extension of the external biasing pads 102 may be limited by a feature such as taper 184. The taper 184 may be arranged to engage the housing 114 or the pad piston 134 when a maximum extension is achieved to prevent over extension. In other embodiments, the external biasing pads 102 may be eliminated, and pad pistons 134 may be arranged to engage the side 50 of the borehole 24 (
The arrangement of the steering head 200 may be particularly effective when lower stabilizer 202 is sized to be substantially similar to the borehole gauge. In some embodiments, the gauge of lower stabilizer 202 may be adjustable such that the lower stabilizer 202 may be laterally extended when desired and laterally retracted when not in use. For example, the stabilizer 202 may be operably coupled to an actuator 216 such as a hydraulic piston, solenoid or other mechanism for extending and retracting the stabilizer in the direction of arrows A9.
The valve 122 is illustrated as being selectable among three positions. When the center position is selected (as illustrated), the standpipe pressure PS is supplied through a first biasing fluid pathway 126a to the first pad piston 134a and the corresponding first shaft piston 104a. The first pad piston 134a and the first internal shaft piston 104a are thereby both moved to the extended position. Second and third biasing fluid pathways 126b and 126c are both coupled to the annulus pressure PA, and consequently, the second and third pad pistons 134b, 134c and the second and third internal shaft pistons 104b, 104c are disposed in the retracted positions. This arrangement induces the drill bit 30 (
As the drill string 20 (
In some embodiments, supplemental valves 190 may optionally be provided in the first, second and third biasing fluid pathways 126a, 126b and 126c at the branches where the biasing fluid pathways divide between the pad pistons 134 and the internal shaft pistons 104. The supplemental valves 190 may be operable to selectively close at least one of the branches individually. For example, the supplemental valves 190 may operate to close each of the branches extending to the shaft pistons 104. The RSS 100 (
The aspects of the disclosure described below are provided to describe a selection of concepts in a simplified form that are described in greater detail above. This section is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In one aspect, the disclosure is directed to a rotary steerable system including a housing defining a longitudinal axis and an articulating shaft extending at least partially through the housing. The articulating shaft may be and pivotable between a neutral position generally aligned with the longitudinal axis and an offset position obliquely arranged with respect to the longitudinal axis. A drill bit is supported at a distal end of the articulating shaft, and at least one pad piston extends laterally from the housing toward an exterior side of the housing to thereby urge the housing in an opposite lateral direction and the drill bit in a lateral steering direction. At least one shaft piston is extendable laterally with respect to the housing toward the articulating shaft to thereby pivot the articulating shaft within the housing to further urge the distal end of the articulating shaft in the steering direction.
In one or more example embodiments, the at least one pad piston and the at least one shaft piston are disposed on opposite lateral sides of the housing and extend in the same direction to urge the distal end of the articulating shaft in the steering direction. In other example embodiments, the rotary steerable system further includes a lower stabilizer disposed below the at least one pad piston, and the at least one pad piston and the at least one shaft piston are disposed on the same lateral side of the housing and extend in opposite directions to urge the distal end of the articulating shaft in the steering direction.
In some embodiments, the rotary steerable system further includes a valve operable to direct a portion of drilling fluid from an interior flow channel of the housing to the at least one pad piston and the at least one shaft piston. A biasing flow channel may extend from the valve branches to both the at least one pad piston and the at least one shaft piston such that drilling fluid provided through the biasing flow channel may extend both the both the at least one pad piston and the at least one shaft piston. In some embodiments, the rotary steerable system may further include a supplemental valve in the biasing flow channel operable to prohibit flow to the at least one shaft piston and/or the at least one pad piston.
In some embodiments, the rotary steerable system includes a biasing flow channel that extends from the valve to a first pressure surface of the at least one shaft piston, and a vent shaft that extends from an exterior of the housing to a second pressure surface of the at least one shaft piston such than annulus pressure may be applied to the second pressure surface. In one or more embodiments, the rotary steerable system further includes a seal member for fluidly isolating the second pressure surface from the interior flow channel of the housing. The seal member may include a bellows seal defined between the housing and the articulating shaft, and the bellows seal may be flexible to accommodate articulation of the articulating shaft within the housing.
In some embodiments, the rotary steerable system further includes at least one external steering pad operatively associated with the at least one pad piston. The at least one external steering pad may be pivotally coupled to the housing to pivot outward when the at least one pad piston is extended. In some embodiments, the at least one pad piston may include at least three pad pistons radially spaced about the housing, and the at least one shaft piston may include at least three shaft pistons radially spaced about the housing.
In another aspect, a steerable drilling system includes a drill string extending from a surface location into a borehole. The drill string is operable to rotate about a longitudinal axis of the drill string. A housing is supported within the drill string, and an articulating shaft extends at least partially through the housing. The articulating shaft is pivotable between a neutral position generally aligned with the longitudinal axis and an offset position obliquely arranged with respect to the longitudinal axis. A drill bit is supported at a distal end of the articulating shaft. At least one pad piston is extendable laterally from the housing to engage a side of the borehole and thereby urge the housing in an opposite lateral direction and the drill bit in a lateral steering direction. At least one shaft piston is extendable laterally with respect to the housing toward the articulating shaft to thereby pivot the articulating shaft within the housing to urge the distal end of the articulating shaft and the drill bit in the steering direction.
In one or more example embodiments, the steerable drilling system further includes a flexible collar coupled within the drill string between the housing and a drill pipe section of the drill string. The flexible collar exhibits a lower bending stiffness than the drill pipe section. The steerable drilling system may further include a stabilizer coupled in the drill string between the drill pipe section and the flexible collar. The drilling system may further include a lower stabilizer extending from the housing below the at least one pad piston. The steerable drilling system may further include an actuator operably coupled to the lower stabilizer, and the actuator may be selectively operable to retract the lower stabilizer laterally with respect to the housing. In one or more embodiments, the at least one pad piston and the at least one shaft piston are extendable responsive to a pressure differential between an annulus pressure of a drilling fluid in an annulus between the drill string and the side of the borehole, and a standpipe pressure of a drilling fluid within the drill string.
In another aspect, the disclosure is directed to a method drilling a borehole. The method includes (a) deploying a housing into the borehole, (b) rotating a drill bit supported at a distal end of the housing to break up and generally disintegrate an adjacent geological formation, (c) extending at least one pad piston laterally from the housing to engage a side of the borehole and thereby urge the housing in and the drill bit in an opposite lateral steering, and (d) extending at least one shaft piston laterally with respect to the housing toward an articulating shaft extending at least partially within the housing to thereby pivot the articulating shaft with respect to the housing to further urge the distal end of the articulating shaft and the drill bit in the steering direction.
In some embodiments, the method further includes steering the drill bit through a build section of the borehole by extending both the at least one pad piston and the at least one shaft drilling, and steering the drill bit through an axial section of the borehole by extending only the at least one pad piston and maintaining the at least one shaft piston in a retracted position. In some embodiments, the method further includes extending only the at least one shaft piston and maintaining the at least one pad piston in a retracted position. In some embodiments, the method further includes extending only the at least one shaft piston while maintaining the at least one pad piston in a retracted position.
In some embodiments, the method further includes steering the drill bit through a first portion of the wellbore by extending either only the at least one shaft piston or the at least one pad piston while maintaining the other of the at least one shaft piston and the at least one pad piston in a retracted position, and steering the drill bit through a second portion of the borehole by extending both the at least one pad piston and the at least one shaft piston. The second portion of the wellbore may include a kick-off-point or may exhibit a relatively high dogleg severity compared to the first portion of the wellbore.
The Abstract of the disclosure is solely for providing the United States Patent and Trademark Office and the public at large with a way by which to determine quickly from a cursory reading the nature and gist of technical disclosure, and it represents solely one or more examples.
While various examples have been illustrated in detail, the disclosure is not limited to the examples shown. Modifications and adaptations of the above examples may occur to those skilled in the art. Such modifications and adaptations are in the scope of the disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/033414 | 5/18/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/212776 | 11/22/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5875859 | Ikeda | Mar 1999 | A |
6109372 | Dorel et al. | Aug 2000 | A |
7188685 | Downton et al. | Mar 2007 | B2 |
7810585 | Downton | Oct 2010 | B2 |
8011452 | Downton | Sep 2011 | B2 |
8191652 | Kotsonis et al. | Jun 2012 | B2 |
8763725 | Downton | Jul 2014 | B2 |
9057223 | Perrin et al. | Jun 2015 | B2 |
20080083567 | Downton et al. | Apr 2008 | A1 |
20090166089 | Millet | Jul 2009 | A1 |
20110120775 | Krueger | May 2011 | A1 |
20120145458 | Downton | Jun 2012 | A1 |
20120160565 | Downton | Jun 2012 | A1 |
20140209389 | Sugiura et al. | Jul 2014 | A1 |
20150008045 | Downton | Jan 2015 | A1 |
20150252630 | Moyer | Sep 2015 | A1 |
20170275948 | Bryson | Sep 2017 | A1 |
Entry |
---|
International Search Report and The Written Opinion of the International Search Authority, or the Declaration, dated Dec. 18, 2017, PCT/US2017/03 3414, 15 pages, ISA/KR. |
Number | Date | Country | |
---|---|---|---|
20210285290 A1 | Sep 2021 | US |