BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be explained in more detail below by means of examples of embodiments with reference to the schematic drawing, in which
FIG. 1 is a perspective view of a rotary tablet press according to the invention, the cover of the housing being partly removed,
FIG. 2 is view similar to that of FIG. 1 of another embodiment of the rotary tablet press according to the invention,
FIG. 3 is a perspective view showing a section through the compression unit of the rotary tablet press shown in FIG. 1,
FIG. 4 is a perspective view of the compression unit shown in FIG. 3,
FIG. 5 is a perspective view of the compression unit shown in FIG. 4, seen from behind,
FIG. 6 to 8 show very schematic three different embodiments of a rotary tablet press of the type shown in FIG. 1,
FIG. 9 is a perspective view of a valve of the rotary tablet press according to the invention,
FIG. 10 is an axial section through the valve of FIG. 9, shown in closed state, and
FIG. 11 is an axial section through the valve of FIG. 9, shown in open state.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a rotary tablet press 1 for compression of a feedstock in the form of powder or granular material into tablets, compacts or the like. The press shown is of a type suitable for use in the pharmaceutical industry, but the press according to the invention may as well be a so-called industrial press employed in the production of a variety of different products, such as vitamins, pet food, detergents, explosives, ceramics, batteries, balls, bearings, nuclear fuels, etc.
The rotary tablet press 1 has a press housing 2 comprising an internal frame 3, which supports various components located in the housing 2, and an outer lining 4, which is shown only at a lower section 5 of the press. The press housing 2 is composed of three sections, which are located on top of each other and are separated by means of partition walls. The lower section, designated the drive section 5, is separated from a central section, designated the compression section 6, by a lower partition wall 7, and the compression section 6 is separated from an upper section, designated the accessory section 8, by an upper partition wall 9.
The drive section 5 comprises a not shown electrical drive motor driving a not-shown vertical drive shaft projecting up through a central opening in the lower partition wall 7 and having at its upper end a coupling part for detachable connection with a rotary turret 12 located in a casing 13 of a compression unit 14 which is arranged detachably in the compression section 6 of the press housing 2, see also FIGS. 3 to 5. The chamber comprised by the compression unit 14 is designated the compression chamber 29.
Referring to FIGS. 3 to 5, the rotary turret 12 comprises a die table 15 having a number of dies arranged evenly distributed along its circumference, each die 16 having the form of a bore arranged with its axis parallel to the vertical rotational axis of the turret 12. On either side of the die table 15 are arranged top and bottom punches 17, 18, respectively, in corresponding guides 19, 20 accommodated in the turret 12 so that a first end 21, 22 of each punch 17, 18 is able to enter a corresponding die 16 by displacement of the punch in its guide 19, 20 in order to compress material in the die. The punches 17, 18 may be sealed against their guides 19, 20 at the end of these facing the die table 15 by means of not shown lip seals. For use with toxic products, a bellows seal, for instance of silicone, may be employed.
A second end 23, 24 of each punch 17, 18 is in a well-known manner co-operating with top and bottom cams, respectively, arranged stationary in relation to the press housing 2 in order to effect axial displacement of the punches by rotation of the turret 12. Only the top cams 25 are visible, see FIGS. 1 and 2. The cams only extend along part of the circumference of the turret, and at that circumferential position where the final compression of the material in the die is to be performed, top and bottom precompression rollers 32, 46 and top and bottom main compression rollers (of which only the top roller 33 is shown), respectively, take over the displacement of the punches 17, 18.
The casing 13 of the compression unit 14 comprises a top wall 39, a bottom wall 40 and more transparent side walls 41. A number of the side walls 41 may be detached from the compression unit 14 in order to gain access to the internal components of the unit for exchange of components at change-over between batches of different products, for cleaning or for maintenance, see also FIG. 5, in which the side wall at the left side of the compression unit has been removed. The top and bottom walls 39, 40 are substantially plane, each having a central circular opening 42, 43 sealed rotatably against the periphery of the turret 12 by means of a not shown seal, such as a lip seal.
The compression unit 14 is provided with a feeding device in the form of a not shown, well-known double rotary feeder with two rotary paddles located in a feeder housing and driven by means of separate drive motors located in the accessory section 8 of the press housing 2 and providing for independent speed setting of the paddles. The feeding device has been removed in the figures for the sake of simplicity.
The feeder housing has a feedstock inlet that opens through the top wall 39 of the casing 13 of the compression unit 14 and is provided with a first coupling half 56 for connection with a corresponding, not shown, second coupling half provided on a lower end of a similarly not shown supply channel in the press housing 2. Said first and second coupling halves may be provided with closing mechanisms, and for operation with toxic products they may constitute a so-called split valve, such as a split butterfly valve.
The compression unit 14 is further provided with a not shown tablet chute protruding from the casing 13 for conducting away compressed material in the form of tablets from the dies 16.
Further, the compression unit 14 is provided with a dust extraction coupling half 67, see FIG. 5, for connection with a corresponding, not shown, coupling half that is located in the press housing 2 and connected to a not shown, well-known, suction system. The dust extraction coupling half 67 is by means of tubing 68 connected with dust extraction nozzles 69, 70 placed in appropriate positions inside the casing 13 of the compression unit 14 in order to prevent build-Lip of dust in the casing. The suction system may advantageously be designed to constantly keep a certain under pressure in the casing 13 of the compression unit 14 to prevent any leakage from the casing. The under pressure may advantageously be monitored and controlled to maintain a certain value. The dust extraction coupling half 67 on the unit 14 may together with the corresponding coupling half in the press housing 2 constitute a split valve of the above-described type.
In order to both allow air to enter the compression chamber and prevent dust from leaving the compression chamber, a non-return valve 10 is arranged in the top wall 39 of the casing 13 of the compression unit 14. Air may reach the non-return valve 10 from the surroundings of the rotary tablet press through a vertical air intake duct 11 extending from the upper partition wall 9 of the housing 2 to an intake opening 26 at an area at the top of the rotary tablet press. The non-return valve 10 may be connected with the vertical air intake duct 11 by means of a connection piece 27 that is slidably connected with the vertical air intake duct 11, see FIGS. 1 and 6. FIG. 8 shows another embodiment, whereby the non-return valve 10 is connected with the vertical air intake duct 11 by means of a flexible tube 28. In this embodiment, as is seen in the figure, the vertical air intake duct 11 is not aligned with the non-return valve 10. FIG. 7 shows yet another embodiment, whereby the non-return valve 10 is not connected directly with the vertical air intake duct 11, but may receive air through the vertical air intake duct 11 from the surroundings via the compression section 6.
The non-return valve 10 is shown in detail in the FIGS. 9 to 11. The non-return valve 10 comprises a substantially cylindrical housing 34 with an outer mounting collar 35 at a lower end, an inner, circular, disc-formed valve seat 36 formed integrally with the housing 34 and facing the inside of the compression chamber 29, and a thin, flexible, circular, disc-formed valve element 37 biased against the valve seat 36 by means of a compression spring 38 arranged around a shaft 44 that is mounted axially displaceable in a central hole 45 in the valve seat 36. The valve seat 36 has a backside 47 and a front side 54. The compression spring 38 located around the shaft 44 is compressed between the backside 47 of the valve seat 36 and a first end stop 48 fixed on a top end 49 of the shaft 44. A second end stop 50 is fixed on a bottom end 51 of the shaft 44 and abuts the disc-formed valve element 37. An intermediate washer 52 may be located between a central part of the disc-formed valve element 37 and the valve seat 36. Along its periphery, the valve seat 36 is provided with a plurality of through holes 53, through which air may enter from the backside 47 of the valve seat 36 to the front side 54 of the valve seat 36, when the disc-formed valve element 37 is flexed away from the valve seat 36, as shown in FIG. 11. It is preferred that the front side 54 of the valve seat 36 is concave, as shown in FIGS. 10 and 11, in order to provide better abutment between the disc-formed valve element 37 and the valve seat 36; this is, however, not necessary. In the open position of the non-return valve, as shown in FIG. 11, the compression spring 38 is not even compressed more than in the closed position shown in FIG. 10; however, the compression spring 38 may be compressed further than shown in order to open the non-return valve 10 even more.
The flexible, disc-formed valve element 37 may have the form of a valve flap made of a filter material that is impervious to dust in a suitable degree.
According to the present invention, another type of pressure controlled valve 10 may also be applied, whereby the valve is adapted to open, when the pressure inside the compression chamber 29 is smaller than the pressure at the surroundings of the tablet press, and adapted to close, when the pressure inside the compression chamber is larger than the pressure at the surroundings of the tablet press. Such a pressure controlled valve may be controlled by a computer on the basis of a signal provided by a pressure transducer registering the pressure in the compression chamber 29 and on the basis of a pressure transducer registering the pressure at the surroundings. The pressure controlled valve may be actuated electrically. The pressure controlled valve may also be controlled fully mechanically and/or pneumatically.
In order to clean the interior of the compression unit 14 between batches of different products or in order to exchange the unit for another type of unit, the rotary tablet press 1 shown in FIG. 1 is equipped with a handling system for removal of the unit from the press and for placement of another unit in the press.
FIG. 2 shows another embodiment of the rotary tablet press according to the invention, whereby the housing does not comprise a detachable compression unit in the compression section 6. Instead, the compression chamber 29 is comprised between a bottom wall 30 and a top wall 31 arranged in a well-known manner fixed in the housing and situated in the compression section 6 between the lower partition wall 7 and the upper partition wall 9. The non-return valve and/or pressure controlled valve 10 is arranged in the top wall 31, as shown in FIG. 2, in the same way as it is arranged in the top wall 39 of the casing 13 of the compression unit 14 in the embodiment shown in FIG. 1. Furthermore, the rotary tablet press shown in FIG. 2 is, in the same way as the rotary tablet press shown in FIG. 1, provided with a feeding device, a tablet chute and dust extraction nozzles 69, 70 connected with a dust extraction coupling half 67. These devices are, however, for the sake of simplicity, not shown.
The invention has in the above been explained by means of a tablet press having a single feeding device and a single tablet discharge device; however, the tablet press according to the invention may have several tablet discharge devices and and/or several feeding devices arranged in combination with a single die table.