a) Field of the Invention
The present invention relates to a rotary table device which can be tuned flexibly to operate individually, and more particularly to a rotary table, wherein manufacturing processes of plural fixed sites, a long machine-hour and a short machine-hour can be tuned flexibly to operate individually by a few dies (mounts), so that the operation time, the cost of dies (mounts) and the die-change time can be reduced, thereby decreasing the percent defective and increasing the capacity.
b) Description of the Prior Art
It is known that when ordinary rotary tables are operating, there must be an equal amount of dies (mounts) to the number of fixed-site manufacturing processes and the rotary tables can rotate together only after accomplishing the manufacturing process that spends the longest time to proceed with the next manufacturing process. The existing rotary table device is provided with several shortcomings:
Accordingly, the primary object of the present invention is to provide a rotary table device which can be tuned flexibly to operate individually, wherein manufacturing processes of plural fixed-site displacement, a long machine-hour and a short machine-hour can be carried out and tuned flexibly to operate individually by a few dies (mounts).
When a first die (mount) is performing the most time consuming manufacturing process at a fixed site, a second, third . . . die (mount) can rotate and displace at plural assigned fixed sites individually to carry out the manufacturing processes of an intermediate machine-hour and a short machine-hour.
To achieve the abovementioned object, the present invention provides a rotary table device which can operate simultaneously and individually, wherein the rotary table is constituted by a main frame, a round outer seal plate, a round inner seal plate, at least two driving wheels and at least two driven wheels. Each driven wheel is connected with a sliding block, and then an adapter plate is combined with a die (mount) fixing plate, followed by being emplaced on the sliding block. Each driving wheel can drive the corresponding driven wheel, so that the driving wheel can rotate annularly and independently in the track region and displace at a fixed site to perform all manufacturing processes.
To enable a further understanding of the said objectives and the technological methods of the invention herein, the brief description of the drawings below is followed by the detailed description of the preferred embodiments.
Referring to
a main frame 10, a center of which is provided with a rotary table central indexing hole 11, an interior side of which is provided with an inner annular track region 13, and an exterior side of which is provided with an outer annular track region 12, with that two driving-wheel emplacement regions 15 are provided respectively at a proper location on the outer annular track region 12, a driven-wheel annular track region 14 is provided between the inner and outer annular track regions 13, 12, each driving-wheel emplacement region 15 is provided with a driving-wheel central shaft hole 151 and plural screw holes 131, 121 are provided on the inner and outer annular track regions 13, 12;
at least two driving wheels 20, 20′ which are installed respectively in the driving-wheel emplacement region 15 of the main frame 10, with that the driving wheels 20,20′ are provided respectively with wheel blocks 21, 21′ and shaft holes 22, 22′, shafts B on the main frame 10 penetrate the central shaft holes 151 and are then locked in the shaft holes 22, 22′ of the driving wheels 20, 20′;
at least two driven wheels 30, 30′ which are installed respectively in the driven-wheel annular track region 14 of the main frame 10, with that a side of the driven wheel 30 (30′) is connected with a sliding block 31 (31′) and then an adapter plate is combined with a die (mount) fixing plate followed by being emplaced on the sliding block 31 (31′) or the sliding block 31 (31′) is provided with a die cavity perforation 311 (311′), wherein the first driven wheel 30 is gnawed with the first driving wheel 20, the second driven wheel 30′ is gnawed with the second driving wheel 20′, etc.
and other than that the matched driving and driven wheels are gnawed with respect to each other, the rest un-matched wheels do not interfere with each other, with that the driving wheels 20, 20′ can each drive individually the matched and gnawed driven wheels 30, 30′ to rotate and displace;
a round inner seal plate 40 which is installed at one end of the inner annular track region 13 of the main frame 10 and is locked in screw holes 41 of the round inner seal plate 40 by transfixing screws A into the screw holes 131 of the main frame 10; and
a round outer seal plate 50 which is installed at one end of the outer annular track region 12 of the main frame 10 and is locked in screw holes 51 of the round outer seal plate 50 by transfixing the screws A into the screw holes 121 of the main frame 10.
After the driving and driven wheels 20, 20′, 30, 30′ have been emplaced layer by layer, the round and outer seal plates 40, 50 are then fixed, allowing the driving and driven wheels 20, 20′, 30, 30′ not to get loose. The driving wheels 20, 20′ can each drive individually the matched and gnawed driven wheels 30, 30′ to rotate and displace.
The abovementioned rotary table 1 is a preferred embodiment of the present invention, wherein the first, second driven wheels 30, 30′ and the first, second driving wheels 20, 20′ can be also configured to be a combination of at least three sets of wheels. The power source to the first and second driving wheels 20, 20′ can be a servo motor or an air piston. Referring to
Referring to
Referring to
Referring to
In conclusion, the present invention is to provide a rotary table device which can be tuned flexibly to operate individually, when the first die (mount) is performing a long machine-hour manufacturing process at a fixed site, the second, third . . . driving wheel can each drive the matched drive wheel to rotate and displace to perform plural short machine-hour manufacturing processes at plural fixed sites, so that all the manufacturing processes can be accomplished simultaneously to decrease the operation time, the cost of dies (mounts) and the die-change time, thereby reducing the percent defective and increasing the capacity.
It is of course to be understood that the embodiments described herein is merely illustrative of the principles of the invention and that a wide variety of modifications thereto may be effected by persons skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6401841 | Eilertsen | Jun 2002 | B1 |
7603930 | Kato et al. | Oct 2009 | B2 |
7798071 | Ishikawa et al. | Sep 2010 | B2 |
8316776 | Taniguchi et al. | Nov 2012 | B2 |