Rotary tool, in particular a drill, and a cutting head for said rotary tool

Information

  • Patent Grant
  • 10213845
  • Patent Number
    10,213,845
  • Date Filed
    Tuesday, March 24, 2015
    9 years ago
  • Date Issued
    Tuesday, February 26, 2019
    5 years ago
Abstract
A rotary tool designed as a modular drill, extending in an axial direction along an axis of rotation. It comprises two coupling parts: a carrier; and a cutting head that is attached to the carrier so as to be exchangeable. The carrier includes pin receiving means, into which a coupling pin of the cutting head is introduced in a clamping manner and so as to be reversibly exchangeable. The pin receiving means and the coupling pin have torque sections and clamping sections that correspond to one another and are oriented parallel to the axis of rotation. In addition, to prevent axial pull-out, stop surfaces are provided on the pin receiving means and on the coupling pin, the stop surfaces being effective in an axial direction and corresponding to one another. These stop surfaces preferably extend horizontally and therefore perpendicular to the axis of rotation.
Description
BACKGROUND OF THE INVENTION

The invention relates to a rotary tool, in particular a drill, with the features of the preamble of claim 1. The invention furthermore relates to a cutting head for said rotary tool.


The rotary tool, in particular a drill, is what is known as a modular rotary tool which extends in an axial direction along an axis of rotation and which comprises two coupling parts, namely a carrier and a cutting head, wherein the cutting head is attached to the carrier so as to be exchangeable. For this purpose, the carrier usually comprises on its end surface two opposite fastening webs which are separated from each other by means of flutes and by means of which a pin receiving means is delimited. A coupling pin of the cutting head is inserted into this pin receiving means. This is carried out by turning the cutting head around the axis of rotation relative to the carrier. During said turning, a clamping connection between the cutting head and the carrier is formed so that the two coupling parts are held together in a clamping manner. In particular, no additional fastening means (such as screws or the like) are arranged therein. The pin receiving means of the carrier comprises inner shell surfaces and the coupling pin of the cutting head comprises outer shell surfaces, which shell surfaces reciprocally interact with each other. Torque sections respectively corresponding to one another for transmitting a torque on the one hand, as well as clamping sections corresponding to one another for transmitting a radial clamping force on the other hand, are formed on the inner shell surfaces and on the outer shell surfaces. In the connected state, these sections respectively abut against one another in pairs.


Such a rotary tool can be learned from DE 10 2012 200 690 A1, for example. The present invention relates to a development of the rotary tool described therein.


In the coupling connection known from this prior art, the torque sections as well as the clamping sections on the coupling pin and on the carrier are arranged successively in the circumferential direction. The coupling pin has an approximately cuboid design, wherein sections are cut out from the cuboid shape by means of flute sections. For axial tightening and an axial pull-out lock, either the clamping sections corresponding to one another and/or the torque sections corresponding to one another form a dovetail connection. The respective sections are therefore oriented in a diagonally inclined manner with respect to the axis of rotation.


A modified embodiment variant of the coupling connection to be learned from DE 10 2012 200 690 A1 is to be learned from DE 10 2013 205 889.6, which was not published at the time of application. Here, the torque sections as well as the clamping sections are arranged staggered in relation to one another in an axial direction so that either torque sections or clamping sections are formed at an axial level. In this embodiment variant, a dovetail connection is also formed by diagonally inclined torque sections or clamping sections to achieve axial tightening and to prevent pulling-out in an axial direction.


A positive lock effective in an axial direction is formed by means of such a dovetail connection known from the prior art. This is made possible due to the specific fastening method with the turning of the coupling pin of the cutting head into the pin receiving means of the carrier.


Another similar coupling connection in a drill can be learned from U.S. Pat. No. 6,582,164 B1. In this case, webs protruding radially outward are formed on the outer shell surfaces of the coupling pin, said webs being screwed into a corresponding recess in the pin receiving means in the manner of a thread. The shell surfaces of these threaded webs are arranged in a diagonally inclined manner with respect to the axis of rotation for easy screwing-in.


Finally, another coupling connection can be learned from U.S. Pat. No. 7,070,367 B2, in which once again webs are formed on the outside of the coupling pin, said webs being arranged helically and forming a screw thread by means of which axial tightening of the cutting head in an axial direction takes place during screwing-in. The helical web comprises roof surfaces diagonally inclined with respect to the axis of rotation.


In the coupling connections described so far and known from the prior art, the coupling pin is respectively completely enclosed by the pin receiving means, i.e. by the two opposite clamping or fastening webs, so that both the torque sections and the clamping sections are enclosed by the fastening webs.


In contrast thereto, coupling connections are also known in which the torque sections are not enclosed by the clamping webs but rather extend in the radial direction to an outer circumferential line of the rotary tool so that a circumferential side of the coupling pin is flush with a circumferential side of the carrier in the area of the torque section. A coupling connection of this type can be learned from DE 10 2012 212 146 A1, for example. In this embodiment variant, the surfaces corresponding to one another of the torque sections are once again formed in a diagonally inclined manner in order to prevent pulling-out in an axial direction.


Overall, the known coupling connections are characterized by a complex geometry, which is sometimes very complicated with respect to the production process.


OBJECT OF THE INVENTION

Starting therefrom, the invention is based on the object of providing a coupling connection that is simple to produce.


Achievement of the Object

The object is achieved according to the present invention by a rotary tool, in particular a drill, with the features of claim 1. The rotary tool extends in an axial direction along an axis of rotation and comprises two coupling parts, namely a carrier and a cutting head. The cutting head is attached in to the carrier by means of screwing in, so as to be reversibly exchangeable. For this purpose, the carrier comprises on its end surface in particular diagonally opposite fastening webs which are preferably separated from each other by means of flutes, with inner shell surfaces by means of which a pin receiving means is delimited. In said pin receiving means, a coupling pin of the cutting head is introduced in a clamping manner. The coupling pin has outer shell surfaces. By turning the coupling pin with respect to the pin receiving means, the outer shell surfaces come into contact with the inner shell surfaces, wherein torque sections respectively corresponding to one another for transmitting a torque and clamping sections corresponding to one another for transmitting a radial clamping force are formed. These sections respectively come to abut against each other in pairs when the cutting head is attached to the carrier. The torque sections are therefore enclosed by the fastening webs and do not extend to a radial circumferential side of the carrier.


In order to allow for simple production of the coupling parts for this coupling connection, the clamping sections as well as the torque sections extend parallel to the axis of rotation. In addition, in order to prevent pulling-out in an axial direction, stop surfaces are formed on the pin receiving means and on the coupling pin, said stop surfaces being effective in an axial direction and corresponding to one another. The corresponding stop surfaces form a positive lock effective in an axial direction.


This embodiment is based on the consideration that the production of diagonally inclined surfaces for the clamping sections or for the torque sections with the required high precision is expensive with respect to the production process. It is therefore provided that these sections extend only parallel to the axis of rotation. The function of the axial pull-out lock is carried out by means of the separate, i.e. additional, stop surfaces independently of the surfaces for clamping in the clamping section and for torque transmission in the torque section. The coupling pin and the pin receiving means preferably respectively comprise a pair of torque sections and a pair of clamping sections which are respectively arranged diagonally opposite with respect to the axis of rotation. The entire coupling pin is preferably interrupted by groove sections of flutes in the same manner that the fastening webs are separated from one another by groove sections of flutes. Furthermore, the cutting head is attached in a purely clamping manner without any additional fastening means, such as screws, namely exclusively by turning the cutting head around the axis of rotation relative to the carrier.


The torque sections are generally oriented such that they transmit a torque exerted by the carrier onto the cutting head during the processing procedure, i.e. during the drilling process. For this purpose, the torque sections generally comprise a surface section which is oriented at an angle to a circumferential direction. In contrast, the clamping sections are preferably not designed to transmit a torque. They preferably extend in the circumferential direction along cylinder shell surfaces. In a deviation from a pure cylinder shape, these clamping sections can possibly also extend along an elliptical line when viewed in cross-section.


With respect to simple production, the stop surfaces preferably directly adjoin a respective torque section or a respective clamping section. The stop surfaces therefore extend outward or inward in the radial direction from a torque or clamping section.


With respect to simple production, in an expedient embodiment the stop surfaces extend horizontally and therefore perpendicularly to the axis of rotation. The stop surfaces of each coupling part lie entirely within a common horizontal plane for which the axis of rotation forms a surface normal.


In an expedient embodiment, the stop surfaces corresponding to one another of the pin receiving means on the one hand, and of the coupling pin on the other hand, abut against each other or at most have a small axial clearance between each other. A small axial clearance is permissible since the axial pull-out lock is not required during the actual drilling process since the cutting head is forced into the pin receiving means. However, the pull-out lock is required, for example, if the drill is pulled out of a drill hole.


In contrast, a preferred development provides that an interference fit is formed between the corresponding stop surfaces of the two coupling parts, the stop surfaces therefore being pressed against each other in the mounted condition. In order to make this possible, a lead-in chamfer is expediently respectively formed so that, when the coupling pin is screwed into the pin receiving means, the coupling pin is pulled into the pin receiving means in an axial direction before the interference fit is formed between the stop surfaces extending horizontally. The lead-in chamfer extends in the circumferential direction only over a small angular range of, for example, less than 5°. The stop surfaces, which preferably extend horizontally, are expediently formed on one of the two coupling parts by means of a web protruding radially outward, the web extending in the circumferential direction in the manner of a ring segment. Said radially protruding web is in particular formed on the coupling pin of the cutting head, namely in a rear end section of the cutting head.


The web generally comprises in an axial direction a significantly smaller axial height than the torque or clamping sections. For example, its axial height extending in an axial direction is only less than 20% of the axial height of the clamping and torque sections.


The web extends in the circumferential direction either over the entire inner shell surface and outer shell surface or alternatively only over a partial area thereof. For example, the web is formed only in the area of the torque sections or only in the area of the clamping sections, or it respectively extends over the torque sections and over the clamping sections in the circumferential direction.


With regard to a particularly simple design with respect to the production process, the clamping sections and the torque sections of the one coupling part—in particular of the cutting head—are formed by means of an undercut. In order to produce these sections, the outer shell surfaces of the coupling pin and/or the inner shell surfaces of the pin receiving means are therefore processed with only one grooving tool by advancing said grooving tool in the radial direction, for example.


At the same time, the stop surfaces for the axial pull-out lock are also formed in said undercut so that the stop surfaces thus directly adjoin the torque sections or clamping sections. Generally, the surfaces adjoining the undercut on both sides therefore lie on a common shell surface, in particular on a common cylinder shell surface. In the latter instance of the cylinder shell surface, the surfaces adjoining the undercut therefore lie at the same radius.


The coupling pin is preferably substantially in the shape of a rectangular block, wherein the clamping sections and the torque sections are formed on its circumferential side. Expediently, the clamping sections are formed on a narrow side (in particular by cylinder shell surfaces) and the torque sections are formed on a long side (in particular by surface sections extending parallel to one another). The torque sections are approximately diagonally opposite each other with respect to the axis of rotation.


Groove sections of flutes interrupt the cuboid form, wherein concave recesses are respectively removed from the cuboid form in diagonally opposite corner regions by means of the flutes.


Between the linearly extending clamping sections and the clamping sections extending (circularly) in an arc shape, rounded transitional sections forming the corner regions are respectively formed on the two coupling parts. The transitional sections of the coupling parts do not interact, however, i.e. do not abut against each other in a clamping manner. Rather, a clearance is formed between the corresponding transitional sections of the coupling parts.


The clamping sections as well as the torque sections are preferably arranged at the same axial height and are therefore not staggered in relation to one another in an axial direction. They in particular extend over the same axial length in an axial direction.


The object is furthermore achieved according to the present invention by a cutting head for said rotary tool according to the features of claim 9. The advantages and preferred embodiments mentioned with regard to the rotary tool are also to be transferred analogously to the cutting head.


The cutting head extends in an axial direction along an axis of rotation and comprises a coupling pin with outer shell surfaces on which torque sections as well as clamping sections are formed. The torque sections as well as the clamping sections extend parallel to the axis of rotation. Furthermore, stop surfaces for an axial pull-out lock are formed on the coupling pin, said stop surfaces being effective in an axial direction. The torque sections and the clamping sections on the one hand, or alternatively the stop surfaces on the other hand, are formed by an undercut, whereby a simple production is made possible. Expediently, the stop surfaces are formed as horizontally extending boundary surfaces of the undercut.





DESCRIPTION OF FIGURES

An exemplary embodiment of the present invention is explained in greater detail below based on Figures. These show:



FIG. 1A a perspective illustration in section of a modular drill with cutting head and carrier, which are illustrated in the manner of an exploded view,



FIG. 1B the drill illustrated in section according to FIG. 1A, in a somewhat tilted exploded view compared to FIG. 1A,



FIG. 2A a top view of the bottom side of the cutting head according to FIGS. 1A, 1B,



FIG. 2B a lateral view of the cutting head according to FIG. 2A,



FIG. 2C another lateral view of the cutting head according to FIG. 2A, wherein the cutting head is rotated by 90° compared to FIG. 2B,



FIG. 3A a top view of the carrier according to FIG. 1A,



FIG. 3B a section view through the carrier according to FIG. 3A along the section line I-I,



FIG. 4A a top view of the carrier according to FIG. 1A, wherein the carrier is rotated by 90° compared to FIG. 3A and



FIG. 4B a section view through the carrier according to the section line II-II in FIG. 4A.





Parts having the same effect are given the same reference symbols in Figures.


DESCRIPTION OF THE EXEMPLARY EMBODIMENT

The rotary tool 2 illustrated in Figures is designed as a modular drilling tool. It extends in an axial direction 4 along an axis of rotation 6. The rotary tool 2 rotates about the axis of rotation 6 during normal operation in the direction of rotation, which at the same time defines a circumferential direction 8.


The rotary tool 2 is composed of a carrier 10 and a cutting head 12 that can be attached thereto so as to be exchangeable. The cutting head 12 comprises major cutting edges (not calculated [sic] here in more detail) which are usually connected centrally at a drill face to one another via cross-cutting edges and which extend radially outward. Against the direction of rotation, major free spaces adjoin the major cutting edges at the end surface. On its circumferential side, the cutting head 12 comprises a rear surface 14 which is interrupted by opposite flutes 16. Said flutes thus already start at the cutting head 12 and transition into the carrier 10. In the exemplary embodiment, the flutes 16 extend approximately helically. The carrier 10 is a grooved shaft section at which continue, for example, minor cutting edges which extend along the flutes 16 and start at the cutting head 12. A grooved shaft section of the carrier 10 is usually additionally adjoined by a non-grooved clamping section with which the rotary tool 2 is clamped in a machine tool.


Below, elements on the carrier 10 that correspond to one another are designated with the letter a and elements on the cutting head 12 that correspond to one another are designated with the letter b.


The carrier 10 comprises on its end surface two approximately diagonally opposite fastening webs 18 which are interrupted by flutes 16. The fastening webs 18 respectively extend over a range of approximately 70°-90°. The fastening webs 18 are respectively delimited at the end surface by planar end support surfaces 22a which are arranged in a common horizontal plane, with respect to which the axis of rotation 6 is thus oriented perpendicularly.


The pin receiving means 20 is delimited on the circumferential side by inner shell surfaces 24a of the fastening webs 18. Furthermore, it is delimited on the bottom side by a bottom surface which extends horizontally, i.e. perpendicular to the axis of rotation 6. In this bottom surface, a centering hole 26a is introduced concentrically to the axis of rotation 6. Furthermore, in exemplary embodiment 2, coolant channels 28 extend in the carrier 10, end in the bottom surface, and there are flush with corresponding coolant channels 28 of the cutting head 12.


At the inner shell surfaces 24a, the carrier 10 respectively comprises torque sections 30a, clamping sections 32a as well as transitional sections 34a which directly adjoin one another in the circumferential direction 8. Directly adjoining the bottom surface, grooves 36a are introduced into the inner shell surfaces 24a. Said grooves form horizontally extending stop surfaces 38a.


Corresponding to the pin receiving means 20, the cutting head 12 comprises a coupling pin 40 extending in an axial direction 4. The coupling pin 40 is radially set back in the radial direction from the circumferential surfaces of the rear surface 14. Corresponding to the pin receiving means 20, the coupling pin 40 comprises outer shell sections 24b on which torque sections 30b, clamping sections 32b, and transitional sections 24b are also formed. These sections respectively adjoin one another in the circumferential direction 8, are not arranged staggered in relation to one another in an axial direction 4, and are therefore respectively at the same axial height.


A radial projection toward the rear surface 14 is formed by means of the coupling pin 40 that is radially set back, whereby two head support surfaces 22b are formed which in turn are arranged in a common horizontal plane and separated from each other by the flutes 16.


Concentric to the axis of rotation 6, a lead-in pin 26b is furthermore formed on the coupling pin 40, said lead-in pin only being formed as a first centering aid for the cutting head 12 during introduction into the carrier 10. The actual centering of the cutting head 12 is carried out via the clamping sections 32a,b.


Furthermore, the coupling pin 40 respectively comprises webs 36b at its rear section facing away from the end surface of the cutting head 12, which webs 36b are respectively formed in the manner of ring segments and directly adjoin the clamping sections 32b. The webs 36b form stop surfaces 38b extending radially outward in the horizontal direction. Corresponding thereto, the grooves 36a—which are respectively also formed as annular groove segments—are formed on the pin receiving means 20 in the area of the bottom. Said grooves also directly adjoin the torque section 30a.


On the sides of the coupling pin 40, the torque sections 30b and the clamping sections 32b are formed by means of an undercut so that these sections 30b, 32b and the transitional section 34b are formed by removing material. In this case, the undercut is made directly adjoining the head support surface 22b. In the transitional section, only a small curvature is provided. Accordingly, the sections 30a, 32a, 34a extend on the sides of the carrier 10 to the end support surface 22a, apart from an end surface lead-in chamfer.


In the exemplary embodiment, when viewed in the circumferential direction 8 the webs 36b and correspondingly the grooves 36a and accordingly the stop surfaces 38a,b extend over only a partial section of the fastening webs 18. They are respectively tapered off toward one of the two flutes 16 so that a screwing-in of the coupling pin 40 into the pin receiving means 20 is made possible.


The webs 36b and correspondingly the grooves 36a respectively comprise a shell surface which extends approximately parallel to the axis of rotation 6 and which is adjoined by a conical end section. The shell surfaces extend in an axial direction 4 over a comparatively short area in comparison to the axial extension of the sections 30a,b; 32a,b; 34a,b.


As can be seen in particular in the top views of the cutting head 12 according to FIG. 2A and the top views of the carrier 10 according to FIGS. 3A and 4A, the coupling pin 40 and the pin receiving means 20 have a substantially rectangular design and thus an approximately cuboid shape. In this case, however, opposite corner regions of the approximately rectangular cross-section are removed as a result of the flutes 16. The clamping sections 32a,b are formed on the narrow sides of this approximately rectangular cross-section and the torque sections 30a,b are formed on the long sides. As can be seen, the torque sections 30a,b extend linearly when viewed in cross-section, whereas the clamping sections 32a,b extend along an arc, in particular a circular arc. The corner regions of the approximately rectangular cross-section are rounded so that the linear torque section 30a transitions into the rounded clamping section 32a,b. The rounded corner regions are formed by transitional sections 34a,b.


The section surfaces of the coupling pin 40 and of the pin receiving means 20, namely the torque sections 30a,b, the clamping sections 32a,b, and the transitional sections 34a,b extend parallel to the axis of rotation 6 and thus to the axial direction 4. They therefore do not comprise an inclination angle and do not form any conical surfaces. In this way they can be formed simply, in particular by means of the already described undercut.


For mounting the cutting head 12, it is initially inserted in an axial direction 4 with its coupling pin 40 forward into the pin receiving means 20. Here, it is turned by approximately 90° compared to the position illustrated in FIGS. 1A and 1B. For this initial axial insertion, the lead-in pin 26b offers a first centering support. Subsequently, the entire cutting head 12 is turned against the direction of rotation around the axis of rotation 6 within the pin receiving means 20. In doing so, the webs 36b engage behind the grooves 36a. Additionally, the clamping sections 32a,b form an interference fit and thus a clamping relationship. In the process, a radial clamping force is exerted by the fastening webs 18 at the clamping sections 32a,b on the coupling pin 40. In the final position, the torque sections 30a,b corresponding to one another furthermore come into contact with each other. During operation, the torque exerted by the carrier 10 is transmitted via the torque sections 30a,b in the direction of rotation and circumferential direction 8 to the cutting head 12. In the mounted final position, the head support surfaces 22b rest flat on the end support surfaces 22a.


Via the horizontally extending stop surfaces 38a,b corresponding to one another, a reliable axial pull-out lock is formed by the engaging of the webs 36b behind the grooves 36a. Expediently, an interference fit is also formed therewith so that—when the coupling pin 40 is screwed into the pin receiving means 20—the coupling pin 40 is also at the same time brought in the axial direction 4 into a defined axial position in the pin receiving means 20.


For this purpose, a small lead-in chamfer is preferably arranged on the grooves 36a and the webs 36b. As an alternative to forming the interference fit in the area of the stop surfaces 38a,b, said stop surfaces possibly abut against each other with a small clearance.

Claims
  • 1. A rotary tool which extends in an axial direction along an axis of rotation, the rotary tool comprising: two coupling parts, comprising a carrier and a cutting head;the cutting head comprising a coupling pin and being exchangeably attached to the carrier;the carrier comprising: an end surface and fastening webs disposed at the end surface, wherein the fastening webs comprise inner shell surfaces; anda pin receiver delimited by the fastening webs;the coupling pin comprising outer shell surfaces;wherein the coupling pin is clamped into the pin receiver via turning the cutting head relative to the carrier;each of the inner shell surfaces and outer shell surfaces comprising torque sections and clamping sections formed thereon;the torque sections of the inner shell surfaces and the torque sections of the outer shell surfaces abutting against one another pairwise, for transmitting a torque;the clamping sections of the inner shell surfaces and the clamping sections of the outer shell surfaces abutting against one another pairwise, for transmitting a radial clamping force;wherein the clamping sections and the torque sections of the inner shell surfaces and of the outer shell surfaces are oriented at the same angle with respect to the axis of rotation; andthe pin receiver and the coupling pin each comprising stop surfaces for preventing axial pull-out of the cutting head, wherein the stop surfaces are configured and disposed to act in a generally axial direction with respect to one another.
  • 2. The rotary tool according to claim 1, wherein the stop surfaces extend horizontally and, with respect to an axial direction, are each disposed adjacent to one of the torque sections or clamping sections.
  • 3. The rotary tool according to claim 1, wherein an interference fit is formed between at least one stop surface of the pin receiver and at least one stop surface of the coupling pin.
  • 4. The rotary tool according to claim 1, wherein the stop surfaces are formed on the coupling pin via a web extending in a circumferential direction.
  • 5. The rotary tool according to claim 1, wherein the stop surfaces are formed on the pin receiver via a web extending in a circumferential direction.
  • 6. The rotary tool according to claim 5, wherein the stop surfaces each extend, in a circumferential direction, over an entirety of the inner shell surfaces and the outer shell surfaces.
  • 7. The rotary tool according to claim 5, wherein the stop surfaces each extend, in a circumferential direction, over a partial area of the inner shell surfaces and outer shell surfaces.
  • 8. The rotary tool according to claim 1, wherein the clamping sections and the torque sections of the cutting head comprise a formation resulting from an undercut.
  • 9. The rotary tool according to claim 1, wherein: the coupling pin is substantially cuboid; andthe clamping sections and the torque sections of the coupling pin are formed at peripheral sides of the coupling pin.
  • 10. The rotary tool according to claim 1, wherein the clamping sections are arranged at the same axial position with respect to the torque sections.
  • 11. The rotary tool according to claim 1, wherein the clamping sections and the torque sections of the inner shell surfaces and of the outer shell surfaces extend in parallel to the axis of rotation.
  • 12. The rotary tool according to claim 1, wherein the rotary tool comprises a drill.
  • 13. A cutting head for a rotary tool, wherein the cutting head extends in an axial direction along an axis of rotation, the cutting head comprising: a coupling pin comprising outer shell surfaces;the outer shell surfaces comprising torque sections and clamping sections formed thereon;wherein the clamping sections and the torque sections are oriented at the same angle with respect to the axis of rotation; andthe pin receiver comprising stop surfaces for preventing axial pull-out of the cutting head, wherein the stop surfaces are configured and disposed to act in a generally axial direction.
  • 14. The cutting head according to claim 13, wherein the stop surfaces extend horizontally and, with respect to an axial direction, are each disposed adjacent to one of the torque sections or clamping sections.
  • 15. The cutting head according to claim 13, wherein the stop surfaces are formed on the coupling pin via a web extending in a circumferential direction.
  • 16. The cutting head according to claim 13, wherein: the coupling pin is substantially cuboid; andthe clamping sections and the torque sections are formed at peripheral sides of the coupling pin.
  • 17. The cutting head according to claim 13, wherein the clamping sections comprise a formation resulting from an undercut.
  • 18. The cutting head according to claim 13, wherein the torque sections comprise a formation resulting from an undercut.
  • 19. The cutting head according to claim 13, wherein the stop surfaces comprise a formation resulting from an undercut.
  • 20. The cutting head according to claim 19, wherein the stop surfaces comprise horizontally extending boundary surfaces resulting from the undercut.
Priority Claims (1)
Number Date Country Kind
10 2014 206 796 Apr 2014 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2015/056288 3/24/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2015/154993 10/15/2015 WO A
US Referenced Citations (236)
Number Name Date Kind
22394 White Dec 1858 A
40297 Wakefield Oct 1863 A
44915 Baker Nov 1864 A
273388 Peatt Mar 1883 A
273391 Thrasher Mar 1883 A
329660 Lord Nov 1885 A
658216 Munger Sep 1900 A
690093 Beach Dec 1901 A
756339 Down Apr 1904 A
932071 Urbscheit Aug 1909 A
1461548 West Jul 1923 A
2158120 Hirschberg May 1939 A
2289583 Malone Jul 1942 A
2294969 Engvall Sep 1942 A
3140749 Dionisotti Jul 1964 A
3153356 Dearborn Oct 1964 A
3293727 Simms Dec 1966 A
3359837 Andreasson Dec 1967 A
3410749 Chmiel Nov 1968 A
3434553 Weller Mar 1969 A
3548688 Kuch Dec 1970 A
3765496 Flores Oct 1973 A
4293253 Ott Oct 1981 A
D262219 Lassiter Dec 1981 S
D263598 Lassiter Mar 1982 S
D273387 Lassiter Apr 1984 S
D273388 Lassiter Apr 1984 S
D273389 Lassiter Apr 1984 S
D273390 Lassiter Apr 1984 S
D273391 Lassiter Apr 1984 S
D273682 Lassiter May 1984 S
D274436 Lassiter Jun 1984 S
4561812 Linden Dec 1985 A
4744704 Galvefors May 1988 A
4844643 Icks Jul 1989 A
5024563 Randall Jun 1991 A
5114286 Calkins May 1992 A
5154549 Isobe Oct 1992 A
5154550 Isobe Oct 1992 A
5228812 Noguchi Jul 1993 A
5346335 Harpaz Sep 1994 A
5429199 Sheirer Jul 1995 A
5452971 Nevills Sep 1995 A
5509761 Grossman Apr 1996 A
5634747 Tukala Jun 1997 A
5649794 Kress Jul 1997 A
5685671 Packer Nov 1997 A
5769577 Boddy Jun 1998 A
5791838 Hamilton Aug 1998 A
5863162 Karlsson Jan 1999 A
5904455 Krenzer May 1999 A
5957631 Hecht Sep 1999 A
5971673 Berglund Oct 1999 A
5980166 Ogura Nov 1999 A
5988953 Berglund Nov 1999 A
5996714 Massa Dec 1999 A
6000000 Hawkins Dec 1999 A
6012881 Scheer Jan 2000 A
6045301 Kammermeier Apr 2000 A
6059492 Hecht May 2000 A
6071045 Janness Jun 2000 A
6109841 Johne Aug 2000 A
6123488 Kasperik Sep 2000 A
6276879 Hecht Aug 2001 B1
6447218 Lagerberg Sep 2002 B1
6481938 Widin Nov 2002 B2
6485235 Mast Nov 2002 B1
6506003 Erickson Jan 2003 B1
6514019 Schulz Feb 2003 B1
6524034 Eng Feb 2003 B2
6530728 Eriksson Mar 2003 B2
6582164 McCormick Jun 2003 B1
6582184 McCormick Jun 2003 B2
6595305 Dunn Jul 2003 B1
6595727 Arvidsson Jul 2003 B2
6626614 Nakamura Sep 2003 B2
6648561 Kraemer Nov 2003 B2
6840717 Eriksson Jan 2005 B2
7008150 Krenzer Mar 2006 B2
7048480 Borschert May 2006 B2
7070367 Krenzer Jul 2006 B2
7114892 Hansson Oct 2006 B2
7125207 Craig Oct 2006 B2
7134816 Brink Nov 2006 B2
7189437 Kidd Mar 2007 B2
7237985 Leuze Jul 2007 B2
7306410 Borschert Dec 2007 B2
7309196 de Souza Dec 2007 B2
7311480 Heule Dec 2007 B2
7360974 Borschert Apr 2008 B2
7377730 Hecht May 2008 B2
7407350 Hecht Aug 2008 B2
7431543 Buettiker Oct 2008 B2
7467915 de Souza Dec 2008 B2
7559382 Koch Jul 2009 B2
7591617 Borschert Sep 2009 B2
D607024 Dost et al. Dec 2009 S
7625161 Filho Ruy Frota de Souza Dec 2009 B1
7677842 Park Mar 2010 B2
7740472 Delamarche Jun 2010 B2
7775751 Hecht Aug 2010 B2
7832967 Borschert Nov 2010 B2
D632320 Chen et al. Feb 2011 S
D633534 Chen et al. Mar 2011 S
7972094 Men Jul 2011 B2
RE42644 Mats Aug 2011 E
7997832 Prichard Aug 2011 B2
8007208 Noureddine Aug 2011 B2
8021088 Hecht Sep 2011 B2
8142116 Frejd Mar 2012 B2
D668697 Hsu Oct 2012 S
D669923 Watson et al. Oct 2012 S
8366358 Borschert Feb 2013 B2
8376669 Jaeger Feb 2013 B2
8430609 Frejd Apr 2013 B2
8449227 Danielsson May 2013 B2
8534966 Hecht Sep 2013 B2
8556552 Hecht Oct 2013 B2
8596935 Fang Dec 2013 B2
8678722 Aare Mar 2014 B2
8678723 Osawa Mar 2014 B2
8721235 Kretzschmann May 2014 B2
D708034 Huang Jul 2014 S
8784018 P{hacek over (a)}bel Jul 2014 B2
8784019 Päbel Jul 2014 B2
D711719 DeBaker Aug 2014 S
8807888 Borschert Aug 2014 B2
8882413 Hecht Nov 2014 B2
8931982 Osawa Jan 2015 B2
8992142 Hecht Mar 2015 B2
9028180 Hecht May 2015 B2
9050659 Schwaegerl Jun 2015 B2
9073128 Mack Jul 2015 B2
9079255 Jager Jul 2015 B2
9162295 Päbel Oct 2015 B2
D742714 King, Jr. et al. Nov 2015 S
D742948 Kenno et al. Nov 2015 S
9180650 Fang Nov 2015 B2
9205498 Jaeger Dec 2015 B2
9248512 Aare Feb 2016 B2
9296049 Schwaegerl Mar 2016 B2
9302332 Scanlon Apr 2016 B2
9371701 Cox Jun 2016 B2
9481040 Schwaegerl Nov 2016 B2
9498829 Zabrosky Nov 2016 B2
D798921 Frota De Souza Filho Oct 2017 S
D798922 Frota De Souza Filho Oct 2017 S
20010033780 Berglund Oct 2001 A1
20020159851 Krenzer Oct 2002 A1
20020168239 Mast Nov 2002 A1
20020195279 Bise Dec 2002 A1
20030039523 Kemmer Feb 2003 A1
20030091402 Lindblom May 2003 A1
20040240949 Pachao-Morbitzer Dec 2004 A1
20050084352 Borschert Apr 2005 A1
20050135888 Stokey Jun 2005 A1
20060072976 Frota de Souza Apr 2006 A1
20060093449 Hecht et al. May 2006 A1
20080003072 Kim Jan 2008 A1
20080175676 Prichard Jul 2008 A1
20080175677 Prichard Jul 2008 A1
20080181741 Borschert Jul 2008 A1
20080193231 Jonsson Aug 2008 A1
20080193237 Men Aug 2008 A1
20090044986 Jaeger et al. Feb 2009 A1
20090067942 Tanaka Mar 2009 A1
20090071723 Mergenthaler Mar 2009 A1
20090116920 Bae May 2009 A1
20090123244 Buettiker May 2009 A1
20090311060 Frejd Dec 2009 A1
20100021253 Frejd Jan 2010 A1
20100092259 Borschert et al. Apr 2010 A1
20100143059 Hecht Jun 2010 A1
20100247255 Nitzsche Sep 2010 A1
20100266357 Kretzschmann Oct 2010 A1
20100272529 Rozzi Oct 2010 A1
20100307837 King et al. Dec 2010 A1
20100322723 Danielsson Dec 2010 A1
20100322728 Aare Dec 2010 A1
20100322729 Päbel Dec 2010 A1
20100322731 Aare Dec 2010 A1
20110020072 Chen Jan 2011 A1
20110020073 Chen Jan 2011 A1
20110020077 Fouquer Jan 2011 A1
20110020086 Borschert et al. Jan 2011 A1
20110027021 Nelson Feb 2011 A1
20110081212 Spichtinger Apr 2011 A1
20110097168 Jager Apr 2011 A1
20110110735 Klettenheimer May 2011 A1
20110110739 Frisendahl May 2011 A1
20110168453 Kersten et al. Jul 2011 A1
20110229277 Hoffer Sep 2011 A1
20110236145 Päbel Sep 2011 A1
20110299944 Höfermann Dec 2011 A1
20110318128 Schwägerl et al. Dec 2011 A1
20120003056 Jaeger Jan 2012 A1
20120014760 Glimpel Jan 2012 A1
20120082518 Woodruff Apr 2012 A1
20120087746 Fang Apr 2012 A1
20120087747 Fang Apr 2012 A1
20120099937 Osawa Apr 2012 A1
20120121347 Osawa May 2012 A1
20120308319 Sampath Dec 2012 A1
20120315101 Osawa et al. Dec 2012 A1
20130183107 Fang Jul 2013 A1
20130183112 Schwagerl Jul 2013 A1
20130209189 Borschert Aug 2013 A1
20130223943 Gey Aug 2013 A1
20130259590 Shaheen Oct 2013 A1
20130266389 Hecht Oct 2013 A1
20140023449 Jonsson Jan 2014 A1
20140255115 Zabrosky Sep 2014 A1
20140255116 Myers Sep 2014 A1
20140301799 Schwaegerl Oct 2014 A1
20140321931 Gey Oct 2014 A1
20140348602 Schwaegerl Nov 2014 A1
20150063926 Wu Mar 2015 A1
20150063931 Wu Mar 2015 A1
20150104266 Guter Apr 2015 A1
20150174671 Maurer Jun 2015 A1
20150266107 Gonen Sep 2015 A1
20150273597 Aliaga Oct 2015 A1
20150298220 Ach Oct 2015 A1
20150321267 Takai Nov 2015 A1
20150328696 Wang Nov 2015 A1
20160001379 Kauper Jan 2016 A1
20160001381 Lach Jan 2016 A1
20160016236 Evans Jan 2016 A1
20160031016 Takai Feb 2016 A1
20160059323 Riester Mar 2016 A1
20160207122 Chen Jul 2016 A1
20160229017 Guy Aug 2016 A1
20160263663 Schwaegerl Sep 2016 A1
20160263664 Son Sep 2016 A1
20160263666 Myers Sep 2016 A1
20160311035 Peng Oct 2016 A1
Foreign Referenced Citations (52)
Number Date Country
9431 Oct 1902 AT
1204976 Jan 1999 CN
1258240 Jun 2000 CN
1616170 May 2005 CN
100455390 Jan 2009 CN
101605622 Dec 2009 CN
106825693 Oct 2016 CN
94340 Sep 1896 DE
384720 Nov 1923 DE
524677 May 1931 DE
118806 Sep 1984 DE
3733298 Apr 1992 DE
19605157 Sep 1996 DE
19543233 May 1997 DE
29809638 Sep 1998 DE
19945097 Mar 2001 DE
102004022747 Nov 2005 DE
102007044095 Mar 2009 DE
102012200690 Jul 2013 DE
102012212146 Jan 2014 DE
102013205889 May 2014 DE
102013209371 Nov 2014 DE
102015106374 Oct 2016 DE
118806 Sep 1984 EP
0599393 Jun 1994 EP
1136161 Sep 2001 EP
813459 Jul 2003 EP
1476269 Oct 2009 EP
1996358 Nov 2011 EP
2524755 Nov 2012 EP
2551046 Jan 2013 EP
907980 Mar 1946 FR
17961 Dec 1915 GB
1395855 May 1975 GB
5537209 Mar 1980 JP
11019812 Jan 1999 JP
2002113606 Apr 2002 JP
2004255533 Sep 2004 JP
2005118940 May 2005 JP
2005169642 Jun 2005 JP
2008500195 Jan 2008 JP
2011036977 Feb 2011 JP
6211769 Sep 2017 JP
8403241 Aug 1984 WO
WO1984003241 Aug 1984 WO
WO9627469 Sep 1996 WO
9853943 Dec 1998 WO
WO03031104 Apr 2003 WO
2007107294 Sep 2007 WO
WO2008072840 Jun 2008 WO
WO2009128775 Oct 2009 WO
WO2010102793 Sep 2010 WO
Non-Patent Literature Citations (41)
Entry
Jul. 16, 2015 International Search Report Transmitted K-04390-WO-PCT.
Nov. 15, 2016 EPO Notification R161(1) & R.162 K-04390-EP-EPT.
Sep. 6, 2017 Final Office Action P15-06098-US-NP.
Sep. 19, 2017 Final Office Action P15-06102-US-NP.
Mar. 10, 2017 Office action (3 months) 1 P15-06097-US-NP.
Mar. 21, 2017 Office action (3 months) 1 P15-06102-US-NP.
Apr. 6, 2017 First office action K-04390-DE-NP.
Mar. 22, 2017 First office action K-04277-DE-NP.
Apr. 6, 2017 Second Office Action K-04261-IL-NP.
Apr. 19, 2017 First office action K-04261-CN-NP.
May 9, 2017 Second Office Action K-04055-JP-NP.
Apr. 1, 2017 First office action K-04262-CN-NP.
May 25, 2017 Office action (3 months) 3 K-04261-US-NP.
Jun. 27, 2017 Office action (3 months) 2 K-04277-US-NP.
Sep. 2, 2015 First office action K-04055-SE-NP.
Jul. 14, 2017 Office action (3 months) 1 K-05995-US-NP.
Jul. 7, 2017 Office action (3 months) 1 K-04089-US-NP.
Jul. 7, 2015 Office action (3 months) 1 K-04091-US-NP.
Oct. 22, 2015 Office action (3 months) 1 K-04261-US-NP.
Nov. 3, 2015 Final Office Action K-04089-US-NP.
Nov. 6, 2015 Final Office Action K-04091-US-NP.
Oct. 12, 2015 First office action K-04261-IL-NP.
Dec. 8, 2015 Office action (3 months) 1 K-04262-US-NP.
Feb. 23, 2016 Office action (3 months) 2 K-04091-US-NP.
May 13, 2014—Office Action—K4262EDE1.
Mar. 7, 2016 Final Office Action K-04261-U5-NP.
Mar. 3, 2016 First office action K-04055-CN-NP.
Apr. 8, 2016 Office action (2 months) P15-06102-EM-CD.
Nov. 11, 2016 Second Office Action K-04055-CN-NP.
Jun. 16, 2016 Office action (3 months) 1 K-04277-US-NP.
Jul. 29, 2016 Office action (3 months) 2 K-04261-US-NP.
Jul. 13, 2016 First office action P15-06102-IL-RD.
Sep. 27, 2016 First office action K-04055-JP-NP.
Oct. 20, 2016 Office action (3 months) 1 P15-06097-US-DP.
Oct. 25, 2016 Office action (3 months) 1 P15-06102-US-DP.
Nov. 15, 2016 EPO Notitoation R161(1) & R.162 K-04390-EP-EPT.
Nov. 23, 2016 Final Office Action 2 K-04261-US-NP.
Dec. 12, 2017 Second Office Action K-04261-CN-NP.
Dec. 18, 2017 Second Office Action K-04262-CN-NP.
Nov. 17, 2017 First office action P16-06223-DE-NP.
Jan. 11, 2018 First office action K-04390-CN-PCT.
Related Publications (1)
Number Date Country
20170028480 A1 Feb 2017 US