Rotary drilling is defined as a system in which a bottom hole assembly, including the drill bit, is connected to a drill string which is rotatably driven from the drilling platform at the surface. When drilling holes in subsurface formations, it is sometimes desirable to be able to vary and control the direction of drilling, for example to direct the borehole towards a desired target, or to control the direction horizontally within the payzone once the target has been reached. It may also be desirable to correct for deviations from the desired direction when drilling a straight hole, or to control the direction of the hole to avoid obstacles. Further, steering or directional drilling techniques may also provide the ability to reach reservoirs where vertical access is difficult or not possible (e.g. where an oilfield is located under a city, a body of water, or a difficult to drill formation) and the ability to group multiple wellheads on a single platform (e.g. for offshore drilling).
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In some embodiments, a rotary steerable tool includes a tool body and a steering assembly extending from the tool body that includes at least one steering actuator configured to extend beyond other portions of the steering assembly. A cutter may be disposed on the rotary steerable tool a distance from the at least one steering actuator. The rotary steerable tool, excluding the cutter, may have a first diameter, and the cutter may be located at a diameter greater than the first diameter.
In some embodiments, a bottom hole assembly includes a drill bit at an end of the bottom hole assembly and the drill bit includes a bit body with a plurality of cutting elements, the plurality of cutting elements including a plurality of gage cutters defining a gage of the bit. Additionally, the bottom hole assembly may include a steering unit at or spaced from a proximal end of the drill bit; the steering unit includes a steering assembly extending from a steering unit body, the steering assembly including a steering actuator configured to extend beyond the other portions of the steering assembly. A cutter on the steering unit is at a distance from the steering actuator, and is configured to cut at the same diameter as the plurality of gage cutters or is configured to cut at a diameter greater than the plurality of gage cutters.
In some embodiments, a bottom hole assembly includes a drill bit at a distal end of the bottom hole assembly and the drill bit includes a bit body with a plurality of cutting elements thereon. The plurality of cutting elements include a plurality of gage cutters defining a gage of the bit. Additionally, the bottom hole assembly may include a steering unit at or spaced from a proximal end of the drill bit and the steering unit includes a steering assembly extending from a steering unit body. The steering assembly includes at least one steering actuator configured to extend beyond the other portions of the steering assembly. A cutter is on the steering unit and is configured to cut at the same diameter as the plurality of gage cutters or is configured to cut at a diameter greater than the plurality of gage cutters. A distance between the cutter and an upper most gage cutting element of the drill bit is equal to or greater than 6 inches (15 cm).
In some embodiments, a method of drilling a curved hole within a wellbore includes drilling the wellbore with a drill bit and rotating a rotary steerable tool having at least one cutter thereon within the wellbore above the drill bit. Additionally, the method may include selectively actuating the rotary steerable tool to deflect the drill bit in a direction from the wellbore, thereby drilling the curved hole within the wellbore and cutting the curved hole with the cutter.
Other aspects and advantages will be apparent from the following description and the appended claims.
Embodiments of the present disclosure are described below in detail with reference to the accompanying figures. Like elements in the various figures may be denoted by like reference numerals for consistency. Further, in the following detailed description, numerous specific details are set forth in order to provide a more thorough understanding of the claimed subject matter. However, it will be apparent to one having ordinary skill in the art that the embodiments described may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
Further, embodiments disclosed herein are described with terms designating orientation in reference to a vertical wellbore, but any terms designating orientation should not be deemed to limit the scope of the disclosure. For example, embodiments of the disclosure may be made with reference to a horizontal wellbore. It is to be further understood that the various embodiments described herein may be used in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various environments, such as land or sub-sea, without departing from the scope of the present disclosure. The embodiments are described merely as examples of useful applications, which are not limited to any specific details of the embodiments herein.
Referring to
The depicted BHA 20 includes one or more stabilizers 26, a measurement-while-drilling (“MWD”) module or sub 28, a logging-while-drilling (“LWD”) module or sub 30, and a rotary steerable tool 32 (e.g., bias unit, RSS device, steering actuator, pistons, pads), and a power generation module or sub 34 (e.g., mud motor). The illustrated directional drilling system 10 includes a downhole steering control system 36, e.g. an attitude hold controller or control unit, disposed with BHA 20 and operationally connected with the rotary steerable tool 32 to maintain drill bit 18 and BHA 20 on a desired drilling attitude to propagate wellbore 22 along the desired path (i.e., target attitude). Depicted downhole steering control system 36 includes a downhole processor 38 and sensors 40, for example, accelerometers and magnetometers. Downhole steering control system 36 may be a closed-loop system that interfaces directly with BHA 20 sensors, i.e., D&I sensors 40, MWD sub 28 sensors, and the rotary steerable tool 32 to control the drill attitude. Downhole steering control system 36 may be, for example, a unit configured as a roll stabilized or a strap down control unit. Presently, there are various directional drilling systems available. Most common are “rotary steerable systems” or “RSS.” RSS systems can include push the bit systems, point the bit systems, and hybrid systems that combine push the bit and point the bit systems. Drilling system 10 includes drilling fluid or mud 44 that can be circulated from surface 14 through the axial bore of drill string 16 and returned to surface 14 through the annulus between drill string 16 and formation 24.
The tool's attitude (e.g., drill attitude) is generally identified as the axis 46 of BHA 20. Attitude commands may be inputted (i.e., transmitted) from a directional driller or trajectory controller generally identified as the surface controller 42 (e.g., processor) in the illustrated embodiment. Signals, such as the demand attitude commands, may be transmitted by any suitable method, for example, via mud pulse telemetry, RPM variations, wired pipe, acoustic telemetry, electromagnetic telemetry, or wireless transmissions. Accordingly, upon directional inputs from surface controller 42, downhole steering control system 36 controls the propagation of wellbore 22 for example by operating the rotary steerable tool 32 to steer the drill bit and to create a deviation, dogleg or curve in the borehole along the desired trajectory. In particular, the rotary steerable tool 32 is actuated to drive the drill bit to a set point. The steering device or bias unit may be referred to as the main actuation portion of the directional drilling tool and may be categorized as a push-the-bit, point-the-bit, or hybrid device.
The rotary steerable tool 32 can be a point-the-bit (e.g., PowerDrive Xceed a trademark of Schlumberger), push-the-bit (e.g., PowerDrive Orbit a trademark of Schlumberger) or a hybrid combination (e.g., PowerDrive Archer a registered trademark of Schlumberger). In the case of push actuators, the actuators could be mounted on the motor-stator bearing housing, a sub above the bit or even on the bit itself like a pad-in-bit. Also, the steering pad actuators could be on a freely rotating sleeve, mounted on or close to the bit or on a mud motor body (e.g. stator). The drill bit may be driven (rotated) from the surface or by a downhole rotary motive force such as a mud motor, turbine, electric motor etc. A non-limiting example of controllable drilling motor is a servoed motor, such as described in US 2015/0354280; WO 2014/099783A1; US 2015/0354280; U.S. Pat. Nos. 6,089,332; 8,469,104; and 8,146,679, the entire teachings of which are incorporated herein by reference.
In point-the-bit devices, the axis of rotation of the drill bit 18 is deviated from the local axis 46 of the bottom hole assembly 20 in the general direction of the desired path (target attitude). The borehole is propagated in accordance with the customary three-point geometry defined for example by upper and lower stabilizers and the hole reaming cutters, for example the upper cutter 19. The angle of deviation of the drill bit axis coupled with a finite distance between the lower and middle touch points results in the non-collinear condition for a curve to be generated. There are many ways in which this may be achieved including a fixed bend at a point in the bottom hole assembly close to the lower stabilizer or a flexure of the drill bit drive shaft distributed between the upper and lower stabilizer. Examples of point-the-bit type rotary steerable systems, and how they operate are described in U.S. Patent Application Publication Nos. 2002/0011359; and 2001/0052428 and U.S. Pat. Nos. 6,394,193; 6,364,034; 6,244,361; 6,158,529; 6,092,610; and 5,113,953, the entire teachings of which are incorporated herein by reference.
In the push-the-bit rotary steerable system, the requisite non-collinear condition is achieved by causing either or both of the upper or lower stabilizers to apply an eccentric force or displacement in a direction that is preferentially orientated with respect to the direction of the borehole propagation. There are many ways in which this may be achieved, including non-rotating (with respect to the hole) eccentric stabilizers (displacement based approaches) and eccentric actuators that apply force to the drill bit in the desired steering direction. Steering is achieved by creating non co-linearity between the drill bit and at least two other touch points. Examples of push-the-bit type rotary steerable systems and how they operate are described in U.S. Pat. Nos. 5,265,682; 5,553,678; 5,803,185; 6,089,332; 5,695,015; 5,685,379; 5,706,905; 5,553,679; 5,673,763; 5,520,255; 5,603,385; 5,582,259; 5,778,992; and 5,971,085, the entire teachings of which are incorporated herein by reference.
The drilling system may be of a hybrid type, for example having a rotatable collar, a sleeve mounted on the collar so as to rotate with the collar, and a universal joint permitting angular movement of the sleeve relative to the collar to allow tilting of the axis of the sleeve relative to that of the collar. Actuators control the relative angles of the axes of the sleeve and the collar. By appropriate control of the actuators, the sleeve can be held in a substantially desired orientation while the collar rotates. Non-limiting examples of hybrid systems are disclosed for example in U.S. Pat. Nos. 8,763,725 and 7,188,685, the entire teachings of which are incorporated herein by reference.
“Micro-steering” systems require the steering offset to be positioned close to the bit's cutting structure. This may be challenging, whether for a conventional RSS or a steerable motor, because even the short lengths of the breaker slots (e.g. tong space), bearing assembly, or bit-gage, have an impact (e.g., in some instances, a significant impact) on dogleg capability. To a rough first order, the dogleg severity (DLS) capability or curvature response of a stiff three point steering assembly is DLS=2*ecc/(L1*L2). Where the steering offset, or eccentricity (ecc), occurs a distance L1 from the cutting structure axially below the steering unit (lower touch point) and L2 from the effective upper stabilizer touch point, which may be the collar itself for a slick assembly. DLS is inversely proportional to L1 and L2. However, in practice L1 is usually much shorter than L2, thus a few inches off L1 has a much greater DLS impact than a similar change in L2. DLS is also proportional to eccentricity: doubling the stroke of the actuator doubles the DLS. If the actuator runs out of travel to deviate the well due to borehole erosion, then that determines the system's dogleg capability even if ample pad force is available, although being wasted on pushing against the limit of travel stops. Some embodiments of the present disclosure are directed to reducing the L1, and as a result increasing the DLS. L1 may be reduced by incorporating cutting structures axially above the gage cutters present on the drill bit face.
DLS=2*ecc/(L1*L2) (1)
wherein:
Still referring to
With reference to
Referring to
As such, when equation 1 is applied to the rotary steerable system 67 of
The rotary steerable tool 32, including the actuators 53 and any other components described in other embodiments, has a first diameter when the steering actuators are not actuated. The cutters 57 are placed on the rotary steerable tool 32 at a diameter that is greater than the first diameter. In other words, the rotary steerable tool 32, including all components but excluding the cutters 57, have a first diameter, and the cutters 57 are placed such that they extend (i.e., the cutting face extends) beyond the first diameter.
As shown in
Still referring to
As shown in
As stated above, the cutters 57 are placed a distance from the one or more steering actuators 53 and more specifically, the cutters 57 are above the drill bit 18 at a distance D from the upper most hole defining cutting element 79 of the drill bit 18. Therefore, the cutters 57 are the last cutting structure of the rotary steerable system 67. In some embodiments, the distance D is equal to or greater than 4 inches (10 cm), 6 inches (15 cm), or 9 inches (23 cm). As used herein, when the final hole trimming elements (e.g., cutters 57) that define the hole size are separated from the primary cutting element (e.g., drill bit 18), the hole reaming elements (e.g., cutters 57) may be spaced apart from the steering mechanism (e.g., the one or more steering actuators 53) by a distance less than the distance D. As such, when Equation 1 is applied to the rotary steerable system 67 of
Additionally, one skilled in the art will appreciate how the rotary steerable system 67 may incorporate any combination of
In some embodiments, the rotary steerable tool 32 may have one or more steering assemblies 52 extending from the tool body 47. The one or more steering assemblies 52 may include one or more steering actuators 53 to extend beyond the one or more steering assemblies 52. The one or more steering actuators 53 may be disposed on the tool body 47. Additionally, the one or more steering actuators 53 may have an actuatable bias pad 54 to provide a drilling offset in a push-the-bit rotary steerable system. For example, the steering actuator 53 may include a piston within a chamber of the one or more steering assemblies 52 configured to move a hinged actuatable bias pad 54 pad from a retracted position to an extended position to provide the steering offset. Alternatively, the hinged pad 54 may be configured with a ball piston actuation to move the hinged pad. Non-limiting example of ball piston steering devices are disclosed for example in U.S. Pat. No. 8,157,024, the entire teaching of which is incorporated herein by reference. Any suitable actuation method for the bias pad 54 may be used. Furthermore, the rotary steerable tool 32 may include a controller that controls actuation of the pad 54. The one or more steering assemblies 52 may have one or more secondary pads (55A, 55B) disposed adjacent to the actuatable bias pad 54. The secondary pads may be part of the steering assembly and may be a portion of the hinge about which the pad 54 rotates. In addition, the secondary pads may help protect the actuatable bias pad 54 and other portions of steering assembly 52. In some embodiments, a lower secondary pad 55A is disposed below the actuatable bias pad 54 (towards the drill bit 18) and an upper secondary pad 55B is disposed above the actuatable bias pad 54 towards the downhole tool 51. The one or more secondary pads (55A, 55B) may be active or passive. Passive secondary pads may be permanently or removably attached to the tool body 47 at a fixed outer diameter. Unlike passive secondary pads, active secondary pads do not have a fixed outer diameter and may be actuated to various outer diameters while down hole. However, the secondary pads (55A, 55B) are not limited to being adjacent to the actuatable bias pad 54 and may be otherwise integral with or attached anywhere to (i.e., welded, hardbanded, casted, or molded on) the tool body 47. Additionally, the secondary pads (55A, 55B) may also be rotationally displaced from the actuatable bias pad 54 and the number of the secondary pads may be different from the number of bias pads.
Still referring to
In some embodiments, the cutters 57 may cut the wellbore 22 at a diameter that is substantially equal to or greater than a gage diameter (GD) of gage cutters 78 of the drill bit 18. However, cutters 57 may also be placed under gage and then actuated to move laterally to GD or over GD. The cutters 57 may be fixed on the secondary pads (55A, 55B) and still sit under gage of GD. When the outer diameter of the cutters 57 is greater than the GD of the gage cutters 78 of the drill bit 18, the cutters 57 may be used as a hole-opener. The cutter 57 may be moved laterally/radially to be at any gage diameter needed to further cut the wellbore 22. Additionally, when the cutters 57 or the structure to which the cutters 57 are attached is moveable, the controller used to actuate the steering actuator 53 may also be used to move the cutters 57. Alternatively, an additional controller, or a controller located in another tool of the BHA may be used to move the cutters.
In one or more embodiments, the cutters 57 used in this or any other embodiment may be polycrystalline diamond compact (PDC) cutters, i.e., cylindrical compacts of a polycrystalline diamond layer on a substrate which may be brazed or otherwise attached to the RSS tool, e.g., to the secondary pads. Further, while cutters 57 are illustrated as PDC shear cutters, other types of cutting elements and other geometries of cutting elements may be used in any of the disclosed embodiments, including, for example, cutting elements having a substantially pointed end, or other non-planar cutting ends (such as with an elongated apex extending from a peripheral edge of the cutting element (at or substantially at the diameter of the cutting element) radially inward toward the center of the cutter)).
As illustrated in
As described above, the cutters 57 of the present disclosure may be placed on the rotary steerable tool 32, such as in
However, in some embodiments, as the distance between the first diameter (i.e., drill bit) and second diameter (i.e., cutters) increases, a relief on the passive gage area needs to be pulled inwards to allow for the target DLS. The area between the first diameter (i.e., drill bit) and the second diameter (i.e., cutters) may be outwardly actuatable to modify a lateral aggressivity and DLS capability of the drill bit. In one aspect, the second diameter (i.e., cutters) is between the one or more steering actuators of the rotary steerable tool and drill bit, and thus, as applied to Equation 1, there is an improved DLS capability for the described system. In some embodiments, the distance D includes a portion having a diameter less than the first diameter (i.e., drill bit).
In some embodiments, the second diameter (i.e., cutters) is above of the one or more steering actuators of the rotary steerable tool. In such a case, the placement of the second diameter (i.e., cutters) above the one or more steering actuators does not assist in increasing the DLS since the L1 distance (see Equation 1) in this case would be from the drill bit to the one or more steering actuators. With the cutters above the one or more steering actuators, the cutters may be used as a protective element for features of the rotary steerable tool that if damaged, the damage would lead to a loss of steering DLS. Additionally, the cutters, when above the one or more steering actuators, may be used for a non-steering function such as opening the wellbore (e.g., under reaming) or improving wellbore quality. Further, in some embodiments, the cutters may be actuatable or be placed on the one or more steering actuators.
Furthermore, methods of the present disclosure may include use of the rotary steerable tool 32 and other structures, such as in
One or more specific embodiments of the present disclosure are described herein. These described embodiments are examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, not all features of an actual embodiment may be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous embodiment-specific decisions will be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one embodiment to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
It should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. For example, any element described in relation to an embodiment herein may be combinable with any element of any other embodiment described herein. Numbers, percentages, ratios, or other values stated herein are intended to include that value, and also other values that are “about” or “approximately” the stated value, as would be appreciated by one of ordinary skill in the art encompassed by embodiments of the present disclosure. A stated value should therefore be interpreted broadly enough to encompass values that are at least close enough to the stated value to perform a desired function or achieve a desired result. The stated values include at least the variation to be expected in a suitable manufacturing or production process, and may include values that are within 5%, within 1%, within 0.1%, or within 0.01% of a stated value.
A person having ordinary skill in the art should realize in view of the present disclosure that equivalent constructions do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions, and alterations may be made to embodiments disclosed herein without departing from the spirit and scope of the present disclosure. Equivalent constructions, including functional “means-plus-function” clauses are intended to cover the structures described herein as performing the recited function, including both structural equivalents that operate in the same manner, and equivalent structures that provide the same function. It is the express intention of the applicant not to invoke means-plus-function or other functional claiming for any claim except for those in which the words ‘means for’ appear together with an associated function. Each addition, deletion, and modification to the embodiments that falls within the meaning and scope of the claims is to be embraced by the claims.
It should be understood that any directions or reference frames in the preceding description are merely relative directions or movements. For example, any references to “up” and “down” or “above” or “below” are merely descriptive of the relative position or movement of the related elements.
The present disclosure may be embodied in other specific forms without departing from its spirit or characteristics. The described embodiments are to be considered as illustrative and not restrictive. Changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a 371 National Stage Entry of International Patent Application No. PCT/US2019/015943, filed Jan. 31, 2019, which claims priority to and the benefit of U.S. Provisional Application No. 62/634,217, which was filed on Feb. 23, 2018, the entirety of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/015943 | 1/31/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/164647 | 8/29/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2034075 | Wright | Mar 1936 | A |
4386669 | Evans | Jun 1983 | A |
5113953 | Noble | May 1992 | A |
5265682 | Russell et al. | Nov 1993 | A |
5520255 | Barr et al. | May 1996 | A |
5553678 | Barr et al. | Sep 1996 | A |
5553679 | Thorp | Sep 1996 | A |
5582259 | Barr | Dec 1996 | A |
5603385 | Colebrook | Feb 1997 | A |
5673763 | Thorp | Oct 1997 | A |
5685379 | Barr et al. | Nov 1997 | A |
5695015 | Barr et al. | Dec 1997 | A |
5706905 | Barr | Jan 1998 | A |
5778992 | Fuller | Jul 1998 | A |
5803185 | Barr et al. | Sep 1998 | A |
5971085 | Colebrook | Oct 1999 | A |
6089332 | Barr et al. | Jul 2000 | A |
6092610 | Kosmala et al. | Jul 2000 | A |
6158529 | Dorel | Dec 2000 | A |
6244361 | Comeau et al. | Jun 2001 | B1 |
6364034 | Schoeffler | Apr 2002 | B1 |
6394193 | Askew | May 2002 | B1 |
7188685 | Downton et al. | Mar 2007 | B2 |
8146679 | Downton | Apr 2012 | B2 |
8157024 | de Paula Neves et al. | Apr 2012 | B2 |
8469104 | Downton | Jun 2013 | B2 |
8763725 | Downton | Jul 2014 | B2 |
20010052428 | Larronde et al. | Dec 2001 | A1 |
20020011359 | Webb et al. | Jan 2002 | A1 |
20100038141 | Johnson et al. | Feb 2010 | A1 |
20150008043 | Clausen et al. | Jan 2015 | A1 |
20150060140 | Downton | Mar 2015 | A1 |
20150330150 | Strachan | Nov 2015 | A1 |
20150354280 | Downton et al. | Dec 2015 | A1 |
20160084007 | Sugiura | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2010092313 | Aug 2010 | WO |
2014099783 | Jun 2014 | WO |
WO-2016187372 | Nov 2016 | WO |
Entry |
---|
International Search Report and Written Opinion issued in International Patent application PCT/US2019/015943 dated May 16, 2019, 14 pages. |
Exam Report Under Section 18(3) in UK Patent Application No. GB2013200.7, dated Jan. 27, 2022, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20210040796 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62634217 | Feb 2018 | US |