The present invention relates generally to a rotary tool for cleaning surfaces, including rugs and carpets, and in particular to such apparatus and methods with brushes for coaction with cleaning liquid delivering means and suction extraction means.
Many apparatuses and methods are known for cleaning carpeting and other flooring, wall and upholstery surfaces. The cleaning apparatuses and methods most commonly used today apply cleaning fluid as a spray under pressure to the surface whereupon the cleaning fluid dissolves the dirt and stains and the apparatus scrubs the fibers while simultaneously applying suction to extract the cleaning fluid and the dissolved soil. Many different apparatuses and methods for spraying cleaning fluid under pressure and then removing it with suction are illustrated in the prior art. Some of these cleaning apparatuses and methods use a rotating device wherein the entire machine is transported over the carpeting while a cleaning head is rotated about a vertical axis.
Another category of carpeting and upholstery cleaning apparatuses and methods using the rotating device wherein the entire machine is transported over the carpeting while a cleaning head is rotated about a vertical axis includes machines having a plurality of arms, each of having one or more spray nozzles or a suction means coupled to a vacuum source. These rotary cleaning tools providing a more intense scrubbing action since, in general, more scrubbing surfaces contact the carpet. These apparatuses and methods are primarily illustrated in U.S. Pat. No. 4,441,229 granted to Monson on Apr. 10, 1984, and are listed in the prior art known to the inventor but not discussed in detail herein.
A third category of carpeting and upholstery cleaning apparatuses and methods that attempt to deflect or otherwise control the cleaning fluid are illustrated by U.S. Pat. No. 6,243,914, which was granted to the inventor of the present patent application Jun. 12, 2001, and which is incorporated herein by reference. U.S. Pat. No. 6,243,914 discloses a cleaning head for carpets, walls or upholstery, having a rigid open-bottomed main body that defines a surface subjected to the cleaning process. Mounted within or adjacent to the main body and coplanar with the bottom thereof is a fluid-applying device which includes a slot at an acute angle to the plane of the bottom of the body located adjacent the plane of the bottom of the body, the slot configured such that the fluid is applied in a thin sheet that flows out of the slot and into the upper portion of the surface to be cleaned and is subsequently extracted by suction into the vacuum source for recovery. The cleaning head is alternatively multiply embodied in a plurality of arms which are rotated about a hub.
Mounted above the main waste receptacle 3 is a cabinet 17 housing a vacuum source and supply of pressurized hot liquid cleaning fluid. Soiled cleaning fluid is routed from cleaning head 5 into waste receptacle 3 via rigid vacuum wand 7 and a flexible vacuum return hose 19 coupled in fluid communication with an exhaust port 20 thereof, whereby spent cleaning solution and dissolved soil are withdrawn under a vacuum force supplied by the fluid cleaning system, as is well known in the art. A vacuum control valve or switch 21 is provided for controlling the vacuum source.
Vacuum return hose 19 is coupled in communication with waste receptacle 3 through a drain 35, for example, at upper portion 31, remote from intake 29. Vacuum return hose 19 feeds soiled cleaning fluid into waste receptacle 3 as a flow 37 of liquid soiled with dissolved dust, dirt and stains, as well as undissolved particulate material picked up by the vacuum return but of a size or nature as to be undissolvable in the liquid cleaning fluid. The flow 37 of soiled cleaning fluid enters into waste receptacle 3 through drain 35 and forms a pool 39 of soiled liquid filled with dissolved and undissolved debris. A float switch 41 or other means avoids overfilling the waste receptacle 3 and inundating the blower 25 through its air intake 29. A screen or simple filter may be applied to remove gross contaminates from the soiled liquid flow 37 before it reaches the pool 39, but this is a matter of operator choice since any impediment to the flow 37 reduces crucial vacuum pressure at the cleaning head 5 for retrieving the soiled liquid from the cleaned carpet or other surface.
Soiled liquid cleaning fluid effectively filters air drawn into the waste receptacle 3 by dissolving the majority of dust, dirt and stains, and drowning and sinking any undissolved debris whereby it is sunk into the pool 39 of soiled liquid and captured therein. Thus, the soiled liquid in the vacuum return hose 19 effectively filters the air before it is discharged into the enclosed air chamber 34, and no airborne particles of dust and dirt are available to escape into the enclosed air chamber 33 floating above the liquid pool 39.
In a rotary surface cleaning tool, cleaning head 5 utilizes cleaning liquid delivering means and suction extraction means in combination with a rotary cleaning plate that is coupled for high speed rotary motion.
One example of a rotary surface cleaning tool is illustrated by U.S. Pat. No. 4,182,001, SURFACE CLEANING AND RINSING DEVICE, issued to Helmuth W. Krause on Jan. 8, 1980, which is incorporated herein by reference.
An exhaust pipe or tube 69 is mounted on handle assembly 61 and is connected to the top of rotary surface cleaning tool 51 at a connection 71. Suction is created by the motor and fan assembly 73. Else, exhaust pipe or tube 69 is coupled for suction extraction to vacuum return hose 19 and vacuum source 25 in a truck-mounted unit. Soiled cleaning fluid extracted by suction extraction from carpet or rug 57 is drawn off through outlet connection 71 and through discharge hose 69. Frame 53 may also be supported by a swivel wheel 75. A large rotor 77 is rotationally mounted within housing 51 and rotationally coupled within enclosure 59. Rotor 77 is drivingly connected by a drive belt or chain 79 to an output shaft 81 of an electric motor 83 mounted on the frame 53. Motor 83 serves to turn large rotor 77. A plurality of circular brushes 85 are located on rotor 77.
Also positioned on rotor 77 are suction extraction nozzles 93 spaced between brushes 85 and communicating with discharge hose 69. Suction extraction nozzles 93 are fixed to rotor 77 and each is provided with a relatively narrow vacuum extraction slot 95. Each vacuum extraction slot 95 is positioned coplanar with the ends of the brush elements or bristles of brushes 85 distal from rotor 77.
Also mounted on rotor 77 is a plurality of spray nozzle means 97 for dispensing cleaning or rinsing liquid. Each of spray nozzle means 97 can be mounted for angular adjustment so as to direct sprays of cleaning or rinsing liquid through individual nozzles 99 onto rug 57 at different angles. The cleaning or rinsing fluid is conveyed to nozzle means 97 through line 67 which leads to a supply of cleaning or rinsing fluid, such as either feed line 67 or solution delivery tube 9.
During operation of the cleaning device, rotor 77 rotates in the direction indicated by arrow 89. As the cleaning liquid is sprayed onto rug 57 through nozzles 99, rotating brushes 85 agitate the pile of rug 57 in conjunction with the cleaning liquid to loosen dirt in or on the surface. The spent cleaning liquid and loosened dirt are extracted up by the next succeeding suction extraction nozzle 93. Accordingly, the liquid-dwell-time is solely controlled by machine 50, and not by the rate at which the operator advances machine 50 over the floor.
However, known rotary surface cleaning tool are limited in their ability to effectively provide the desired cleaning of target floor surfaces and extraction of soiled cleaning liquid.
The present invention is a rotary surface cleaning machine for cleaning floors, including both carpeted floors and uncarpeted hard floor surfaces including but not limited to wood, tile, linoleum and natural stone flooring. The rotary surface cleaning machine has a rotary surface cleaning tool mounted on a frame and coupled for high speed rotary motion relative to the frame. The rotary surface cleaning tool has a substantially circular operational surface that performs the cleaning operation. The rotary surface cleaning tool is driven by an on-board power plant to rotate at a high rate. The rotary surface cleaning tool is coupled to a supply of pressurized hot liquid solution of cleaning fluid and a powerful vacuum suction source.
According to one aspect of the invention a plurality of individual arrays of cleaning solution delivery spray nozzles are substantially uniformly angularly distributed across the operational surface of the rotary surface cleaning tool, the arrays of spray nozzles being coupled in fluid communication with a pressurized flow of cleaning fluid through a plurality of individual liquid cleaning fluid distribution channels of a cleaning fluid distribution manifold portion of the rotary surface cleaning tool. Each of the plurality of individual arrays of cleaning solution delivery spray nozzles includes a plurality of individual delivery spray nozzles that are radially oriented across the substantially circular operational surface of the rotary surface cleaning tool, and each individual array of the spray nozzles extends across a portion of the operational surface that is substantially less than an annular portion thereof extended between an inner radial limit and an outer radial limit. Individual ones of the arrays of spray nozzles are positioned in a substantially spiral pattern across the annular portion of the operational surface of the rotary surface cleaning tool between the inner radial limit of the annular portion and receding therefrom over the annular portion toward the outer radial limit thereof.
This spiral pattern of individual array of spray nozzles greatly reduces the number of individual delivery spray nozzles that must be supplied on the operational surface of the rotary surface cleaning tool. However, the high speed of rotation ensures that sufficient quantities of cleaning solution is delivered since each individual array of spray nozzles is presented to the target floor area at least one, two or several times each second. The spray nozzles are very expensive to drill or otherwise form because they are only about 1/10,000th of an inch in diameter. Therefore, a large cost savings is gained, while the delivery of cleaning solution does not suffer. Forming the array of spray nozzles in the spiral pattern so that the individual array of spray nozzles to cover only a fractional portion of the operational surface of the rotary surface cleaning tool also ensures that the cleaning solution is delivered with substantially uniform pressure across the entire radius of the rotary surface cleaning tool, without resorting to special design features normally required in the prior art to provide uniform pressure across each spray nozzle array that extends across at least a large portion of radius of the rotary surface cleaning tool, or else the entire radius.
According to another aspect of the invention a plurality of suction extraction shoes are also substantially uniformly angularly distributed across the operational surface of the rotary surface cleaning tool alternately between the arrays of cleaning solution delivery spray nozzles and are projected from the operational surface of the rotary surface cleaning tool by a biasing means that is structured for individually biasing each suction extraction shoe outwardly relative to bottom operational surface of the rotary surface cleaning tool. For example, a resilient cushion, such as a closed foam rubber cushion of about one-quarter inch thickness or thereabout, is positioned between a flange portion of each shoe and the rotary surface cleaning tool.
Each of the suction extraction shoes is further formed with a fluid extraction passage presented in a position adjacent to the operational surface of the rotary surface cleaning tool. The fluid extraction passage of each suction extraction shoe communicates through one of a plurality of plenum branch passages within the rotary surface cleaning tool with a vacuum plenum that is in fluid communication with the vacuum suction source.
According to another aspect of the invention the rotary surface cleaning tool has a target surface scrubbing means for causing a washboard-type scrubbing effect of a moveable target surface to be cleaned, i.e., a carpet. The target surface scrubbing means causes oscillations of the moveable target surface alternately toward and away from the operational surface of the rotary surface cleaning tool by alternate application of vacuum suction pulling the carpet toward the operational surface of the rotary surface cleaning tool and application of compression by the next consecutive shoe pushing the carpet away from the operational surface of the rotary surface cleaning tool.
According to another aspect of the invention the target surface scrubbing means for causing a washboard-type scrubbing effect is one or both of (a) a relatively raised surface portion of each suction extraction shoe that projects further from the operational surface of the rotary surface cleaning tool than a relatively lower surface portion thereof, and (b) one or more rows of bristle brushes arranged along a surface portion of each suction extraction shoe and projected further from the operational surface of the rotary surface cleaning tool than a surface of the corresponding suction extraction shoe. The relatively raised surface portion of each suction extraction shoe, or the one or more rows of bristle brushes, whichever is present, the leading surface portion of the suction extraction shoe as a function of a direction of the rotary motion of the operational surface of the rotary surface cleaning tool, while the relatively lower surface or brushless portion forms the trailing surface portion of the suction extraction shoe.
When present, the rows of bristle brushes provide a more aggressive cleaning action in cleaning when provided in combination with fluid cleaning of carpet or other target flooring surface. Furthermore, when present the optional raised bristle brushes effectively raise bottom operational surface of the rotary surface cleaning tool slightly away from target floor surface so that the rotary surface cleaning machine can be alternated between carpeting and hard floor surfaces such as wood, tile, linoleum and natural stone flooring, without possibility of scarring or other damage to either the operational surface of the rotary surface cleaning tool or the hard floor surfaces.
Other aspects of the invention are detailed herein.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
In the Figures, like numerals indicate like elements.
Rotary surface cleaning machine 100 is optionally a stand-alone unit coupled to a supply of pressurized hot liquid solution of cleaning fluid and a having an on-board motor or other power plant coupled for driving a fan assembly for generating a suction as, for example, rotary tool for cleaning surfaces disclosed by U.S. Pat. No. 4,182,001, which is incorporated herein by reference. Alternatively, rotary surface cleaning machine 100 is part of a truck-mounted fluid cleaning system such as illustrated in
As illustrated here by example and without limitation, rotary surface cleaning machine 100 includes a support frame member 106, which may be supported by a wheel assembly 108. Support frame 106 carries a substantially circular housing 110 having its lower axial face open at 112 with this face 112 being disposed substantially parallel to the surface which is to be cleaned, such as rug 57. A pivotally mounted handle assembly 114 is used by the operator during operation for manipulating machine 100. Handle assembly 114 supports one or more operating control mechanisms mounted thereon for the convenience of the operator. For example, one flow control mechanism 116 regulates flow of cleaning fluid through cleaning solution delivery tube 9. A conventional quick connection can be used for supplying the liquid cleaning solution. Another vacuum control mechanism 118 can be used to regulate the suction extraction of spent cleaning liquid and loosened dirt. A rotary control mechanism 120 can be used to regulate the starting and stopping of the rotary surface cleaning tool through control of an on-board power plant 122, such as an electric motor or other power plant, mounted on support frame 106.
A rotary surface cleaning tool 124 is configured as a large rotor that is journaled with support frame 106 for high speed rotary motion within circular housing 110. On-board power plant 122 is coupled for driving the high speed rotary motion of rotary surface cleaning tool 124.
A plurality of suction extraction shoes 126 are located on rotary surface cleaning tool 124 and project from open lower axial face 112 of circular housing 110. Each suction extraction shoe 126 is coupled in fluid communication with vacuum source 25 through exhaust port 104 and exhaust pipe or hose 102 for the suction extraction of spent cleaning liquid and loosened dirt.
As disclosed herein, a rotary drive output 128 of on-board power plant 122 is coupled for driving the high speed rotary motion of rotary surface cleaning tool 124. For example, rotary surface cleaning tool 124 is rotationally mounted within housing 110 and is drivingly connected, for example but without limitation by any of: a drive belt, a drive chain, or a drive gear, to rotary drive output 128 of on-board power plant 122 mounted on frame 106. Here, by example and without limitation, rotary drive output 128 of on-board power plant 122 is a drive gear coupled to drive a circumferential tooth gear 130 disposed about the circumference of rotary surface cleaning tool 124. Accordingly, drive means alternative to the rotary gear drive disclosed herein by example and without limitation are also contemplated and may be substituted without deviating from the scope and intent of the present invention. Power plant 122 thus serves to turn rotary surface cleaning tool 124 at a high speed rotary motion under the control of rotary control mechanism 120.
Rotary surface cleaning tool 124 includes a plurality of arrays 132 of cleaning solution delivery spray nozzles each coupled in fluid connection to the pressurized flow of cleaning fluid delivered through cleaning solution delivery tube 9. Spray nozzle arrays 132 deliver pressurized hot liquid solution of cleaning fluid to target carpeting or hard floor surface. Spray nozzle arrays 132 are distributed on rotary surface cleaning tool 124 in groups positioned between the plurality of suction extraction shoes 126. Accordingly, when rotary surface cleaning tool 124 turns at 150 RPM during operation, each spray nozzle array 132 delivers the pressurized hot liquid solution of cleaning fluid to the target floor surface at least one, two or more times each second. Consecutively with arrays 132 of spray nozzles, each of the plurality of suction extraction shoes 126 also covers the same area of the target floor as spray nozzle arrays 132 at least one, two or more times each second. Furthermore, each of the plurality of suction extraction shoes 126 includes a relatively narrow suction or vacuum extraction passage 136 oriented substantially radially of rotary surface cleaning tool 124.
Each of the plurality of spray nozzle arrays 132 is coupled in fluid communication with the pressurized hot liquid solution of cleaning fluid through a cleaning fluid distribution manifold 144 that is in fluid communication with cleaning solution delivery tube 9. Cleaning fluid distribution manifold 144 includes a central sprue hole 146 for receiving the pressurized cleaning fluid and an expansion chamber 148 for reducing the pressure of the cleaning fluid to below a delivery pressure provided by the supply of pressurized cleaning solution, such as but not limited to supply 23 of pressurized cleaning solution in the cabinet 17 of a truck-mounted system, or another supply of pressurized cleaning solution. Expansion chamber 148 is connected for distributing the liquid cleaning fluid outward along a plurality of radial liquid cleaning fluid distribution channels 150 for delivery by the plurality of spray nozzle arrays 132 uniformly distributed across bottom cleaning surface 72 of rotary surface cleaning tool 124. Individual radial cleaning fluid distribution channels 150 are uniformly angularly distributed within rotary surface cleaning tool 124, wherein each of cleaning fluid distribution channels 150 communicates with one of the plurality of spray nozzle arrays 132 for delivery thereto of the pressurized hot liquid solution of cleaning fluid. Radial liquid cleaning fluid distribution channels 150 are optionally extended to an outer circumference 124a of the large rotor of surface cleaning tool 124 for ease of manufacturing, and later sealed with plugs 151.
Between adjacent arrays 132 of spray nozzles are distributed radially-oriented suction or vacuum extraction passage 136 each coupled to a vacuum source for retrieving a quantity of soiled cleaning fluid. Radially-oriented plurality of suction extraction shoes 126 are uniformly distributed angularly about rotary surface cleaning tool 124 for uniformly angularly distributing the suction or vacuum extraction passages 136 about rotary surface cleaning tool 124. Exhaust port 104 communicates with a vacuum plenum 152 within rotor hub member 140, which in turn communicates through respective suction extraction shoes 126 with each suction or vacuum extraction passage 136. For example, radially-oriented suction or vacuum extraction passages 136 communicate through individual vacuum plenum branch passages 154 that each communicate in turn with a central cylindrical passage 156 within rotor hub member 140. Central passage 156 communicates at its upper end through exhaust port 104 with exhaust pipe or hose 102.
As indicated by rotational arrow 158, rotary surface cleaning tool 124 is rotated at high speed during application of cleaning solution to the target surface. Rotary surface cleaning tool 124 successfully delivers a generally uniform distribution of liquid cleaning solution to a target surface, such as rug 57, between the quantity of arrays 132 of spray nozzles and the large number of passes, i.e. at least one, two or more passes per second, of each spray nozzle array 132 occasioned by the high rotational speed rotary surface cleaning tool 124 regardless of any lack of uniformity in the instantaneous fluid delivery of any individual spray nozzle array 132. Additionally, the instantaneous fluid delivery of each individual spray nozzles array 132 tends to be generally uniform at least because the length of the spray nozzle array 132 is minimal as compared with the size of rotary surface cleaning tool 124.
Rotary drive member 160 is mounted to cylindrical sleeve extension 138 of rotor hub member 140 that is in turn journaled in bushing 142. See, for example,
Each individual fluid extraction passage 166 is positioned adjacent to the circumference of the large rotor of rotary surface cleaning tool 124 and oriented substantially radially thereof approximately halfway between adjacent cleaning solution delivery spray nozzle arrays 132. As illustrated here by example and without limitation, each individual fluid extraction passage 166 is positioned in a shoe recess 182 formed into rotary surface cleaning tool 124 below bottom operational surface 172 thereof. Each shoe recess 182 is appropriately sized and shaped to receive thereinto one suction extraction shoe 126 with its surrounding flange portion 184 being substantially flush with bottom operational surface 172 of rotary surface cleaning tool 124.
Optionally, a plurality of lightening holes or recesses 186 are provided to reduce the weight of rotary surface cleaning tool 124.
Here, suction extraction shoe 126 is shown as having a leading surface 188 and a trailing surface 190 as a function of the rotational direction (arrow 158) of rotary surface cleaning tool 124. As shown here, leading surface 188 is shown by example and without limitation as having an optional relatively raised portion 192 thereof that stands out further from bottom operational surface 172 of rotary surface cleaning tool 124 than a relatively lower or recessed portion 194 of trailing surface 190. When optional raised portion 192 of suction extraction shoe 126 is present, optional raised portion 192 of suction extraction shoe 126 causes a “washboard” scrubbing effect of a moveable target surface, i.e. carpet surface, wherein up-down oscillations of the moveable carpet are caused by alternate application of vacuum suction and shoe compression of carpet 57. In other words, the target carpet is initially sucked up toward recessed trailing portion 194 of shoe 126 and operational surface 172 by one suction extraction passage 136, and then squeezed back down by optional raised portion 192 of leading surface 188 of a next consecutive suction extraction shoe 126, as illustrated in
Alternatively, rotational direction (arrow 158) of rotary surface cleaning tool 124 is reversed, whereby optional raised portion 192 is positioned on trailing surface 190 as a function of the reversed rotational direction (arrow 158a shown in
The spiral pattern 198 of spray nozzle arrays 132a, 132b, 132c, 132d, 132e is effective for delivery of cleaning solution at least because, as disclosed herein, rotary surface cleaning tool 124 turns at a high rate during operation, whereby each spray nozzle array 132a, 132b, 132c, 132d, 132e delivers the pressurized hot liquid solution of cleaning fluid to the target floor surface at least one, two or more times each second. Furthermore, dividing spray nozzle arrays 132 into several spray nozzle arrays 132a, 132b, 132c, 132d, 132e reduces the number of individual delivery spray nozzles 174 that have to be drilled or otherwise formed through bottom operational surface 172 of rotary surface cleaning tool 124 by a factor of the number of spray nozzle arrays 132 otherwise provided in rotary surface cleaning tool 124. Here, as illustrated in
Optionally, one or more bristle brushes 202 may be provided across bottom operational surface 172 of rotary surface cleaning tool 124 adjacent to cleaning solution delivery spray nozzle arrays 132, or the optional spiral pattern 198 of spray nozzle arrays 132a, 132b, 132c, 132d, 132e, when present. Bristle brushes 202 may be provided substantially radially coextensively with fluid extraction passages 136 of suction extraction shoes 126 and either adjacent cleaning solution delivery spray nozzle arrays 132, or the optional spiral pattern 198 of spray nozzle arrays 132a, 132b, 132c, 132d, 132e, when present. Optionally, either multiple radial rows bristle brushes 202 may be provided, else single radial rows of bristle brushes 202 may be provided. Bristle brushes 202 both (1) separate fibers of rug 57 for dry removal of dust, dirt and other particles, and (2) provide a more aggressive cleaning action in cleaning when provided in combination with fluid cleaning of carpet or other target flooring surface.
However, leading surface 188 rather includes one or more bristle brushes 204 in one or more rows arranged along an outermost portion 206 thereof. Accordingly, bristle brushes 204 are substituted for optional raised portion 192 of shoe leading surface 188 and stands out further from bottom operational surface 172 of rotary surface cleaning tool 124 than relatively lower or recessed portion 194 of trailing surface 190. Raised bristle brushes 204 of shoe leading surface 188 operate similarly to optional raised portion 192 disclosed herein. When optional raised bristle brushes 204 of suction extraction shoe 126 is present on shoe leading surface 188, optional raised bristle brushes 204 cause a “washboard” scrubbing effect of the moveable target surface, i.e. carpet surface, wherein up-down oscillations of the moveable carpet is caused by alternately application of vacuum suction and shoe compression of carpet. In other words, the target carpet is sucked up into narrow suction or vacuum extraction passage 136, and then squeezed back down by optional raised bristle brushes 204 of leading surface 188 of next consecutive suction extraction shoe 126, as illustrated in
Similarly to optional bristle brushes 202 on bottom operational surface 172 of rotary surface cleaning tool 124, optional raised bristle brushes 204 on leading surfaces 188 of suction extraction shoes 126 provide a more aggressive cleaning action in cleaning when provided in combination with fluid cleaning of carpet or other target flooring surface.
Furthermore, when present optional raised bristle brushes 204 effectively raise bottom operational surface 172 of rotary surface cleaning tool 124 slightly away from target floor surface. Accordingly, rotary surface cleaning tool 124 can be alternated between carpeting and hard floor surfaces such as wood, tile, linoleum and natural stone flooring, without possibility of scarring or other damage to either operational surface 172 of rotary surface cleaning tool 124 or the hard floor surfaces.
Additionally, it is generally well known that if a suction slot directly contacts rug 57 or another floor, the suction tool virtually locks onto the rug 57 or floor and becomes immovable. Therefore, the suction tool must be spaced away from the rug 57 or floor to permit some airflow which prevents such vacuum lock-up. Airflow is also necessary for drying the carpet 57 or floor. However, the airflow must be very near the rug 57 or floor to be effective for drying. Also, excessive airflow decreases the vacuum force supplied by the fluid cleaning system. Thus, there is a trade-off between distancing the suction slot from the rug 57 or floor to prevent vacuum lock-up and ensuring mobility on the one hand, and on the other hand positioning the suction slot as near to the rug 57 or floor as possible for maintaining the vacuum force supplied by the fluid cleaning system for maximizing airflow to promote drying.
As disclosed herein, suction extraction passages 136 are oriented substantially perpendicular to the counterclockwise or clockwise rotary motion (arrows 158, 158a) of cleaning tool 124, i.e., oriented substantially radially with respect to cleaning tool operational surface 172. Here, suction extraction shoe 126 includes a plurality of shallow vacuum or suction relief grooves 216 formed across its leading surface 188 and oriented substantially perpendicular to suction extraction passages 136, whereby suction relief grooves 216 lie substantially along the rotary motion (arrows 158, 158a) of cleaning tool 124. Shallow suction relief grooves 216 operate to increase airflow to suction extraction passages 136, while permitting the cleaning tool operational surface 172 to be positioned directly against the rug 57 or floor, whereby moisture extraction is maximized. Another advantage of orienting suction relief grooves 216 along the rotary motion (arrows 158, 158a) of cleaning tool 124 is that suction relief grooves 216 are carpet pile enters into suction relief grooves 216 when cleaning tool operational surface 172 moves across rug 57. This permits airflow to be pulled through the rug 57 between fiber bundles that make up the carpet pile so that the rotary motion of cleaning tool 124 is not wasted.
The quantity and actual dimensions of suction relief grooves 216 on suction extraction shoes 126 is subject to several factors, including but not limited to, the size and number of suction extraction shoes 126 on operational surface 172 of rotary cleaning tool 124, width and length dimensions of suction extraction passages 136, and the vacuum force generated by the suction source, as well as the rotational velocity of cleaning tool operational surface 172. When relatively raised portion 192 is present in contrast to relatively lower or recessed portion 194, the resulting height differences between leading surface 188 and trailing surface 190 also affect the quantity and actual dimensions of suction relief grooves 216 on suction extraction shoes 126. Optionally, suction relief grooves 216 are also optionally positioned on either one or both of leading surface 188 and trailing surface 190 of suction extraction shoes 126. When positioned on both leading surface 188 and trailing surface 190 of suction extraction shoes 126, suction relief grooves 216 are also optionally staggered between leading and trailing surfaces 188, 190 as shown. Furthermore, the inventors have found that, when optional suction relief grooves 216 of suction extraction shoe 126 are present, optional suction relief grooves 216 of suction extraction shoe 126 is effective for producing the completely unexpected and unpredictable yet desirable result of generating the “washboard” scrubbing effect of a moveable target surface, i.e. carpet surface, wherein up-down oscillations of the moveable carpet are caused by alternate application of vacuum suction and shoe compression of carpet 57. In other words, the target carpet is initially sucked up toward recessed suction relief grooves 216 of shoe 126 and operational surface 172 by one suction extraction passage 136, and then squeezed back down by surrounding leading or trailing surfaces 188, 190 of suction extraction shoe 126, before being immediately sucked up again by the suction extraction passage 136 of the same or an adjacent suction relief grooves 216. This alternating vacuum suction and shoe compression of carpet 57 is repeated constantly by each alternate encounter with surrounding leading or trailing surfaces 188, 190 of suction extraction shoe 126 between encounters with adjacent suction relief grooves 216 as a function of the frequency of combination of recessed suction relief grooves 216 within surrounding leading or trailing surfaces 188, 190. The high speed rotary motion of rotary surface cleaning tool 124 causes these up-down oscillations of the moveable carpet are repeated at least one, two or several times each second, which results in significantly aggressive agitation of the target carpet 57 in combination with the fluid cleaning. The size, quantity, relative positioning and distribution and of suction relief grooves 216 is a function of all these factors, but can be determined for any rotary surface cleaning machine 100 without undue experimentation.
Here, biasing means 208 is structured by example and without limitation as a resilient cushion, such as a closed-cell foam rubber cushion of about one-quarter inch thickness or thereabout, that is positioned between flange portion 184 of each shoe 126 and rotary surface cleaning tool 124. For example, each shoe recess 182 is recessed deeper into bottom operational surface 172 of rotary surface cleaning tool 124 than a thickness of shoe flange portion 184, whereby each shoe recess 182 is appropriately sized to receive resilient biasing cushion 208 between an interface surface 210 of flange portion 184 of suction extraction shoe 126 and a floor portion 212 of shoe recess 182, while a clamping plate 214 is positioned over shoe flange 184 and arranged substantially flush with bottom operational surface 172 of rotary surface cleaning tool 124. Accordingly, resilient biasing means 208 permits each suction extraction shoe 126 to “float” individually relative to rotary surface cleaning tool 124. Individually “floating” each suction extraction shoe 126 both effectively balances rotary surface cleaning tool 124, and causes each individual suction extraction shoe 126 to be pushed deeper into portions of carpet that may be positioned over small recesses in a non-flat substrate floor surface, as well as pushing causes each individual suction extraction shoe 126 deeper into portions of a non-flat smooth floor surface such as natural rock, distressed wood, and other non-flat or pitted floor surfaces. Therefore, individually “floating” each suction extraction shoe 126 in bottom operational surface 172 of rotary surface cleaning tool 124 cleans carpet and non-carpeted smooth floors alike more effectively than cleaning tools having fixed suction extraction shoes, as known in the prior art.
When present as a closed foam cushion, biasing means 208 optionally also operates as a sealing means between suction extraction shoe 126 and rotary surface cleaning tool 124. Accordingly, biasing means 208 is structured to form a substantially airtight seal with shoe recess 182 in bottom operational surface 172 of rotary surface cleaning tool 124 to concentrate the force of the fluid extraction suction generated by the vacuum force supplied by vacuum source 25 into individual fluid extraction passages 136 of shoes 126. Optionally, closed foam cushion biasing means 208 is substituted for sealing member 187 for sealing suction extraction shoe 126 relative to rotary surface cleaning tool 124. However, although disclosed herein by example and without limitation as a closed foam rubber cushion, biasing means 208 is optionally provided as any resilient biasing structure, including one spring or a series of springs, without deviating from the scope and intent of the present invention. Accordingly, biasing means alternative to the closed foam rubber cushion biasing means 208 disclosed herein by example and without limitation are also contemplated and may be substituted without deviating from the scope and intent of the present invention.
When optional recessed portion 194 and raised portion 192 of suction extraction shoe 126 are present on leading surface 188 and trailing surface 190, respectively, the relative difference in height of recessed leading portion 194 and raised trailing portion 192 combine in each suction extraction shoe 126 to independently operate the “washboard” scrubbing effect of a moveable target surface, i.e. carpet surface, wherein up-down oscillations of the moveable carpet are caused by alternate application of vacuum suction and shoe compression of carpet 57. In other words, the target carpet 57 is initially sucked up toward recessed leading portion 194 of suction extraction shoe 126 by the action of suction or vacuum extraction passage 136, and then squeezed back down by optional raised trailing portion 192 of trailing surface 190 of the same suction extraction shoe 126, as illustrated in
Additionally, suction extraction shoe 126 is illustrated having a plurality of shallow vacuum or suction relief grooves 216 formed across relatively raised portion 192 thereof and oriented substantially perpendicular to suction extraction passages 136. Suction relief grooves 216 are formed across either leading surface 188 or trailing surface 190 as a function of the counterclockwise or clockwise rotary motion (arrows 158, 158a) of cleaning tool 124. As disclosed herein, suction extraction passages 136 are oriented substantially radially with respect to cleaning tool operational surface 172 and substantially perpendicular to the counterclockwise or clockwise rotary motion (arrows 158, 158a) of cleaning tool 124, whereby suction relief grooves 216 lie substantially along the rotary motion (arrows 158, 158a) of cleaning tool 124. Suction relief grooves 216 formed across relatively raised portion 192 of suction extraction shoe 126 and oriented substantially radially with respect to cleaning tool operational surface 172 and along the rotary motion (arrows 158, 158a) of cleaning tool 124 provide the advantages disclosed herein. Suction relief grooves 216 permit suction extraction passages 136 of suction extraction shoes 126 to be positioned as near to the rug 57 or floor as possible for maintaining the vacuum force supplied by the fluid cleaning system for maximizing airflow to promote drying, while preventing vacuum lock-up and ensuring mobility on the one hand.
Again, as disclosed herein, the quantity and actual dimensions of suction relief grooves 216 on suction extraction shoes 126 are subject to such factors as the size and number of suction extraction shoes 126 on operational surface 172 of rotary cleaning tool 124, the width and length dimensions of suction extraction passages 136, and the vacuum force generated by the suction source, as well as the rotational velocity of cleaning tool operational surface 172. When relatively raised portion 192 is present in contrast to relatively lower or recessed portion 194 as shown, the resulting height difference between leading surface 188 and trailing surface 190 also affects the quantity and actual dimensions of suction relief grooves 216 on suction extraction shoes 126. Optionally, suction relief grooves 216 are also optionally positioned on relatively raised portion 192 of either of leading surface 188 or trailing surface 190 of suction extraction shoes 126. The size, quantity, relative positioning and distribution and of suction relief grooves 216 is a function of all these factors, but can be determined for any rotary surface cleaning machine 100 without undue experimentation.
While the preferred and additional alternative embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. Therefore, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. Accordingly, the inventor makes the following claims.