The present invention relates to a rotary switch device.
Patent literature 1 discloses a rotary switch device in which a movable contact member is rotated to be in contact with a fixed contact. In the rotary switch device of patent literature 1, a circular first fixed contact portion is exposed to be disposed at a center portion of a terminal base formed of an insulating material. Second and third fixed contact portions are disposed so as to surround the first fixed contact portion.
The movable contact member (contact plate) is urged to a terminal base side by a contact spring formed of a cylindrical coil spring held by a rotor, and a contact pressure with the fixed contact portion is secured.
[Patent Literature 1] JP-A-2015-103495
In the rotary switch device of patent literature 1, in order to hold the cylindrical coil spring in an upright state without falling down, a cylindrical hole for accommodating the cylindrical coil spring is required. However, an operation of inserting the cylindrical coil spring into the hole is troublesome because a coil center axis of the cylindrical coil spring has to be aligned with a center of the cylindrical hole and then the cylindrical coil spring is inserted. In particular, it is difficult to be inserted by an automatic machine and production efficiency is poor.
One or more embodiments provide a rotary switch device in which a manufacturing efficiency is improved by improving an insertion operability of a compression coil spring.
According to one or more embodiments, a rotary switch device including a terminal base 3 to which a center portion contact 1 and a fixed contact 2 are fixed, a rotation operation member 4 which is operable to rotate around the center portion contact 1 with respect to the terminal base 3, a plate-like movable contact member 7 which includes a contact protrusion part 5 which is pressed in contact with the center portion contact 1 at one end of one surface of plate thickness surfaces and a contact surface 6 which is in contact with the fixed contact 2 at another end of the one surface of the plate thickness surfaces, and which is held in the rotation operation member 4 so as to short-circuit between the center portion contact 1 and the fixed contact 2 at a conductive rotation position, and a compression coil spring 10 of a barrel type in which one end is supported by a bottom surface 9 of a spring accommodation hole 8 formed in the rotation operation member 4 and another end is pressed in contact with a back surface against the one surface of the plate thickness surfaces forming the contact protrusion part 5 and the contact surface 6 of the movable contact member 7 so as to urge the contact protrusion part 5 and the contact surface 6 to a side of the terminal base 3.
In one or more embodiments, the compression coil spring of the barrel type is used for the compression coil spring 10 that presses the movable contact member 7 to apply a contact pressure with the contact on the terminal base 3 to the movable contact member 7, and is inserted into the spring accommodation hole 8 of the rotation operation member 4. The compression coil spring 10 of the barrel type has an outer shape in which a diameter is contracted at a tip and is gradually enlarged as going to a center portion, so that it is easy to introduce the reduced diameter portion of the tip into the spring accommodation hole 8 when the compression coil spring 10 is mounted on the spring accommodation hole 8, and the gentle outer shape is guided to a predetermined position even when the compression coil spring 10 is introduced in an inclined shape. Therefore, an insertion operation is easy and an insertion operation by an automatic machine is also easy.
According to one or more embodiments, a coil inner diameter at a pressing end of the compression coil spring 10 to the movable contact member 7 may be formed smaller than a plate thickness of the movable contact member 7.
In general, the contact pressure between the contacts pressed by the compression coil springs 10 is uniquely determined by a spring constant determined by the number of turns, a wire diameter, a coil diameter, or the like of the compression coil spring 10, and a deflection amount. However, in a case where the coil diameter of the pressing end to the movable contact member 7 is larger than a dimension of the movable contact member 7 in a width direction, that is, a plate thickness, a wire end of the compression coil spring 10 protrudes from the movable contact member 7.
If the wire end of the compression coil spring 10 protrudes from the movable contact member 7, since an effective number of turns or a free length is decreased as compared to a case where a seat surface is fitted over the movable contact member 7, the spring constant changes and a predetermined contact pressure cannot be obtained. However, whether or not protrusion of the wire end of the movable contact member 7 from the seat surface occurs is determined by a rotation angle around a coil center axis when mounting the compression coil spring 10, and control is impossible, so that it is difficult to ensure a predetermined contact pressure.
Variation in the contact pressure changes a contact resistance between the contacts, so that it causes variation of an output potential and in a case where corrosion of the contact is prevented by applying corrosion resistant plating in the movable contact member 7 or the fixed contact 2 portion, an excessive increase in the contact pressure causes destruction of a corrosion resistant plating film, which in turn leads to an increase in contact resistance due to corrosion of the contact and also causes contact failure.
In one or more embodiments in which the inner diameter of the pressing end abutting against the movable contact member 7 is smaller than the plate thickness of the movable contact member 7, the seat surface of the compression coil spring 10 can abut against the movable contact member 7 without protruding, so that the spring constant does not change depending on a mounted state and a stable contact pressure between the contacts can be provided.
As a result, for example, the corrosion resistant plating is applied to the movable contact member 7 and the fixed contact 2 to ensure conductivity by a low contact pressure, to prevent oxidation of the contact, and to eliminate the sliding contact between the contacts for removing an oxide film. Therefore, even in a case where the rotary switch device can be used in a low current specification, it is possible to reliably prevent peeling of the plating film due to an excessive increase in the contact pressure.
In addition, since the compression coil spring 10 of the barrel type has a coil portion having a diameter larger than that of the diameter-reduced end, an aspect ratio (L/D, where L is a free length and D is a coil average diameter) can be reduced compared to that of a cylindrical coil spring in which both ends are the coil diameter. Therefore, a buckling phenomenon during operation hardly occurs and a spring index (D/d, where d is a wire diameter) can be adjusted to a suitable value to maintain favorable workability.
According to one or more embodiments, the bottom surface may has a circular shape having substantially the same diameter as a coil outer diameter at a supported end of the compression coil spring 10 or a polygonal shape in which the circular shape is inscribed, and a cone-shaped portion 11 which gradually expands along an opening end is formed in a bottom portion 9 of the spring accommodation hole 8.
In general, in the movable contact member 7 which is pressed by a single compression coil spring 10, a rotational moment is generated except in a case where a pressing force acts in a moving direction passing through a center of gravity. Therefore, the contact pressure between the contact protrusion part 5 and the contact corresponding to the contact surface 6 changes depending on a position of an action point.
In addition, even in a case where the contact protrusion part 5 of the movable contact member 7 and a position corresponding to the contact surface 6 are respectively pressed by separate compression coil springs 10, a reaction force from the center portion contact 1 or the fixed contact 2 is determined by a distance between action lines of a pressing force by the compression coil spring 10 and a distance between a reaction force action line from each contact and the action line of the pressing force by the compression coil spring 10. Therefore, if a position of the action line of the compression coil spring 10 is not fixed, it causes variation of the contact pressure at each contact.
In one or more embodiments, the bottom surface 9 of the spring accommodation hole 8 which supports the supported end of the compression coil spring 10 is formed in the circular shape having substantially the same diameter as the coil outer diameter in the supported end of the compression coil spring 10 or in the polygonal shape having the circular shape inscribed therein, and the diameter is gradually expanded or enlarged along the opening end. Therefore, the compression coil spring 10 introduced into the cone-shaped portion 11 is naturally guided to a position at which the coil center axis is preset.
As a result, it is possible to precisely control the support position (base end position) of the compression coil spring 10, so that no deviation of an action point of an urging force to the movable contact member 7 occurs and a stable contact pressure between the contacts can be provided.
In this case, the spring accommodation hole 8 may be formed so as to constrain a maximum coil diameter portion of the compression coil spring 10 and regulate falling of the compression coil spring 10. In this case, since falling of the compression coil spring 10 can be effectively prevented, it is possible to further precisely determine the action position of the plating film to the movable contact member 7.
According to one or more embodiments, a manufacturing efficiency can be improved by improving an insertion operability of the compression coil spring.
A rotary switch device of the present invention configured as an ignition switch used in a steering lock apparatus is illustrated in
The housing 12 is provided with a lock piece 15 which moves between a lock position which advances and retreats in a direction intersecting a rotation axis of the cam member 14 at a predetermined angle and protrudes into the steering column, and an unlock position which is accommodated in the housing. The lock piece 15 is urged to a direction of the lock position by a compression spring 15a and when the plug 13a of the cylinder lock 13 is rotatively operated from a lock rotation position, the lock piece 15 moves from the lock position where the lock piece 15 is locked to a steering shaft to the unlock position where the lock piece 15 is released, and the steering shaft can be operated.
In addition, the ignition switch is connected to the housing 12 to cause predetermined terminals to conduct in accordance with the rotation of the plug 13a and a power supply state to an electrical system of a vehicle to be changed. In order to transmit the rotational operation of the plug 13a to the ignition switch, a connecting bar 16 which meshes with the cam member 14 and rotates together with the cam member 14 is disposed in the housing 12.
As illustrated in
The center portion contact 1 and each fixed contact 2 are drawn into the switch case 17 via wiring.
The rotation operation member 4 is formed of an insulating material and the connecting bar 16 and a connecting hole 4a are formed at one end portion. The rotation operation member 4 is urged only when returning from a START position (described later) to an ON position by a torsion spring 19, and moderately rotates at an appropriate connecting operation angle by fitting a click ball 21 urged by a click spring 20 into a groove of an inner wall of the switch cover 18.
Furthermore, in rotation operation member 4, a plate-like movable contact member 7 having a predetermined plate thickness is held toward the terminal base 3. As illustrated in
Three of the flat movable contact members 7 formed as described above are used to correspond to the respective fixed contacts 2 which are described later. Silver plating as corrosion resistant conductive processing is applied to the surfaces of the movable contact member 7 and each fixed contact 2 in order to prevent occurrence of corrosion on the contact surface and enhance contact reliability without requiring a self-cleaning operation by a high contact pressure.
Each movable contact member 7 is held by the rotation operation member 4, and is movable in a direction along a rotation axis (RA) in
The ignition switch according to the example is formed to output a power supply voltage input from a power supply terminal to three output terminals of +IGN1, +IGN2, and START when the plug 13a is rotatively operated in the order of LOCK, ON, and START positions.
The sequence described above is realized by short-circuiting the center portion contact 1 disposed at a center portion of the terminal base 3 and the fixed contact 2 disposed around the center portion contact 1 and connected to the +IGN1 terminal, the +IGN2 terminal, and the START terminal by the movable contact member 7 described above.
The three fixed contacts 2 are respectively disposed at terminal positions of three support portions 22 formed in the terminal base 3. Each fixed contact 2 is formed in a rectangular shape intersecting the support portion 22, the support portion 22 is disposed on two concentric circles with respect to the center of the terminal base 3, and as illustrated in
The contact surface 6 of the movable contact member 7 in a riding state on the support portion 22 is held at a position higher than a height of a center contact of the contact surface 6 in a state where the contact surface 6 illustrated in
As described above, in the non-contact state in which the movable contact member 7 is not in contact with the fixed contact 2, the support portion 22 supports the end opposite to the contact protrusion part 5 of the movable contact member 7 and functions as a traveling path when the movable contact member 7 is horizontally and rotatively operated.
Furthermore, the center portion contact 1, the fixed contact 2, and the support portion 22 are formed in a floating island shape of which a periphery is surrounded by a recessed portion, and propagation of the abrasion powders between the fixed contacts 2, and between the support portion 22 and the fixed contact 2, and coagulated powder of molten splashes due to the arc discharge is regulated.
When the movable contact member 7 is operated to rotate in the clockwise direction in
As illustrated in
If sliding loci of the movable contact members 7 in the center portion contact 1 overlap each other, a chance of wear at an overlapping portion increase. In order to prevent this, as illustrated by chain lines in
As illustrated in
As illustrated in
A spring constant of the compression coil spring 10 is adjusted to exceed the contact pressure so that a contact resistance value with respect for low current conduction is sufficiently low and to be equal to or less than a contact pressure at which peeling of the plating film during sliding occurs in a pressure contact state with the fixed contact 2 or the center portion contact 1 (the state in
In addition, the spring constant of the compression coil spring 10 of the barrel type is nonlinear because the coil diameter is changed, but a flexure region in the vicinity of the center portion having a large coil diameter substantially exhibiting linearity is used.
As illustrated in
As a result, when the movable contact member 7 is pressed, a factor of changing the spring constant such as a loss of an effective number of turns caused by a wire end of the pressing end protruding from the plate thickness surface of the movable contact is eliminated.
As illustrated in
In addition, a wall surface of the cone-shaped portion 11 is formed by a conical surface that gradually expands in diameter as going to an opening end, and a diameter of an upper end, that is, the spring accommodation hole 8 is slightly larger than a maximum outer diameter of the compression coil spring 10.
Furthermore, as illustrated in
Therefore, in the example, when the compression coil spring 10 is inserted into the spring accommodation hole 8, the compression coil spring 10 is guided by the side wall of the cone-shaped portion 11 and the supported end is guided to the center position of the spring accommodation hole 8 which is set in advance. In this state, since the movement of the maximum diameter portion in a lateral direction is regulated by the side wall of the spring accommodation hole 8, excessive inclination is prevented.
As a result, positions of an abutting portion of the compression coil spring 10 against the movable contact member 7 and the supporting end to the rotation operation member 4 are constant, so that the deflection amount of the compression coil spring 10, that is, a size of the urging force can be precisely controlled.
In the example, the pressing force by the compression coil spring 10 is applied to two positions corresponding to the contact protrusion part 5 and the contact surface 6 of the movable contact member 7, so that when an action position of the urging force by each compression coil spring 10 varies, distribution of the contact pressure between the center portion contact 1 and the fixed contact 2 varies, and on the other hand, there is a possibility to cause peeling of the plating film due to an excessive contact pressure and to cause conduction failure or the like due to an insufficient contact pressure.
On the other hand, in the example, since a load point and a size of load with respect to the movable contact member 7 are constant, it is possible to obtain the contact pressure which is set in advance at the contact.
In addition, in a case where the compression coil spring 10 is inserted into the spring accommodation hole 8, since the coil diameter of the end portion is smaller than the diameter of the spring accommodation hole 8 and the compression coil spring 10 is guided during insertion, the insertion operation is easily performed.
Moreover, in the above description, a case where the bottom surface 9 of the spring accommodation hole 8 is formed in the circular shape is illustrated. Alternately, a polygonal shape circumscribing the coil outer diameter at the supporting end of the compression coil spring 10 is provided, or a rib or the like is protruded at a contact point position between a circumscribed polygonal shape and a coil outer periphery from the bottom surface 9 which is larger than in diameter the coil outer diameter, that is, a vertex position of an inscribed polygonal shape, so that the movement of the supporting end can be regulated by a rib tip.
In addition, in the above description, a case where the portion of the movable contact member 7 pressed by the compression coil spring 10 is formed to be a flat surface is illustrated. However, as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2016-099040 | May 2016 | JP | national |
This application is a continuation of PCT application No. PCT/JP17/018385, which was filed on May 16, 2017 based on Japanese Patent Application (No. 2016-099040) filed on May 17, 2016, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2666101 | Ellithorpe | Jan 1954 | A |
3602656 | Graddy et al. | Aug 1971 | A |
3803370 | Garcia | Apr 1974 | A |
4490588 | Guenther | Dec 1984 | A |
4748297 | Sorenson | May 1988 | A |
4803314 | Sorenson | Feb 1989 | A |
5679937 | Iwata | Oct 1997 | A |
7841088 | Ogura | Nov 2010 | B2 |
20080121502 | Naganuma et al. | May 2008 | A1 |
20090172946 | Ogura et al. | Jul 2009 | A1 |
20130203300 | Mori | Aug 2013 | A1 |
20150099390 | Mori | Apr 2015 | A1 |
20160285188 | Mori | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
Y-2274706 | Feb 1998 | CN |
1861964 | Nov 2006 | CN |
A-101111913 | Jan 2008 | CN |
U-204647102 | Sep 2015 | CN |
A-105388335 | Mar 2016 | CN |
8904537 | Sep 1989 | DE |
A2-0757366 | Feb 1997 | EP |
1 495 215 | Dec 1977 | GB |
H02-129479 | May 1990 | JP |
A-H08-245040 | Sep 1995 | JP |
H08-115640 | May 1996 | JP |
2015-103495 | Jun 2015 | JP |
Entry |
---|
International Search Report dated Aug. 22, 2017 for PCT/JP2017/018385 [English translation]. |
International Search Report/Written Opinion dated Aug. 22, 2017 for PCT/JP2017/018385 [non-English language]. |
CN Office Action dated Sep. 29, 2019 in Chinese Application No. 201780030463.4 (with attached English-language translation). |
Extended European Search Report issued on Dec. 6, 2019 in corresponding European Patent Application No. 17799388.8. |
The Second Office Action dated Jun. 12, 2020 in Chinese Patent Application No. 201780030463.4 (11 pages) with an English translation (15 pages). |
Number | Date | Country | |
---|---|---|---|
20190066948 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2017/018385 | May 2017 | US |
Child | 16176149 | US |