This section is intended to provide relevant contextual information to facilitate a better understanding of the various aspects of the described embodiments. Accordingly, it should be understood that these statements are to be read in this light and not as admissions of prior art.
Directional drilling is commonly used to drill any type of well profile where active control of the well bore trajectory is required to achieve the intended well profile. For example, a directional drilling operation may be conducted when the target pay zone is not directly below or otherwise cannot be reached by drilling straight down from a drilling rig above it.
Directional drilling operations involve varying or controlling the direction of a downhole tool (e.g., a drill bit) in a borehole to direct the tool towards the desired target destination. Examples of directional drilling systems include point-the-bit rotary steerable drilling systems and push-the-bit rotary steerable drilling systems. In both systems, the drilling direction is changed by repositioning the bit position or angle with respect to the well bore. Push-the-bit tools use pads on the outside of the tool which press against the well bore thereby causing the bit to press on the opposite side causing a direction change. Point-the-bit technologies cause the direction of the bit to change relative to the rest of the tool.
Dogleg capability is the ability of a drilling system to make precise and sharp turns in forming a directional well. Higher doglegs increase reservoir exposure and allow improved utilization of well bores where there are lease line limitations. Tool face control is a fundamental factor of dogleg capability. Typically, a higher and more precise degree of tool face control increases dogleg capability. In some drilling systems, tool face is controlled by pads or pistons that extend from the drilling tool to push the drill bit in an opposing direction. In such system, a pad or piston is extended as it rolls into the appropriate position and retracted as the pad or piston rolls out of said position. In existing systems, the pads or pistons are generally only extendable or retractable at a fixed rate, thereby providing low resolution tool face control.
Illustrative embodiments of the present disclosure are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:
The illustrated figures are only exemplary and are not intended to assert or imply any limitation with regard to the environment, architecture, design, or process in which different embodiments may be implemented.
The present disclosure generally relates to oil and gas exploration and production, and more particularly to systems and methods for directional drilling, such as a rotary steerable system (RSS). The disclosure relates to one or more dump valves included within a rotary steerable tool for increased control of pads that extend from the rotary steerable tool, thereby increasing control over the force vectors applied to the borehole wall by the pads or pistons and more accurately directing a drill bit.
Oil and gas hydrocarbons are naturally occurring in some subterranean formations. A subterranean formation containing oil or gas may be referred to as a reservoir, in which a reservoir may be located under land or off shore. Reservoirs are typically located in the range of a few hundred feet (shallow reservoirs) to a few tens of thousands of feet (ultra-deep reservoirs). To produce oil or gas, a wellbore is drilled into a reservoir or adjacent to a reservoir.
A well can include, without limitation, an oil, gas, or water production well, or an injection well. As used herein, a “well” includes at least one wellbore. A wellbore can include vertical, inclined, and horizontal portions, and it can be straight, curved, or branched. As used herein, the term “wellbore” includes any cased, and any uncased, open-hole portion of the wellbore. A near-wellbore region is the subterranean material and rock of the subterranean formation surrounding the wellbore. As used herein, a “well” also includes the near-wellbore region. The near-wellbore region is generally considered to be the region within approximately 100 feet of the wellbore. As used herein, “into a well” means and includes into any portion of the well, including into the wellbore or into the near-wellbore region via the wellbore.
A portion of a wellbore may be an open-hole or cased-hole. In an open-hole wellbore portion, a tubing string may be placed into the wellbore. The tubing string allows fluids to be introduced into or flowed from a remote portion of the wellbore. In a cased-hole wellbore portion, a casing is placed into the wellbore that can also contain a tubing string. A wellbore can contain an annulus. Examples of an annulus include, but are not limited to: the space between the wellbore and the outside of a tubing string in an open-hole wellbore; the space between the wellbore and the outside of a casing in a cased-hole wellbore; and the space between the inside of a casing and the outside of a tubing string in a cased-hole wellbore.
Turning now to the figures,
Accordingly,
As the bit 114 rotates, the bit 114 creates the borehole 116 that passes through various formations 118. A pump 120 circulates drilling fluid through a feed pipe 122 and downhole through the interior of drill string 108, through orifices in drill bit 114. The drilling fluid then flows back to the surface via the annulus 136 around drill string 108 and into a retention pit 124. The drilling fluid transports cuttings from the borehole 116 into the pit 124 and aids in maintaining the integrity of the borehole 116. The drilling fluid may also drive the downhole motor 129 and other portions of the rotary steerable tool 128, such as control pads for the tool 128.
The tool string 126 may include one or more logging while drilling (LWD) or measurement-while-drilling (MWD) tools 132 that collect measurements relating to various borehole and formation properties as well as the position of the bit 114 and various other drilling conditions as the bit 114 extends the borehole 108 through the formations 118. The LWD/MWD tool 132 may include a device for measuring formation resistivity, a gamma ray device for measuring formation gamma ray intensity, devices for measuring the inclination and azimuth of the tool string 126, pressure sensors for measuring drilling fluid pressure, temperature sensors for measuring borehole temperature, etc.
The tool string 126 may also include a telemetry module 135. The telemetry module 135 receives data provided by the various sensors of the tool string 126 (e.g., sensors of the LWD/MWD tool 132), and transmits the data to a surface unit 138. Data may also be provided by the surface unit 138, received by the telemetry module 135, and transmitted to the tools (e.g., LWD/MWD tool 132, rotary steering tool 128, etc.) of the tool string 126. In one or more embodiments, mud pulse telemetry, wired drill pipe, acoustic telemetry, or other telemetry technologies known in the art may be used to provide communication between the surface control unit 138 and the telemetry module 135. In one or more embodiments, the surface unit 138 may communicate directly with the LWD/MWD tool 132 and/or the rotary steering tool 128. The surface unit 138 may be a computer stationed at the well site, a portable electronic device, a remote computer, or distributed between multiple locations and devices. The unit 138 may also be a control unit that controls functions of the equipment of the tool string 126.
The rotary steerable tool 128 is configured to change the direction of the tool string 126 and/or the drill bit 114, such as based on information indicative of tool 128 orientation and a desired drilling direction or well profile. In one or more embodiments, the rotary steerable tool 128 is coupled to the drill bit 114 and drives rotation of the drill bit 114. Specifically, the rotary steerable tool 128 rotates in tandem with the drill bit 114. In one or more embodiments, the rotary steerable tool 128 is a point-the-bit system or a push-the-bit system.
The pads 202 can be extended to varying degrees. The extended position can refer to any position in which the pad 202 is extended outwardly beyond the retracted position and not necessarily fully extended. “Retraction” or “retracting” refers to the act of bringing the pad 202 inward (e.g., radially inward), or moving the pad 202 from a more extended position to a less extended position, and does not necessarily refer to moving the pad 202 into a fully retracted position. Similarly, “extension” or “extending” refers to the act of moving the pad 202 outward, such as from a less extended position to a more extended position, and does not necessarily refer to moving the pad 202 into a fully extended position.
As shown, the rotary steerable tool 128 includes three pads spaced 120 degrees apart around the circumference of the tool 128. However, the rotary steerable tool 128 can have more or less than the three pads 202 shown. The pad 202 is just one configuration of an extendable member or mechanism designed to push against the wall of the borehole 116 to urge the drill bit 114 in a direction. The rotary steerable tool 128 may include various other types of extendable members or mechanisms, including but not limited to pistons configured to push against the borehole 116 directly or pads 202 configured to be acted on by drilling fluid direction without an intermediate piston.
The pads 202, or alternative extendable members or mechanism, may also include a retraction mechanism (e.g., a spring or other biasing mechanism) that moves the pads 202 back into the closed position. In some other embodiments, the pads 202 may be configured to fall back into the closed position when pressure applied by the drill fluid at the pads 202 drops. In some embodiments, the pads 202 are coupled to the pistons 212 and, thus, travel with the piston 212. In other embodiments, as shown in
Referring now to
One or more pistons 212 are positioned within the tool body 203 and also movable between an extended position and a retracted position with respect to the tool body 203. Each of the pistons 212 is engageable with a respective one of the pads 202, such that, as the piston 212 moves from the retracted position to the extended position, the pad 202 in engagement with the respective piston 212 also moves from the retracted position to the extended position. Thus, when the piston 212 is in the extended position, the pad 202 is in the extended position. Further, if the piston 212 is coupled (e.g., connected) to the pad 202, when the piston 212 is in the retracted position, the pad 202 is in the retracted position.
As shown in this embodiment, a rotary valve 222 is used to control fluid pressure to move the pistons 212 and the pads 202 from the retracted position to the extended position. The rotary valve 222 includes an upper disk 224 and a lower disk 226 and is positioned within the tool body 203 of the rotary steerable tool 128. As the upper disk 224 rotates with respect to the lower disk 226, the rotary valve 222 selectively routes fluid pressure from the flowbore 201 to one or more of the pistons 212 through one or more respective pressurized fluid supply flow paths 240 to move the piston 212 and the pad 202 from the retracted position to the extended position.
To control the rotary valve 222, the rotary steerable tool 128 may include or be operably coupled to a turbine 230, a generator 232, a motor 234, and/or a controller 236 in this embodiment. For example, as shown, the turbine 230, the generator 232, the motor 234, and/or the controller 236 may be included within the tool body 203 of the tool 128. Alternatively, one or more of these components may be positioned outside of the tool body 203, such as included within another tool, and then operably coupled to the tool 128. In this embodiment, the turbine 230 receives fluid flow through the flowbore 201, and is coupled to the generator 232 for the generator 232 to produce power from the turbine 230. The generator 232 is then operably coupled to the motor 234 to provide power to the motor 234 to a drive shaft 238. The drive shaft 238 extends between the motor 234 and the controller 236 (e.g., gear box) for the controller 236 to control the rotary valve 222, such as by selectively moving the upper disk 224 with respect to the lower disk 226.
With respect to one of the pairs or sets of a piston 212 and a pad 202, the rotary valve 222 is used to route fluid pressure from the flowbore 201, through a pressurized fluid supply flow path 240 extending between the rotary valve 222 and the piston 212, and to a piston reservoir 242 housing or fluidly coupled to the piston 212. This arrangement enables the rotary valve 222 to selectively control fluid pressure from the flowbore 201 to the piston 212 to move the piston 212 and the pad 202 from the retracted position to the extended position.
Referring still to
In accordance with one or more embodiments of the present disclosure, one or more dump valves 244 is included within the rotary steerable tool 128, such as to facilitate or increase the rate by which one or more of the pistons 212 and the pads 202 is able to move from the extended position to the retracted position. The dump valve 244 is in fluid communication with the pressurized fluid supply flow path 240 to be fluidly coupled to the piston 212 to control fluid flow between the piston 212 and an exterior of the tool body 203. When it is desired to move the piston 212 and the pad 202 from the extended position to the retracted position, the dump valve 244 opens to enable fluid pressure and fluid flow from the pressurized fluid supply flow path 240 and the piston reservoir 242 to the exterior of the tool body 203, thereby enabling the piston 212 and the pad 202 to move without restriction.
In this embodiment, a dump valve flow path 246 is formed in the tool body 203 to extend between the piston reservoir 242 and the exterior of the tool body 203. The dump valve 244 is positioned within the dump valve flow path 246 to selectively vent fluid pressure from the pressurized fluid supply flow path 240 to an exterior of the tool 128 through the dump valve 244. In an open position, the dump valve 244 enables or allows fluid pressure and fluid flow through the dump valve flow path 246, and in a closed position, the dump valve 244 prevents fluid pressure and fluid flow through the dump valve flow path 246. A controller 248 is operably coupled to the dump valve 244 to control the dump valve 244 between the open and closed positions, and an actuator is coupled to the dump valve 244 to move the dump valve 244 between the open and closed positions. The actuator to move the dump valve 244 may, for example, include a hydraulic actuator, an electromagnetic actuator, a piezoelectric actuator, or a mechanical drive actuator.
In one or more embodiments, the dump valve 244 may control fluid pressure and fluid flow therethrough based upon a position of the rotary valve 222. For example, the controller 248 for the dump valve 244 may monitor or receive a signal regarding the position of the rotary valve 222 (such as from the controller 236), in which the controller 248 may initiate an actuator to move the dump valve 244 to the open position or the closed position based upon the position of the upper disk 224 with respect to the lower disk 226 of the rotary valve 222. If the flow paths of the upper disk 224 and the lower disk 226 of the rotary valve 222 are aligned to provide fluid flow to a respective piston reservoir 242, the controller 248 may have the dump valve 244 in the closed position to enable fluid flow and pressure to move the piston 212 and the pad 202 to an extended position. If the flow paths of the upper disk 224 and the lower disk 226 of the rotary valve 222 are not aligned to not provide fluid flow to the respective piston reservoir 242, the controller 248 may have the dump valve 244 in the open position to enable vent fluid pressure and move the piston 212 and the pad 202 to a retracted position. The dump valve 244 in the open position enables fluid pressure to vent and flow out of the pressurized fluid supply flow path 240 and the piston reservoir 242 more quickly than, for example, through the choke valve 250. This enables the piston 212 and the pad 202 to move to the retracted position more quickly for better control of the drill bit 114.
Referring now to
In one or more embodiments, a choke valve 250 may not be included within a rotary steerable tool 128, in which the dump valve 244 may be solely relied upon to enable fluid pressure and fluid flow away from the piston 212 to the exterior of the tool 128.
As discussed above, a dump valve 244 and/or a choke valve 250 may be used to selectively control fluid pressure from a pressurized fluid supply flow path 240 and a piston 212 to an exterior of the tool body 203. In
In one or more embodiments, a sensor may be included with the rotary steerable tool 128 with the dump valve 244 controlled based upon the output of the sensor. For example,
A dump valve in accordance with one or more embodiments of the present disclosure may include one or more different types of valves. For example, a dump valve 244 may include an on/off valve, such as shown in
Referring now to
The middle profile 903 shows the force profile for three pads in a rotary steerable tool that only includes a choke valve and no dump valve. In such an embodiment, a pad is able to move from the retracted position to the extended position without much delay (e.g., almost vertical force profile), but the choke valve prevents the pad from being able to move from the extended position to the retracted position without undue delay (e.g., a slanted profile force profile 903A is shown). This slower movement of the pad from the extended position to the retracted position prevents full control for steering a rotary steerable tool, particularly if the tool is rotating at a faster speed within the borehole.
The lower profile 905 shows the force profile for three pads in a rotary steerable tool that only includes a dump valve, such as shown and discussed above. In such an embodiment, a pad is able to move from the retracted position to the extended position without much delay (e.g., almost vertical force profile), and is also able to move from the extended position to the retracted position without much delay (e.g., almost vertical force profile 905A). This quicker movement of the pad from the extended position to the retracted position enables better control for steering a rotary steerable tool, such as with respect to the middle profile 903, particularly when used at higher rotational speeds. Thus, a rotary steerable tool in accordance with the present disclosure may reduce the flow restriction and decrease the time duration needed when moving a piston and a pad from the extended position to the retracted position. This may reduce the erosion resistance that may otherwise damage components within the rotary steerable tool and may increase the speed at which the rotary steerable tool may operate.
In addition to the embodiments described above, many examples of specific combinations are within the scope of the disclosure, some of which are detailed below:
Embodiment 1. A rotary steerable tool for directional drilling, comprising:
One or more specific embodiments of the present disclosure have been described. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Certain terms are used throughout the description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function.
Reference throughout this specification to “one embodiment,” “an embodiment,” “an embodiment,” “embodiments,” “some embodiments,” “certain embodiments,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present disclosure. Thus, these phrases or similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
The embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. It is to be fully recognized that the different teachings of the embodiments discussed may be employed separately or in any suitable combination to produce desired results. In addition, one skilled in the art will understand that the description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to suggest that the scope of the disclosure, including the claims, is limited to that embodiment.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/018598 | 2/19/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/160559 | 8/22/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5553678 | Barr | Sep 1996 | A |
8672056 | Clark | Mar 2014 | B2 |
8708064 | Downton et al. | Apr 2014 | B2 |
8869916 | Clausen | Oct 2014 | B2 |
20060243487 | Turner et al. | Nov 2006 | A1 |
20100006341 | Downton | Jan 2010 | A1 |
20110266063 | Downton | Nov 2011 | A1 |
20120048571 | Radford | Mar 2012 | A1 |
20120160565 | Downton | Jun 2012 | A1 |
20140014413 | Niina | Jan 2014 | A1 |
20140169128 | Orban et al. | Jun 2014 | A1 |
20180252088 | Tilley | Sep 2018 | A1 |
20180340374 | Moore | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2017065724 | Apr 2017 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jan. 2, 2019, of PCT/US2018/018598, filed on Feb. 19, 2018. |
Extended European Search Report dated Aug. 5, 2021 for EP Application No. 18906076.7 dated Feb. 19, 2018. 6 pgs. |
Number | Date | Country | |
---|---|---|---|
20210324682 A1 | Oct 2021 | US |