The present invention relates to commercial and residential irrigation systems for watering turf and other landscaping, and more particularly, to sprinklers used with such systems.
Modern residential and commercial irrigation systems include subterranean plastic branch pipes that each feed water to multiple sprinklers mounted on risers. Pressurized water is fed to the branch pipes via solenoid actuated values which are energized by an electronic irrigation controller. The controller executes a watering program consisting of pre-programmed run and cycle times for all of the sprinklers on each of the branch pipes, which are collectively referred to as a station.
The sprinklers that are used in residential and commercial irrigation systems fall into several basic categories. Spray-type sprinklers are used for close-in watering and project a fan-shaped pattern of water which is either full circle or some division thereof, e.g. ninety degrees. Adjustable arc spray nozzles have also been used for many years. Rotor-type sprinklers are used where large area coverage is desired and typically eject from a nozzle a single, relatively robust inclined stream of water as much as sixty feet or more. The nozzle is oscillated through an adjustable arc utilizing turbine, gear reduction and reversing mechanisms. Rotor-type sprinklers often have replaceable nozzles to vary the precipitation rate, i.e. gallons per minute (GPM), of the sprinkler. Some rotor-type sprinklers used on golf courses have built-in valves. Rotary stream sprinklers simultaneously eject a plurality of smaller inclined streams of water. They are useful in applications where more coverage is needed than can be provided by a spray-type sprinkler, and usually less than that provided by a large rotor-type sprinkler. They also eject an aesthetically pleasing array of slowly moving water streams. A modern rotary stream sprinkler has a pop-up riser with an inverted frusto-conical distributor head. Water is channeled upwardly through a flow-adjustable orifice and impinges on the underside of the distributor head. The distributor head has spiral grooves that form the rotary streams. A viscous damper mechanism ensures that the distributor head turns slowly so that the reach of the multiple streams is not unduly reduced. The shape of the orifice can be varied to adjust the pattern of coverage of the rotary streams.
Rotary stream sprinklers have evolved over many decades. U.S. Pat. No. 1,764,570 granted to J. C. Lohman on Jun. 17, 1930 discloses a sprinkler with an inverted frusto-conical body with a series of longitudinally and spirally extending flutes. Streams of water passing upwardly through an annular series of apertures are directed against the flutes and cause the body to rotate. The rotary stream sprinkler of Lohman can be used with an underground irrigation system. U.S. Pat. No. 2,493,595 granted Jan. 3, 1950 to N. M. Rieger discloses a similar rotary stream sprinkler adapted for hose-end use.
U.S. Pat. No. 3,854,664 granted Dec. 17, 1974 to Edwin J. Hunter discloses a sprinkler with a rotating head that directs a plurality of rotating streams over an area to be watered. The streams are formed in nozzles in the rotating head. The rotating head has inlets to the nozzles on one end with cooperate with a keyed orifice plate which acts as a valve for communicating water to the nozzles. Orifice plates with various types of openings may be substituted to obtain any desired spray pattern. An impeller is actuated by the water flow to rotate the nozzle through a transmission.
U.S. Pat. No. 4,471,908 granted Sep. 18, 1984 to Edwin J. Hunter discloses a similar sprinkler having V-shaped nozzles in a cylindrical rotating head. The nozzle inlet openings cooperate with an orifice plate to vary the nozzle openings to the source of pressurized water, delivering streams of varying length and volume from the rotating head. The orifice in the plate defines the spray pattern to be produced by the streams issuing from the nozzles in the rotating head.
U.S. Pat. No. 4,815,662 granted Mar. 28, 1989 to Edwin J. Hunter discloses a rotary stream sprinkler with a damping device connected to the rotary head for controlling the rotational velocity of the head. U.S. Pat. No. 4,842,201 granted Jun. 27, 1989 to Edwin J. Hunter discloses a rotary stream sprinkler in which one or more arcuate passages are configured to control the volume and pressure of primary stream of water delivered to rotary distributing head.
U.S. Pat. No. 4,867,379 granted Sep. 19, 1989 to Edwin J. Hunter discloses a rotary stream sprinkler with a multi-passage flow control unit. U.S. Pat. No. 4,898,332 granted Feb. 6, 1990 to Edwin J. Hunter discloses a rotary stream sprinkler with a flow control unit having a variable restriction in a passage to or more arcuate passages. See also U.S. Pat. Nos. 4,932,590; 4,967,961; and 4,971,250, all granted to Edwin J. Hunter.
More recently U.S. Pat. No. 6,651,905 granted Nov. 25, 2003 to George Sesser et al. discloses an adjustable arc rotary stream sprinkler that includes an arc adjustment ring rotatably mounted on a base for rotating the nozzle relative to a stem for adjusting the arcuate discharge orifice. A throttle member is secured to the upstream end of a shaft such that rotation of the shaft causes the throttle to move relative to a portion of the stem, thereby adjusting the flow rate through the nozzle.
The type, placement and precipitation rates for the sprinklers of an irrigation system are usually selected when the system is designed or installed by a contractor. The goal is to uniformly distribute the optimum amount of water over a given area. The optimum precipitation rate provided by each sprinkler should preferably fall within plus or minus one-quarter GPM. The precipitation rate of a sprinkler is largely determined by the size and configuration of its nozzle orifice(s), although variations result from fluctuations in water pressure that cannot be fully negated with pressure regulators.
There is an ever growing need to conserve water, particularly in the Western United States. The watering program of an irrigation controller can also be optimized to ensure green turf and landscaping are maintained while using the minimum amount of water. In some cases, irrigation controllers are augmented with rain interrupt sensors and evapotranspiration data to modify their cycle and run times to accommodate weather changes. The amount of water conservation achievable through the design and dynamic re-programming of the irrigation controller has nearly been exhausted. Therefore, it is time to re-direct attention to the efficiency of the sprinklers themselves. Conventional rotary stream sprinklers typically distribute one to two GPM over an area approximately sixty feet wide.
It would be desirable to provide an improved rotary stream sprinkler that could uniformly water a relatively large area with substantially less water than conventional rotary stream sprinklers. Such a rotary stream sprinkler could also be used in place of multiple spray-type sprinklers and small rotor-type sprinklers and multiple valves. Such a sprinkler should have the capability for precisely tailoring its water distribution pattern including its shape and size.
In accordance with one aspect of my invention, a sprinkler includes a riser having an inlet end and an outlet end. The sprinkler has a nozzle having a plurality of a plurality of circumferentially spaced, radially extending stream forming slots. A drive assembly mounted in the riser has an output shaft that rotatably supports the nozzle at the outlet end of the riser. An impeller is coupled to an input shaft of the drive assembly. An orifice member is mounted adjacent the outlet end of the riser and has an orifice shaped to deliver water flowing through the riser into the stream forming slots in a manner that produces a predetermined water distribution pattern. The sprinkler further includes a rotatably adjustable deflector ring having a plurality of projections for intercepting streams of water ejected from the stream forming slots to vary a reach thereof.
In accordance with another aspect of my invention, a sprinkler includes a riser having an inlet end and an outlet end. A nozzle is rotatably supported at the outlet end of the riser and has a plurality of circumferentially spaced, radially extending stream forming slots. An orifice member is removably mounted adjacent the outlet end of the riser and has an orifice shaped to deliver water flowing through the riser into the stream forming slots in a manner that produces a predetermined water distribution pattern. A rotatably adjustable deflector ring is configured and mounted for intercepting streams of water ejected from the stream forming slots to vary a reach thereof.
Unless otherwise indicated, the sprinklers hereafter described are made of molded plastic parts. Referring to
A nozzle 24 (
A generally cylindrical orifice member 56 (
The peripheral lip of the brightly colored orifice member 56 is visible between the black colored riser 12 and the black colored nozzle 24 when the sprinkler 10 is fully assembled and the riser 12 extended as illustrated in
The nozzle 24 (
The nozzle 24 can also be screwed up and down on the output shaft 30 to vary a spacing between the stream forming slots 26 and the orifice member 56. The orifice member 56 is readily replaceable by completely unscrewing the nozzle 24 from the shaft 30 so that another orifice member 56 with a different shaped orifice 60 can be installed. When the sprinkler 10 is fully assembled and the water is OFF, the HUNTER® arc adjustment tool can be inserted into a key-hole shaped aperture 86 (
My sprinkler 10 can be designed to uniformly deliver one-quarter inch of water per hour over a rectangular area measuring sixty feet by sixty feet. The orifice 60 in the orifice member 56 can be cut so that all six stream forming slots 26 simultaneously eject water over a square plot. Watering a half-square plot only requires that three of the stream forming slots 26 eject water at the same time. Watering a one-quarter square plot requires that only a single one of the stream forming slots 26 eject water at a time. A ratchet mechanism 88 (
Referring to
While I have described two embodiments of my rotary stream sprinkler 10, it will be apparent to those skilled in the art that my invention can be further modified in both arrangement and detail. For example, the nozzle 24 and deflector ring 76 could be designed to be screwed onto the upper end of a fixed or telescoping riser. The number and shape of the stream forming slots 26 could be varied. The stream forming slots 26 could be angled to self-propel the nozzle and thereby eliminate the need for the drive assembly and the impeller. A damper or friction plate could be included to limit the rotational speed of the nozzle where it is self-propelled in lieu of the impeller 34 and drive assembly 28 illustrated in