A wound-rotor synchronous machine (WRSM) is an electric motor having a rotor and a stator. The stator is the fixed part of the machine, and the rotor is the rotating part of the machine. The stator usually has a multi-phase winding, and the rotor is made with a field winding instead of permanent magnets. The rotor spins in a magnetic field, and the magnetic field can be produced by the windings or field coils. A field coil is an electromagnet used to generate a magnetic field in an electro-magnetic machine, typically a rotating electrical machine such as a motor or generator. It includes a coil of wire through which a current flows. In the case of a machine with field coils, a current must flow in the coils to generate the field, otherwise no power is transferred to or from the rotor. The process of generating a magnetic field by means of an electric current is called excitation. Field coils yield the most flexible form of magnetic flux regulation and de-regulation, but at the expense of a flow of electric current.
Conventionally, the rotor windings of a WRSM can be powered or excited using a slip ring and brush assembly system. However, slip ring and brush assembly systems have disadvantages, including being inefficient at high speeds, frequently requiring maintenance, and being lossy overall, especially at high speeds due to the high contact resistances between the brush and the slip ring.
To avoid the shortcomings of slip ring and brush assembly excitation methods, wireless (or contactless) excitation systems or wireless power transfer systems have been developed. In general, wireless power transfer uses various technologies to transmit energy by means of electromagnetic fields (EMFs) without a physical link. In a wireless power transfer system, a transmitter device, driven by electric power from a power source, generates a time-varying EMF, which transmits power via mutual inductance (M) across space to a receiver device. The receiver device uses M to extract power from the EMF and supply the extracted power to an electrical load. Wireless power transfer provides power to electrical devices/loads where interconnecting wires are inconvenient, hazardous, or not possible. Wireless power techniques mainly fall into two categories, near-field and far-field. In near-field techniques, the time-varying EMF is generated using a variety of techniques, including resonant inductive coupling. Resonant inductive coupling is the near-field wireless transfer of electrical energy between magnetically coupled coils that are part of a resonant circuit tuned to resonate at the same frequency as the driving frequency.
Rotary transformers (RTs) are a type of wireless power transfer system that can be used for the controlled wireless excitation of the rotor windings of a WRSM. An RT performs the same general function as a conventional transformer in that both transfer electrical energy from one circuit to another at the same frequency but different voltages. A conventional transformer works on the principle of electromagnetic induction, i.e., the electromotive force is induced in the closed circuit due to the variable magnetic field around it. An RT differs from a conventional transformer in that the RT geometry is arranged so that the primary windings and the secondary windings can be rotated with respect to each other with negligible changes in the electrical characteristics. In a known configuration, the RT can be constructed by winding the primary and secondary windings into separate halves of a cup core. The concentric halves face each other, with each half mounted to one of the parts that rotate with respect to one another. Magnetic flux provides the coupling from one half of the cup core to the other across an air gap, providing the M that transfers energy from the RT's primary windings to its secondary windings.
Known approaches to using RT systems to provide excitation for a WRSM can include a resonant tuning network, which is also known as a compensation network. A resonant tuning network can include circuit components (e.g., various combinations of resistors, inductors and/or capacitors) that enable the associated transformer to store oscillating electrical energy similar to a resonant circuit and thus function as a band pass filter, allowing frequencies near their resonant frequency to pass from the primary to secondary winding, but blocking other frequencies. The amount of M between the primary and the secondary windings, together with the quality factor (Q factor) of the circuit, determines the shape of the frequency response curve. Resonant circuits are often calls LC or LRC circuits because of the inductive (L), resistive (R), and capacitive (C) components used to form the resonant circuit. In material science, every material has its own natural frequency. If the external vibration is equal to the natural frequency, resonance occurs. In electrical science, impedance of the inductors and capacitors depends on the frequency. Capacitive impedance is inversely proportional to frequency while inductive impedance is directly proportional to the frequency. At a particular frequency both cancel each other. Such a circuit is called as resonant circuit, and that particular frequency is resonant frequency.
In conventional RT systems that provides resonant tuning or compensation (i.e., a RT compensation system), the resonant tuning network (or compensation network) is provided on both the stationary (or stator, or primary) side and the rotating (or rotary, or secondary) side of the WRSM. For the primary coil, a basic function of “compensation” is minimizing the input apparent power and/or minimizing the voltage-ampere (VA) rating of the power supply. For the secondary coil, the compensation cancels the leakage inductance of the secondary coil in order to maximize the transfer capability.
In general, electric motors can be relatively complex structures with parts that rotate at high speeds and generate high temperatures. Additionally, the use of various forms of electromotive force, EMFs, complex communications signals, complex motor control operations, and the like, can add further complexity. Further, for many applications, the motor size and weight must be controlled. Thus, there is value in providing motor designs that prioritize providing compact size; reduced cost; simplicity in electrical, mechanical and thermal design; and reduced eddy current losses.
Embodiments of the disclosure provide an electric drive motor system that includes a stationary-side, a rotating-side, and a first mounting and communications structure on the rotating-side. A secondary is winding physically coupled to the first mounting and communications structure. A rectifier system is physically coupled to the first mounting and communication structure.
Embodiments of the disclosure provide a method of fabricating an electric drive motor system that includes forming a stationary-side, forming a rotating-side, and forming a first mounting and communications structure on the rotating-side. A secondary is winding physically coupled to the first mounting and communications structure. A rectifier system is physically coupled to the first mounting and communication structure.
Embodiments of the disclosure provide a novel integrated power electronics system that can be used in an electric motor drive system having a wireless power transfer (or RT) network. The electric motor drive system can include an electric motor (e.g., a WRSM) having a stationary-side and a rotating-side. In embodiments of the disclosure, the integrated power electronics system can be implemented as an integrated mounting and/or communications structure with which selected portions of the motor and/or the wireless power transfer system can be integrated to provide improved physical support, improved electronic communications, and improved cooling. On the rotating-side, an instance of the integrated mounting and/or communications structure can be used to integrate secondary windings; rotating-side elements of the RT (if any); a rectifier; and various electronic connections between the secondary windings, the rotating-side elements of the RT, and the rectifier. On the stationary-side, an instance of the integrated mounting and/or communications structure can be used to integrate an inverter; stationary-side elements of the RT; primary windings; and various electronic connections between the inverter, the stationary-side elements of the RT, and the primary windings. In some embodiments of the disclosure, the integrated mounting and/or communications structure can be implemented as a multi-layered printed circuit board (PCB) operable to incorporate within its layers primary windings, secondary windings, transistors (e.g., for the inverter), diodes (e.g., for the rectifier), wiring, and the like. On the rotating-side where cooling is needed, the PCB can incorporate an assembly region operable to house certain components (e.g., diodes for the rectifier) and cooling mechanisms for the housed components.
Accordingly, the integrated mounting and/or communications structures (e.g., a PCB) described herein provide technical benefits and technical effects. The secondary windings and the rectifier subsystems are assembled in the same PCB structure, which significantly simplifies the design, prototyping, and production of the associated RT. Embodiments of the disclosure also mitigate or eliminate the difficulties in terminations and interconnections between the rectifier and the secondary winding assemblies. Embodiments of the disclosure further allow the assembly region (e.g., the assembly region that houses diodes of the rectifier) can be directly mounted on the motor shaft using aluminum support sleeve, which provides high mechanical robustness and simpler thermal management. Thus, in accordance with aspects of the disclosure, the integrated mounting and communications structure enables motor designs that prioritize compact size; reduced cost; simplicity in electrical, mechanical and thermal design; and reduced eddy current losses.
Turning now to a more detailed description of embodiments of the disclosure,
The energy source 110 can be implemented in a variety of forms, including, for example as a battery. In some embodiments of the disclosure, the battery can be a battery pack having a set of one or more individual battery cells connected in series or in parallel and that operate under the control of one or more controllers, such as a battery control module (BCM) that monitors and controls the performance of the battery pack. The BCM can monitor several battery pack level characteristics such as pack current measured by a current sensor, pack voltage, and pack temperature, for example. The battery pack can be recharged by an external power source (not shown). The battery pack can include power conversion electronics operable to condition the power from the external power source to provide the proper voltage and current levels to the battery pack. The individual battery cells within a battery pack can be constructed from a variety of chemical formulations. Battery pack chemistries can include, but are not limited, to lead acid, nickel cadmium (NiCd), nickel-metal hydride (NIMH), lithium-ion or lithium-ion polymer.
The inverter 122 can be a resonant inverter 122 electrically coupled between the energy source 110 and the DC excited motor 140 to transfer excitation energy from the energy source 110 through the RT compensation system 124 and the primary windings 126 to the DC excited motor 140. More specifically, the resonant inverter 122 is operable to provide energy from the energy source 110 to the RT compensation system 124 at a desired resonant frequency for purposes of providing excitation through the primary windings 126 to the DC excited motor 140. In embodiments of the disclosure, the resonant inverter 122 is operable to convert the direct-current (DC) voltage from the energy source 110 to AC current at the desired resonant frequency as required by the DC excited motor 140 and the RT compensation system 124 for motor excitation. In embodiments of the disclosure, the resonant inverter 122 can be a full-bridge resonant inverter having four switches organized as two “phase legs.” Each phase leg can include two switches connected in series and between a positive DC rail and a negative DC rail. A phase node can be positioned between the two switches of each phase leg to provide the phases of an AC waveform output at a desired resonant frequency. In some embodiments of the disclosure, the resonant inverter 122 generates HF AC. The controller 170 is electronically coupled to the phase leg switches to control the on/off states of the switches, thereby controlling the frequency and phase of the AC waveform generated by the resonant inverter 122. The controller 170 includes a computing device, which includes a computer, a microprocessor, a digital signal processor, and the like, configured and operable to execute software commands and programs, and which can include associated firmware, such that the controller is configured and operable to control the on/off switching operations of the resonant inverter 122. The controller 170 is also configured to send various control commands to the DC excited motor 140 to control, for example, torque and/or speed of the motor 140.
The DC excited motor 140 can be any eclectic motor design that is suitable for the work to be performed by the motor. Examples of work that can be done by motors in conventional automobile-based motor applications include operating or moving power windows; power seats; fans for the heater and the radiator; windshield wipers; and/or the engine of a vehicle having a hybrid-electric vehicle configuration. Regardless of the type of the DC excited motor 140, it relies on electromagnetism and flipping magnetic fields to generate mechanical power. A conventional implementation of the DC excited motor 140 includes five basic parts, namely, a stator; a rotor; a solid axle; coils; and a so-called “squirrel cage.” The winding of the stator in an DC excited motor is a ring of electromagnets that are paired up and energized in sequence, which creates the rotating magnetic field. The rotor in an DC excited motor does not have any direct connection to a power source, and it does not have brushes. Instead, it often uses the previously-described squirrel cage. The squirrel cage in an DC excited motor is a set of rotor bars connected to two rings, one at either end. The squirrel cage rotor goes inside the stator. When excitation power is sent through the stator, it creates an EMF. The bars in the squirrel cage rotor are conductors, so they respond to the flipping of the stator's poles, which rotates the rotor and creates its own magnetic field. The key to an induction motor, where the field of the rotor is induced by the field of the stator, is that the rotor is always trying to catch up. It is always looking for stasis, so it is rotating to find that steady state. However, the EMF produced by the stator is always going to be a little faster than the rotor's field. The spin of the rotor is creating the torque needed to create mechanical power to turn the wheels of a car or the blades of a fan. Some DC excited motors use a wound rotor (e.g., a WRSM), which is wrapped with wire instead of being a squirrel cage. In either case, there is only one moving part in an DC excited motor, which means there are fewer things that need to be replaced or maintained.
As noted, in some embodiments of the disclosure, the DC excited motor 140 can be a WRSM. A WRSM is a rotating electric motor having a rotor and a stator. The stator is the fixed part of the machine, and the rotor is the rotating part of the machine. The stator usually has a multi-phase winding, and the rotor is made with a field winding instead of permanent magnets. The rotor spins in a magnetic field, and the magnetic field can be produced by the windings or field coils. In the case of a machine with field coils, an excitation current must flow in the coils to generate the field, otherwise no power is transferred to or from the rotor. Field coils yield the most flexible form of magnetic flux regulation and de-regulation, but at the expense of a flow of electric current. Conventionally, the rotor winding of a WRSM can be powered or excited with a slip ring and brush assembly. However, slip ring and brush systems have disadvantages, including being inefficient at high speeds, frequently requiring maintenance, and being lossy overall, especially at high speeds due to the high contact resistances between the brush and the slip ring systems.
To avoid the shortcomings of slip ring and brush assembly excitation methods, the RT compensation system 124, the primary windings 126, and the secondary windings 146 are operable to provide wireless excitation or wireless power transfer from a stator-side of the motor 140 to a rotor-side of the motor 140. In some embodiments of the disclosure, the RT compensation system 124 can be implemented as a specially designed only-stationary-side RT compensation system 124. In general, the RT is a circuit and method for wireless power transfer to the secondary windings of a WRSM for controlled excitation. An RT is essentially the same as a conventional transformer in that it transfers electrical energy from one circuit to another at the same frequency but different voltage. In general, a conventional transformer works on the principle of electromagnetic induction, i.e., the electromotive force is induced in the closed circuit due to the variable magnetic field around it. An RT differs from a conventional transformer in that the RT's geometry is arranged so that the primary windings and secondary windings can be rotated with respect to each other with negligible changes in the electrical characteristics. In a known configuration, the RT can be constructed by winding the primary and secondary windings into separate halves of a cup core. The concentric halves face each other, with each half mounted to one of the parts that rotate with respect to one another. Magnetic flux provides the coupling from one half of the cup core to the other across an air gap, providing the M that couples energy from the RT's primary windings to its secondary windings.
In conventional RT designs that provides resonant tuning or compensation (i.e., a RT compensation system), a resonant tuning network (or compensation network) is provided on both the stationary (or primary) side and the rotating (or secondary) side of the WRSM. RT designs that have resonant circuit components on both the stationary-side and the rotating-side of the WRSM are difficult to implement. For example, it is difficult to, in practice, place a resonant tuning network or compensation circuitry on the secondary-side due to very limited rotor space and the high-temperature rotor operating conditions that exceed the temperature rating of commercially available compact capacitors. Moreover, having a resonant tuning capacitor on the secondary-side increases the complexity of the rotating part, increases the mechanical mass, increases the inertia, and reduces mechanical reliability, especially at high rotational speeds.
The only-stationary-side implementation of the RT compensation system 124 addresses the difficulties associated with actually implementing (i.e., building and using) conventional RT designs that include double-sided compensation networks by providing the benefits of wireless power transfer without the difficulties associated with providing compensation circuitry on a rotating-side of an DC excited motor 140 (e.g., a WFSM). More specifically, the only-stationary-side implementation of the RT compensation system 124 is operable to deliver rotor excitation current from the primary windings 126 to the secondary windings 146 wirelessly, thereby eliminating the brush and slip ring maintenance issues, as well as the inefficiencies, fabrication challenges, and design drawbacks associated with brush and slip ring systems.
In aspects of the disclosure, the only-stationary-side implementation of the RT compensation system 124 accounts for having no resonant tuning capacitor on the secondary side by providing an extra resonant tuning capacitor (i.e., one of the resonant tuning capacitors C1, Cf1 of the only-stationary-side resonant LCC 124A shown in
Although the resonant inverter 122A, the electric machine 140A, and the controller 170 are depicted as separate components, it is understood that the resonant inverter 122A, the electric machine 140A, and the controller 170 can be configured and arranged in any suitable combination of components. For example, the controller 170 can be incorporated within the resonant inverter 122A; the resonant inverter 122A can be incorporated within the electric machine 140A; and/or the resonant inverter 122A and the controller 170 can be incorporated within the electric machine 140A.
Referring still to
The only-stationary-side resonant LCC 124A interconnects the resonant inverter 122A with the primary or stator-side coil L1. In the non-limiting example embodiment of the disclosure depicted in
The rotating-side 230 includes a secondary or rotor-side coil L2 electrically coupled to a rectifier 142A. The secondary or rotor-side coil L2 is sufficiently close to the primary or stator-side coil L1 to be within an EMF generated by the primary or stator-side coil L1 such that M is between the primary or stator-side coil L1 and the secondary or rotor-side coil L2. The secondary or rotor-side coil L2 uses M to generate an AC charging signal, and the rectifier 142A converts the AC charging signal to a DC charging signal (Irotor). In some embodiments of the disclosure, the rectifier 142A is a bridge rectifier circuit includes four diodes D1, D2, D3, D4. The DC charging signal is provided to a rotor of the electric machine 140A. The rotor is represented in
Energy is transferred through the M between the primary or stator-side coil L1 and the secondary or rotor-side coil L2, but any L1/L2 leakage inductance does not have a direct contribution to the active power transfer. Leakage inductance can be further undesirable because it causes the voltage to change with loading. In conventional approaches to decreasing leakage inductance and increasing M, a rotor-side compensation circuit (e.g., a rotor-side capacitive circuit/element) is provided on the rotating-side 230. However, for applications such as the system 100, 100A where the rotor-side rotates with respect to the stator-side, it is difficult to fabricate a rotor having a rotor-side compensation circuit. Embodiments of the disclosure avoid the need for the rotor-side compensation circuit/element by configuring and arranging the only-stationary-side resonant LCC 124A such that compensation that would in conventional RT designs be provided by a rotor-side compensation circuit/element on the rotating-side 230 is instead provided by the design and component values settings of the only-stationary-side resonant LCC 124A.
As shown in
In embodiments of the disclosure, the PCB-based secondary coil 412 can be formed as a multi-turn conductive structure or trace on or in the PCB mounting/communications element 410 and extending around the opening 602 that will house the rotor shaft 424 (shown in
As shown in
Although
Accordingly, it can be seen from the foregoing detailed description that the integrated mounting and/or communications structures (e.g., a PCB) described herein provide technical benefits and technical effects. The secondary windings and the rectifier subsystems are assembled in the same PCB structure, which significantly simplifies the design, prototyping, and production of the associated RT. Embodiments of the disclosure also mitigate or eliminate the difficulties in terminations and interconnections between the rectifier and the secondary winding assemblies. Embodiments of the disclosure further allow the assembly region (e.g., the assembly region that houses diodes of the rectifier) can be directly mounted on the motor shaft using aluminum support sleeve, which provides high mechanical robustness and simpler thermal management. Thus, in accordance with aspects of the disclosure, the integrated mounting and communications structure enables motor designs that prioritize compact size; reduced cost; simplicity in electrical, mechanical and thermal design; and reduced eddy current losses
The various components/modules of the systems illustrated herein are depicted separately for ease of illustration and explanation. In embodiments of the disclosure, the functions performed by the various components/modules/models can be distributed differently than shown without departing from the scope of the various embodiments of the disclosure describe herein unless it is specifically stated otherwise.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
The diagrams depicted herein are illustrative. There can be many variations to the diagram or the steps (or operations) described therein without departing from the spirit of the disclosure. For instance, the actions can be performed in a differing order or actions can be added, deleted or modified. Also, the term “coupled” describes having a signal path between two elements and does not imply a direct connection between the elements with no intervening elements/connections therebetween. All of these variations are considered a part of the present disclosure.
The following definitions and abbreviations are to be used for the interpretation of the claims and the specification. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
Additionally, the term “exemplary” is used herein to mean “serving as an example, instance or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. The terms “at least one” and “one or more” are understood to include any integer number greater than or equal to one, i.e. one, two, three, four, etc. The terms “a plurality” are understood to include any integer number greater than or equal to two, i.e. two, three, four, five, etc. The term “connection” can include both an indirect “connection” and a direct “connection.”
The terms “about,” “substantially,” “approximately,” and variations thereof, are intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application. For example, “about” can include a range of ±8% or 5%, or 2% of a given value.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
While the disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims.
This application claims the benefit of an earlier filing date from U.S. Provisional Application Ser. No. 63/333,790 filed Apr. 22, 2022, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63333790 | Apr 2022 | US |