The present invention relates to a rotary tablet press comprising a housing, a rotary die table having a number of dies arranged circumferentially, each die being associated with at least a first punch having a first end receivable in the die through an opening of the die and arranged for compression of a powder or granular material in the die by reciprocation of the punch, at least a cam for cooperation with a second end of the punches in order to effect axial displacement of the punches by rotation of the die table, a feeding device for the supply of material to be compressed into the dies, and a tablet discharge device for removal of compressed material in the form of tablets, wherein each die opening and its corresponding first punch end are enclosed in a compression chamber, said compression chamber comprising at least one dust extraction nozzle communicating with a dust extraction tube located outside the compression chamber.
US 2004/0207107 A1 (assigned to Courtoy N V) describes a rotary tablet press having dust extraction nozzles placed in appropriate positions in the compression chamber to prevent build-up of dust in the compression chamber. The suction system may advantageously be designed to constantly keep a certain under pressure in the compression chamber in order to prevent any leakage from the chamber.
Furthermore, it is well-known practice to provide the compression chamber of a rotary tablet press with a chimney-like, vertical air intake duct extending from an upper wall of the compression chamber to an intake opening at an area at the top of the rotary tablet press. Through this duct, air from the surroundings of the rotary tablet press may enter the compression chamber in order to replace air removed by means of dust extraction nozzles. The intake opening of the duct may be covered by means of a simple filter or a HEPA filter, if necessary. Such a filter may both ensure that the air entering the compression chamber is clean and that no powder or dust leaks from the compression chamber. However, such filters have the disadvantage that they become clogged during use, and therefore they must be monitored and replaced when necessary.
In another known application, the compression chamber is comprised by a compression unit detachably mounted in the housing of the rotary tablet press, and the compression unit is located in a compression section delimited by an upper partition wall and a lower partition wall of the housing of the rotary tablet press. A vertical air intake duct similar to the above explained projects from the upper side of the upper partition wall in order to enable air to enter the compression section from the surroundings of the tablet press. Thereby, air may by suction enter the compression chamber from the compression section through a hole in the wall of the compression chamber, or the compression chamber may be connected with the vertical air intake duct by means of a rigid or flexible pipe or tube connection extending through the compression section.
An object of the present invention is to provide a rotary tablet press, whereby air intake to the compression chamber is enabled without the risk of dust leakage to the surroundings and without the above-mentioned disadvantages.
In view of this object, said compression chamber communicates with the surroundings of the tablet press through a non-return valve arranged to prevent outflow from the compression chamber to the surroundings of the tablet press. A non-return valve may allow air to enter the compression chamber and prevent dust from leaving the compression chamber; the valve may be of simple construction and does not need replacement on a regular basis.
The valve may comprise a valve flap and a valve seat facing the inside of the compression chamber, and the valve flap may be biased against the valve seat.
The valve seat may be concave and the valve flap may be made of flexible material. Thereby, the effective contact area between the valve flap and the valve seat in which the contacting surfaces have to be brought out of contact in order to open the valve is reduced, thereby reducing the under pressure necessary to open the valve. This is because in this embodiment, only the peripheral part of the valve flap has to be lifted from the valve seat in order to open the valve.
In an embodiment, the valve flap is fixed on a shaft that is mounted axially displaceable in a central hole in the valve seat, and the shaft is spring loaded to press the valve flap against the valve seat. If a relatively weak spring is used, only very little under pressure is needed to open the valve, even if the valve flap is made of a more rigid material.
In an embodiment, the valve seat is circular and is provided with a plurality of through holes along its periphery. The circular parts are easy to manufacture with tight tolerances, which allow for a good closing of the valve flap against the valve seat and hence a good sealing action.
In an embodiment, the compression chamber is delimited by a top wall in which the non-return valve is located, and the non-return valve communicates with the surroundings of the tablet press through a vertical air intake duct. Thereby, very little under pressure is needed to open the valve.
In an embodiment, the compression chamber is comprised by a compression unit detachably mounted in the housing of the rotary tablet press, and the non-return valve is located in wall of the compression unit.
In an embodiment, the compression unit is located in a compression section delimited by a upper partition wall and a lower partition wall of the housing of the rotary tablet press, and a vertical air intake duct projects from the upper side of the upper partition wall in order to enable air to enter the compression section from the surroundings of the tablet press. Thereby, very little under pressure is needed to open the valve.
In an embodiment, the non-return valve is detachably connected with the vertical air intake duct by means of a vertically arranged connection piece. The connection piece allows for a detachment of the intake duct from the valve. Therefore, the compression unit will stay detachably connected in the housing.
In an embodiment, the non-return valve is detachably connected with the vertical air intake duct by means of a flexible tube. Thereby, the air intake duct need not necessarily be in line with the valve, which is sometimes, due to other dimensional constraints, not possible. The flexible tube allows more freedom to place the air intake duct or the valve.
In another embodiment, said compression chamber communicates with the surroundings of the tablet press through a pressure controlled valve adapted to open, when the pressure inside the compression chamber is smaller than the pressure at the surroundings of the tablet press, and adapted to close, when the pressure inside the compression chamber is larger than the pressure at the surroundings of the tablet press. In this way, the valve will prevent outflow of air from the compression chamber to the surroundings, and thereby it will be prevented that dust leaks from the compression chamber.
In an embodiment, the pressure-controlled valve comprises a valve element that is biased against a valve seat.
In an embodiment, the pressure-controlled valve is controlled by a computer on the basis of a signal provided by a pressure transducer. An actuated valve allows for a stronger valve, made of stronger, more rigid material that can be pressed with higher forces against the valve seat. Hence, it is possible to obtain a better sealing action.
In an embodiment, the compression chamber is delimited by a top wall in which the non-return valve is located, and the non-return valve communicates with the surroundings of the tablet press through a vertical air intake duct.
In an embodiment, the compression chamber is comprised by a compression unit detachably mounted in the housing of the rotary tablet press, and the non-return valve is located in wall of the compression unit.
In an embodiment, the compression unit is located in a compression section delimited by a upper partition wall and a lower partition wall of the housing of the rotary tablet press, and a vertical air intake duct projects from the upper side of the upper partition wall in order to enable air to enter the compression section from the surroundings of the tablet press.
In an embodiment, the non-return valve is detachably connected with the vertical air intake duct by means of a vertically arranged connection piece.
In an embodiment, the non-return valve is detachably connected with the vertical air intake duct by means of a flexible tube.
In yet another embodiment, said compression chamber communicating with the surroundings of the tablet press through a valve comprising a valve flap made of a material that is impervious to dust and a valve seat facing the inside of the compression chamber, and the valve flap being biased against the valve seat.
In an embodiment, the valve flap is made of a filter material. This will allow an air intake at very low under pressure, smaller than that needed to lift the valve flap from the valve seat.
In an embodiment, the compression chamber is delimited by a top wall in which the non-return valve is located, and the non-return valve communicates with the surroundings of the tablet press through a vertical air intake duct.
In an embodiment, the compression chamber is comprised by a compression unit detachably mounted in the housing of the rotary tablet press, and the non-return valve is located in wall of the compression unit.
In an embodiment, the compression unit is located in a compression section delimited by a upper partition wall and a lower partition wall of the housing of the rotary tablet press, and a vertical air intake duct projects from the upper side of the upper partition wall in order to enable air to enter the compression section from the surroundings of the tablet press.
In an embodiment, the non-return valve is detachably connected with the vertical air intake duct by means of a flexible tube.
The invention will now be explained in more detail below by means of examples of embodiments with reference to the schematic drawing, in which
The rotary tablet press 1 has a press housing 2 comprising an internal frame 3, which supports various components located in the housing 2, and an outer lining 4, which is shown only at a lower section 5 of the press. The press housing 2 is composed of three sections, which are located on top of each other and are separated by means of partition walls. The lower section, designated the drive section 5, is separated from a central section, designated the compression section 6, by a lower partition wall 7, and the compression section 6 is separated from an upper section, designated the accessory section 8, by an upper partition wall 9.
The drive section 5 comprises a not shown electrical drive motor driving a not-shown vertical drive shaft projecting up through a central opening in the lower partition wall 7 and having at its upper end a coupling part for detachable connection with a rotary turret 12 located in a casing 13 of a compression unit 14 which is arranged detachably in the compression section 6 of the press housing 2, see also
Referring to
A second end 23, 24 of each punch 17, 18 is in a well-known manner co-operating with top and bottom cams, respectively, arranged stationary in relation to the press housing 2 in order to effect axial displacement of the punches by rotation of the turret 12. Only the top cams 25 are visible, see
The casing 13 of the compression unit 14 comprises a top wall 39, a bottom wall 40 and more transparent side walls 41. A number of the side walls 41 may be detached from the compression unit 14 in order to gain access to the internal components of the unit for exchange of components at change-over between batches of different products, for cleaning or for maintenance, see also
The compression unit 14 is provided with a feeding device in the form of a not shown, well-known double rotary feeder with two rotary paddles located in a feeder housing and driven by means of separate drive motors located in the accessory section 8 of the press housing 2 and providing for independent speed setting of the paddles. The feeding device has been removed in the figures for the sake of simplicity.
The feeder housing has a feedstock inlet that opens through the top wall 39 of the casing 13 of the compression unit 14 and is provided with a first coupling half 56 for connection with a corresponding, not shown, second coupling half provided on a lower end of a similarly not shown supply channel in the press housing 2. Said first and second coupling halves may be provided with closing mechanisms, and for operation with toxic products they may constitute a so-called split valve, such as a split butterfly valve.
The compression unit 14 is further provided with a not shown tablet chute protruding from the casing 13 for conducting away compressed material in the form of tablets from the dies 16.
Further, the compression unit 14 is provided with a dust extraction coupling half 67, see
In order to both allow air to enter the compression chamber and prevent dust from leaving the compression chamber, a non-return valve 10 is arranged in the top wall 39 of the casing 13 of the compression unit 14. Air may reach the non-return valve 10 from the surroundings of the rotary tablet press through a vertical air intake duct 11 extending from the upper partition wall 9 of the housing 2 to an intake opening 26 at an area at the top of the rotary tablet press. The non-return valve 10 may be connected with the vertical air intake duct 11 by means of a connection piece 27 that is slidably connected with the vertical air intake duct 11, see
The non-return valve 10 is shown in detail in the
The flexible, disc-formed valve element 37 may have the form of a valve flap made of a filter material that is impervious to dust in a suitable degree.
According to the present invention, another type of pressure controlled valve 10 may also be applied, whereby the valve is adapted to open, when the pressure inside the compression chamber 29 is smaller than the pressure at the surroundings of the tablet press, and adapted to close, when the pressure inside the compression chamber is larger than the pressure at the surroundings of the tablet press. Such a pressure controlled valve may be controlled by a computer on the basis of a signal provided by a pressure transducer registering the pressure in the compression chamber 29 and on the basis of a pressure transducer registering the pressure at the surroundings. The pressure controlled valve may be actuated electrically. The pressure controlled valve may also be controlled fully mechanically and/or pneumatically.
In order to clean the interior of the compression unit 14 between batches of different products or in order to exchange the unit for another type of unit, the rotary tablet press 1 shown in
The invention has in the above been explained by means of a tablet press having a single feeding device and a single tablet discharge device; however, the tablet press according to the invention may have several tablet discharge devices and and/or several feeding devices arranged in combination with a single die table.
This is a divisional of application Ser. No. 11/461,874 filed Aug. 2, 2006, now abandoned. The entire disclosure of the prior application, application Ser. No. 11/461,874 is considered part of the disclosure of the accompanying divisional application and is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3825387 | Gilman | Jul 1974 | A |
4210310 | Kay | Jul 1980 | A |
4222407 | Ruschke et al. | Sep 1980 | A |
4257380 | Bendig et al. | Mar 1981 | A |
4259049 | Willich | Mar 1981 | A |
4362491 | Livingstone | Dec 1982 | A |
4403935 | Crossley et al. | Sep 1983 | A |
4456446 | Konig | Jun 1984 | A |
4560095 | Shew | Dec 1985 | A |
4569650 | Kramer | Feb 1986 | A |
4857250 | Gale et al. | Aug 1989 | A |
5004413 | Stopforth | Apr 1991 | A |
5151280 | Arndt et al. | Sep 1992 | A |
5392769 | Siegel | Feb 1995 | A |
5843488 | Korsch et al. | Dec 1998 | A |
5965077 | Rowley et al. | Oct 1999 | A |
6050444 | Sugg | Apr 2000 | A |
6676863 | Christiaens et al. | Jan 2004 | B2 |
6884054 | Shimada | Apr 2005 | B2 |
6972105 | Boeckx et al. | Dec 2005 | B2 |
7004162 | Foley | Feb 2006 | B1 |
20030042639 | Christiaens et al. | Mar 2003 | A1 |
20040000336 | Goglio | Jan 2004 | A1 |
20040191347 | Boeckx et al. | Sep 2004 | A1 |
20040207107 | Christiaens et al. | Oct 2004 | A1 |
20050103798 | Luigi | May 2005 | A1 |
20050151292 | Shimada et al. | Jul 2005 | A1 |
20050200038 | Vogeleer et al. | Sep 2005 | A1 |
20050249621 | Bethel | Nov 2005 | A1 |
20060013914 | Shimada et al. | Jan 2006 | A1 |
20070149108 | Behns et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
6361305 | Mar 2002 | BS |
0 373 833 | Jun 1990 | EP |
0 406 936 | Jan 1991 | EP |
2005093303 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20110012283 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11461874 | Aug 2006 | US |
Child | 12818221 | US |