1. Field of the Invention
The present invention relates to a rotary type electric shaver including an outer cutter(s) having a shaving surface on an upper surface of a ring-shaped thin layer portion thereof and an inner cutter(s) rotationally making sliding contact from below with the lower surface of the thin layer portion of the outer cutter(s), thus cutting whiskers (hair) advancing into a hair introduction opening formed in the thin layer portion.
2. Description of the Related Art
In an electric shaver of the type as described above, hair introduction openings are formed so as to transect the thin layer portion of an outer cutter in substantially the radial direction, and the hair introduction openings are formed in a slit shape of substantially constant width. Each hair introduction opening (“slit”) conventionally has side wall surfaces that are perpendicular to the upper surface of the thin layer portion of the outer cutter in cross section that is substantially orthogonal to the lengthwise direction of the elongated opening. In other words, the shearing angle (cutting edge angle of the outer cutter), which is formed by the side wall surface of the hair introduction opening on the forefront side of the inner cutter rotational direction and by the inner cutter rotational direction near its lower end, is the right angles, as disclosed in Japanese Patent Application Laid-Open (Kokai) Nos. S57-31888 and S63-194691.
In this shown outer cutter 1 of the prior art, the shearing angle a (a cutting edge angle of the outer cutter 1), which is formed by the side wall surface 5 of the hair introduction opening 2 on the forefront side in the direction F of the rotation of the inner cutter 16 (or on the forefront side of the inner cutter rotational direction F) and by the inner cutter rotational direction F, is 90° (right angles). The cutting edge angle b, which is a shearing angle formed by the cutter (front) surface 6 of the inner cutter 4 on the leading edge side of the inner cutter rotational direction F and by the top end surface of the inner cutter 4, is an acute angle.
With the outer cutter 1 of the conventional rotary type electric shaver as shown in
The present invention is to overcome the problems described above.
It is, therefore, a first object of the present invention to provide a rotary type electric that provides sharp and clean shaving of hair.
It is a second object of the present invention to provide a method for manufacturing an outer cutter that contributes to the shaver's sharp and clean shaving capabilities.
The above first object of the present invention is accomplished by a unique structure of the present invention for a rotary type electric shaver that includes an outer cutter frame which is provided on a shaver main body, an outer cutter which is installed in the outer cutter frame and has hair introduction openings in its ring-shaped thin layer portion whose upper surface forms a shaving surface, and an inner cutter which has cutter bodies making sliding contact with a lower surface of the thin layer portion and rotate to cut hair that entered the hair introduction openings; and in the present invention,
the hair introduction openings have a shape of slit extending in the thin layer portion in substantially the radial direction of the ring-shaped thin layer portion, and
the cutting edge, which is at the lower end of at least one of the side wall surfaces of the ribs defining the hair introduction openings, is formed at an acute angle in cross section taken substantially orthogonal to the lengthwise direction of the hair introduction opening.
In the structure of the present invention, as seen from the above, the cutting edge angle, which is formed by the inner cutter rotational direction at the lower end of the side wall surface of the hair introduction opening on the forefront side of the inner cutter rotational direction, is an acute angle in cross section substantially orthogonal to the length of the hair introduction opening of the outer cutter. As a result, hair that enters the hair introduction opening is pinched by the outer cutter's cutting edge, which is at the lower end of the side wall surface of the hair introduction opening and on the forefront side in the inner cutter rotational direction, and by the cutting edge of the inner cutter, and is cut. Since the cutting edge of the outer cutter has an acute angle, the hair is cut into from both sides by the acute angle cutting edge of the outer cutter and by the acute angle cutting edge of the inner cutter. As a result, the hair is cut smoothly and in good order with an improved cutting feeling.
In the present invention, the acute angle is formed on the cutting edge of only one side wall surface of the hair introduction opening of the outer cutter that is on the forefront side in the inner cutter rotational direction. In this structure, the two opposing side wall surfaces of the hair introduction opening can be made parallel planes in a slanted manner so that their lower ends are displaced into the direction opposite to the inner cutter rotating direction. In this structure, skin pressed against the shaving surface touches the slanted side wall surface and has difficulty entering deeply into the hair introduction opening, and excessively deep shaving can be prevented. This type of hair introduction openings can be obtained by bringing a thin disk-shaped rotary cutting blade with substantially the same thickness as the width of the hair introduction opening into contact with the thin layer portion in a slanted manner at an angle that is not a right angle.
In the present invention, the cutting edges at the lower ends of two opposing wall surfaces of the hair introduction openings that are defined by the neighboring ribs can take acute angles on the forefront side of the inner cutter rotational direction and on the rearward side of the inner cutter rotational direction (or on the opposite side to the inner cutter rotational direction). With this structure, ribs that make two adjacent hair introduction openings are increased in strength. In other word, since the acute-angle cutting edges project along the both lower ends of the side wall surfaces of each one of the ribs, the rigidity of the ribs increase, and it is less likely that the ribs vibrate in the inner cutter rotational direction.
In addition, since opposing cutting edges project out at the lower ends of the hair introduction opening, the skin is supported by the slanted faces of these cutting edges, and only the hair is introduced downward from between the cutting edges. Accordingly, shaving is done at appropriate depth.
Furthermore, since each hair introduction opening is wide at the top and narrow at the bottom due to the opposing projected cutting edges, skin can easily enter the hair introduction opening; and thus, it is possible to shave with appropriate depth even when the thin layer portion is thick. An outer cutter having this structure in which the opposing cutting edges project out at the lower ends of each one of the ribs can be obtained by etching, for instance, or deformation processing such as pressing. If pressing is employed, the mold that processes the rib is provided with chamfer parts that correspond to the acute cutting edge.
In
The cutter head 12 has an outer cutter frame 18 (
The outer cutter 14 is made of metal in which a metal plate is formed into a substantially shallow bowl shape that is convex upward (see
As see from
As shown in
Each of these hair introduction openings 30a and 30b are formed along a straight line C which is slanted by a constant angle θ in the rotational direction F of the inner cutter 16 on a circle G of constant radius with respect to a straight line B that extend in the radial direction of the ring-shaped thin layer portions 28a and 28b and passes through the center axis line A in
In addition, these hair introduction openings 30a and 30b are of constant width and are straight in the lengthwise (or longitudinal) direction as seen from
The portions that are between adjacent hair introduction openings 30a and 30a on the inside thin layer portion 28a form ribs 32a, and portions between adjacent hair introduction openings 30b and 30b on the outside thin layer portion 28b form ribs 32b; and the lower surfaces of these ribs 32a and 32b work together with the inner cutter 16 and form a cutter that cuts the hair (whiskers). In other words, neighboring two ribs 32a define the hair introduction openings (slits) 30a and neighboring two ribs 32a and 32b define the hair introduction openings (slits) 30b; and the lower surfaces of these ribs 32a and 32b cut the hair in cooperation with the rotating inner cutter 16.
The upper surface of the outer cutter 14—more specifically, the upper surface of the ribs 32a and 32b—is on a plane orthogonal to the center axis line A (the center axis line A being perpendicular) as shown in
The lower surface of the thin layer portions 28a and 28b of the outer cutter 14 (more specifically, the lower surface of ribs 32a and 32b) make inner cutter running grooves (ring-shaped tracks) 34a and 34b, respectively; and these inner cutter running grooves 34a and 34b are designed such that when seen from below (from the inside) the inner surfaces (bottom surfaces) of the inner cutter running grooves 34a and 34b are located on a surface demarcated by a plane D that is orthogonal to the center axis line A. The plane D matches or corresponds to the lower surface of the ribs 32a and 32b. The lower surfaces of the ribs 32a and 32b are grinded by a whetstone, forming cutting edges at the lower edges of the ribs 32a and 32b.
The inner cutter 16 is comprised of a resin boss element 36 that opens downward and a plurality of cutter bodies 38 surrounding the boss element 36 and equidistantly fixed circumferentially. The plurality of cutter bodies 38 can be formed so as to be connected to form a ring shape. The upper portion of each one of the cutter bodies 38 divides into a bifurcated shape, forming two cutter blades 40a and 40b that make respectively sliding contact from below with the inner cutter running grooves (tracks) 34a and 34b of the outer cutter 14. The upper edges of the cutter blades 40a and 40b form cutting edges—specifically, cutting edges 40A and 40B—that are grinded horizontally along the above-described plane D.
The cutter blades 40a and 40b of the inner cutter are, as shown in
In
The drive shaft 44 has a property of reciprocating motion in the upward projecting direction and pushes the inner cutter 16 upward. As a result, the cutter blades 40a and 40b of the inner cutter 16 elastically press the inner cutter running grooves 34a and 34b of the outer cutter 14 from below.
Furthermore, a flange 48 is formed along the lower periphery of the outer cutter 14s as to project radially outward. The flange 48 of the outer cutter 14 engages inside an outer cutter installation hole (not shown in the drawing) formed in the outer cutter frame 18 from below. Accordingly, the cutter unit 17 that is comprised of the outer cutter 14 and the inner cutter 16 can sink downward relative to the outer cutter frame 18 with elasticity.
Next, the hair introduction openings 30a and 30b of the outer cutter 14 will be described with reference to
As seen from
The hair introduction openings 30a and 30b or the ribs 32a and 32b that define the hair introduction openings 30a and 30b and have the cutting edge with angle p can be obtained by a rotary cutting blade 52 shown in
In the outer cutter shown in
The hair introduction openings 30a and 30b formed by the ribs 30a and 32b having the cutting edges of acute angles q can be formed by, for instance, pressing method. In other words, in this pressing method, an upper mold 58 that has recesses 60′ corresponding to the shape of the ribs 32b and 32b and chamfer parts 62 formed on both lower edges of the ridge portions 60 for processing the side walls of the ribs 32b and 32a is used; and this upper mold 58 is pressed to a flat lower mold 56 with an unfinished (blank) outer cutter in between, so that the chamfer parts 62 form the cutting edges of acute angle q.
As seen from the above, in the present invention, the cutting edge angles p (in
As seen from the above, since the cutting edge angles p and q of the outer cutter 14 and the cutting edge angle b of the inner cutter 16 are all in an acute angle, hair is cut smoothly and in good order.
Needless to say, the present invention is not limited to the structures described above. For instance, instead of straight hair introduction openings as shown in
The outer cutter is not limited to that which has two thin layer portions 28a and 28b and inner cutter running grooves 34a and 34b; and it can be provided with a single set of the thin layer portion and inner cutter groove or with three or more sets of the thin layer portions and inner cutter grooves. Also, the shaving surface(s) on the upper surface of the outer cutter is not limited to that which is flat; and it can be formed in a curved surface that is convex upward or concave downward in vertical cross-section taken in a plane which is in the radial direction of the outer cuter and includes the center axis line A.
Number | Date | Country | Kind |
---|---|---|---|
2005-036594 | Feb 2005 | JP | national |