(a) Field of the invention
The present invention improves the conventional rotary type double flow circuit heat exchange apparatus to have the operating function of automatic exchange fluid flow rate modulation so as to timely change the temperature distribution status between the fluid and the heat exchange rotating disk, or to modulate the composition ratio of the gaseous or liquid state pumping fluid, wherein the heat exchange rotating disk inside the rotary type heat exchange apparatus being insertingly installed or coated with penetrating type or absorbing type moisture absorbing material, or the heat exchange rotating disk itself having the concurrent dehumidification function constitute the dehumidification effect of the total heat exchange function.
(b) Description of the Prior Art
The conventional double flow circuit heat reclaim device or total heat reclaim device for passing through by the gaseous or liquid state pumping fluid include:
(1) The fixed type fluid heat reclaim device;
(2) The fixed type fluid total heat reclaim device;
(3) The rotary type fluid heat reclaim device;
(4) The rotary type fluid total heat reclaim device.
Said heat reclaim devices are usually selected to operate at a set flow speed, hence its heat exchange efficiency is affected by the temperature difference between input and output sides, or the fluid composition difference between the spaces of the exchange gaseous or liquid state fluids, or the difference of fluid speeds and the temperature difference between the spaces of the exchange gaseous or liquid state fluids; further, the conventional heat exchangers are unable to modulate the heat exchange flow rate so as to modulate the fluid composition difference between the spaces of the exchange gaseous or liquid state fluids, as well as have the automatic modulation function to proactively modulate the heat exchange flow rate thereby achieving energy saving effect by matching with the temperature difference or humidity difference.
The present invention discloses that the conventional rotary type double flow circuit heat exchange apparatus is made to have the operating function of the rotary type heat exchange apparatus having automatic exchange fluid flow rate modulation, and through the modulation of the rotary type heat exchange rotating disk or rotary type total heat exchange rotating disk driven by the rotating disk driving device thereby modulating the flow rate, temperature distribution, humidity distribution, and gaseous or liquid state compositions of the exchange fluid.
The warming energy reclaim effectiveness of the conventional rotary type heat exchange apparatus or rotary type total heat exchange apparatus has very wide range of applications, and the more representative rotary type total heat exchange apparatus is taken as the example herein, such as that
The present invention discloses that the conventional rotary type double flow circuit heat exchange apparatus is further made to have the operating function of the rotary type heat exchange apparatus having automatic exchange fluid flow rate modulation thereby modulating the flow rate, temperature distribution, humidity distribution, and gaseous or liquid state compositions of the exchange fluid.
As shown in
The rotary type heat exchange apparatus (1000) and the unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure can be integrally combined or separately installed to constitute the double flow circuit fluid pumping device (123) function, and the two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively installed to the fluid port (b) and the fluid port (d) so as to pump the fluid in different pumping flow directions; said two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively driven by the electric motor individually or are commonly driven by the same motor, wherein they are operatively controlled by the operative control device (250) to operate in one or more than one functional modes of the following, including: 1) the two unidirectional fluid pumps (120a)(120b) are pumped in negative pressure for pumping the two fluid streams in different pumping flow directions; 2) the two unidirectional fluid pumps (120a)(120b) are pumped in positive pressure for pumping the two fluid streams in different pumping flow directions; in said two functional mode operations of said 1) & 2), the two fluid streams are pumped to pass through different areas of the rotary type heat exchange rotating disk (100), the flow circuits of the two fluid streams are mutually isolated, and the flow directions of the two fluid streams are contrary to each other;
The double flow circuit fluid pumping device (123): It is constituted by at least two unidirectional fluid pumps (120a)(120b), wherein the fluid port (b) and the fluid port (d) among the fluid port (a), fluid port (b), fluid port (c), and fluid port (d) of the double flow circuit installed within the rotary type heat exchange apparatus (1000) are respectively installed with the unidirectional fluid pumps (120a)(120b) being capable of producing negative or positive pressure to constitute the double flow circuit fluid pumping device (123), thereby by the operative control device (250) to operative control the flow rate of the heat exchange fluid pumped by the double fluid circuit fluid pumping device (123) driven by the power source (300), as well as to operative control the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110);
The power source (300): It is the device including AC or DC city power system or independent power supply device to provide power source for the operation of the rotary type heat exchange apparatus with automatic exchange flow rate modulation;
The operative control device (250): It is constituted by electromechanical components, solid state electronic components, or microprocessors and related software and operative control interfaces to operatively control the unidirectional fluid pumps (120a)(120b) of the double flow circuit fluid pumping device (123) by: 1) operatively controlling the switching functional operation; or 2) operatively controlling the flow rate of pumping heat exchange fluid; or 3) operatively controlling the temperature distribution status between the fluid and rotary type heat exchange rotating disk (100); or 4) operatively controlling the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110); or 5) integrally operatively controlling at least two of said items 1)2)3)4) in combination;
The rotating disk rotationally driving device (110): It is constituted by electric motor or other rotational power source with variable speed transmission device (111) for driving the rotary type heat exchange rotating disk (100) to rotate and modulating its rotating speed to change its heat exchange characteristics;
The rotary type heat exchange rotating disk (100): It is rotationally driven by the rotating disk rotationally driving device (110), wherein its disk is internally provided with two porous fluid circuit areas for passing through different directional fluid flows and has the heat absorbing or dissipating function, the two fluid circuits of the rotary type heat exchange rotating disk are respectively provided with two fluid ports for respectively pumping two fluid streams, wherein the passage of the two fluid streams are mutually isolated, thereby allowing the fluids in different flowing directions to pass through the rotary type heat exchange rotating disk (100) rotationally driven by the rotating disk rotationally driving device (110) for heat exchange function operations;
The timings to operatively control the flow rate of heat exchange fluid and/or the rotating speed of rotary type heat exchange rotating disk (100) driven by rotating disk rotationally driving device (110) are that: 1) the fluid flow rate and change timing are preset in the open loop operative control; or 2) it is randomly manually operatively controlled;
The unidirectional fluid pump (120a) and unidirectional fluid pump (120b) can also be installed to the fluid ports (a)(d) or installed to the fluid ports (b)(c) in said embodiment of
As shown in
The rotary type heat exchange apparatus (1000) and the unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure can be integrally combined or separately installed to constitute the double flow circuit fluid pumping device (123) function, and the two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively installed to the fluid port (b) and the fluid port (d) so as to pump the fluid in different pumping flow directions; said two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively driven by the electric motor individually or are commonly driven by the same motor, wherein they are operatively controlled by the operative control device (250) to operate in one or more than one functional modes of the following, including: 1) the two unidirectional fluid pumps (120a)(120b) are pumped in negative pressure for pumping the two fluid streams in different pumping flow directions; 2) the two unidirectional fluid pumps (120a)(120b) are pumped in positive pressure for pumping the two fluid streams in different pumping flow directions; in said two functional mode operations of said 1) & 2), the two fluid streams are pumped to pass through different areas of the rotary type heat exchange rotating disk (100), the flow circuits of the two fluid streams are mutually isolated, and the flow directions of the two fluid streams are contrary to each other;
At least one temperature detecting device (11) is installed at the position capable of directly or indirectly detecting the temperature variation of the pumping exchange fluid, wherein the detected signal is referred as the operative control timing for the operative control device (250); including: 1) operatively controlling the flow rate of the exchange fluid pumped by the double flow circuit fluid pumping device (123); or 2) operatively controlling the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110); or 3) operatively controlling said items 1) & 2) simultaneously;
The double flow circuit fluid pumping device (123): It is constituted by at least two unidirectional fluid pumps (120a)(120b), wherein the fluid port (b) and fluid port (d) among the fluid port (a), fluid port (b), fluid port (c), and fluid port (d) of the double flow circuit installed within the rotary type heat exchange apparatus (1000) are respectively installed with the unidirectional fluid pumps (120a)(120b) being capable of producing negative or positive pressure to constitute the double flow circuit fluid pumping device (123), thereby by the operative control device (250) to operative control the flow rate of the heat exchange fluid pumped by the double fluid circuit fluid pumping device (123) driven by the power source (300), as well as to operative control the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110);
The power source (300): It is the device including AC or DC city power system or independent power supply device to provide power source for the operation of the rotary type heat exchange apparatus with automatic exchange flow rate modulation;
The operative control device (250): It is constituted by electromechanical components, solid state electronic components, or microprocessors and related software and operative control interfaces to operatively control the unidirectional fluid pumps (120a)(120b) of the double flow circuit fluid pumping device (123) by: 1) operatively controlling the switching functional operation; or 2) operatively controlling the flow rate of pumping heat exchange fluid; or 3) operatively controlling the temperature distribution status between the fluid and the rotary type heat exchange rotating disk (100); or 4) operatively controlling the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110); or 5) integrally operatively controlling at least two of said items 1)2)3)4) in combination;
The rotating disk rotationally driving device (110): It is constituted by electric motor or other rotational power source with variable speed transmission device (111) for driving the rotary type heat exchange rotating disk (100) to rotate and modulating its rotating speed to change its heat exchange characteristics;
The rotary type heat exchange rotating disk (100): It is rotationally driven by the rotating disk rotationally driving device (110), wherein its disk is internally provided with two porous fluid circuit areas for passing through different directional fluid flows and has the heat absorbing or dissipating function, the two fluid circuits of the rotary type heat exchange rotating disk are respectively provided with two fluid ports for respectively pumping two fluid streams, wherein the two fluid flow circuits are mutually isolated, thereby allowing the fluids in different flowing directions to pass through the rotary type heat exchange rotating disk (100) rotationally driven by the rotating disk rotationally driving device (110) for heat exchange function operations;
The timings to operatively control the flow rate of heat exchange fluid and/or the rotating speed of rotary type heat exchange rotating disk (100) driven by rotating disk rotationally driving device (110) are that: 1) the fluid flow rate and change timing are preset in the open loop operative control; or 2) it is randomly manually operatively controlled; or 3) to install at least one temperature detecting device (11) at the position capable of directly or indirectly detecting the temperature variation, wherein the signals detected by the temperature detecting device (11) is referred to determine the operating timing for operatively controlling the flow rate of pumping exchange fluid and/or the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110);
The unidirectional fluid pump (120a) and unidirectional fluid pump (120b) can also be installed to the fluid ports (a)(d) or installed to the fluid ports (b)(c) in said embodiment of
As shown in
The rotary type heat exchange apparatus (1000) and the unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure can be integrally combined or separately installed to constitute the double flow circuit fluid pumping device (123) function, and the two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively installed to the fluid port (b) and the fluid port (d) so as to pump the fluid in different pumping flow directions; said two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively driven by the electric motor individually or are commonly driven by the same motor, wherein they are operatively controlled by the operative control device (250) to operate in one or more than one functional modes of the following, including: 1) the two unidirectional fluid pumps (120a)(120b) are pumped in negative pressure for pumping the two fluid streams in different pumping flow directions; 2) the two unidirectional fluid pumps (120a)(120b) are pumped in positive pressure for pumping the two fluid streams in different pumping flow directions; in said two functional mode operations of said 1) & 2), the two fluid streams are pumped to pass through different areas of the rotary type total heat exchange rotating disk (200), the flow circuits of the two fluid streams are mutually isolated, and the flow directions of the two fluid streams are contrary to each other;
At least one temperature detecting device (11) and at least one humidity detecting device (21) are installed at the positions capable of directly or indirectly detecting the temperature and humidity variations of the pumping exchange fluid, including installing both or at least one detecting device, wherein the detected signals are referred as the operating timing for the operative control device (250); including: 1) operatively controlling the flow rate of the exchange fluid pumped by the double flow circuit fluid pumping device (123); or 2) operatively controlling the rotating speed of the rotary type total heat exchange rotating disk (200) driven by rotating disk rotationally driving device (110); or 3) operatively controlling said items 1) & 2) simultaneously;
Said temperature detecting device (11) and humidity detecting device (21) are integrally combined or individually separately installed;
The double flow circuit fluid pumping device (123): It is constituted by at least two unidirectional fluid pumps (120a)(120b), wherein the fluid port (b) and fluid port (d) of the double flow circuit installed within the rotary type heat exchange apparatus (1000) are respectively installed with the unidirectional fluid pumps (120a)(120b) being capable of producing negative or positive pressure to constitute the double flow circuit fluid pumping device (123), thereby by the operative control device (250) to operative control the flow rate of the heat exchange fluid pumped by the double fluid circuit fluid pumping device (123) driven by the power source (300), as well as to operative control the rotating speed of the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110);
The power source (300): It is the device including AC or DC city power system or independent power supply device to provide power source for the operation of the rotary type heat exchange apparatus with automatic exchange flow rate modulation;
The operative control device (250): It is constituted by electromechanical components, solid state electronic components, or microprocessors and related software and operative control interfaces to operatively control the unidirectional fluid pumps (120a)(120b) of the double flow circuit fluid pumping device (123) by: 1) operatively controlling the switching functional operation; or 2) operatively controlling the flow rate of pumping heat exchange fluid; or 3) operatively controlling the temperature distribution status between the fluid and the rotary type total heat exchange rotating disk (200); or 4) operatively controlling the humidity distribution status of the rotary type total heat exchange rotating disk (200); or 5) operatively controlling the rotating speed of the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110); or 6) integrally operatively controlling at least two of said items 1), 2), 3), 4) & 5) in combination;
The rotating disk rotationally driving device (110): It is constituted by electric motor or other rotational power source with variable speed transmission device (111) for driving the rotary type total heat exchange rotating disk (200) to rotate and modulating its rotating speed to change its heat exchange characteristics;
The rotary type total heat exchange rotating disk (200): It is rotationally driven by the rotating disk rotationally driving device (110), wherein its disk is internally provided with two porous fluid circuit areas for passing through different directional fluid flows and has the heat absorbing or dissipating as well as humidity absorbing or dissipating function, the two fluid circuits of the rotary type total heat exchange rotating disk (200) are respectively individually made with two fluid ports for respectively pumping two fluid streams, wherein the two fluid flow circuits are mutually isolated, thereby allowing the fluids in different flow directions to pass through the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110) for total heat exchange function operations;
The timings to operatively control the flow rate of heat exchange fluid and/or the rotating speed of rotary type total heat exchange rotating disk (200) driven by rotating disk rotationally driving device (110) are that: 1) the fluid flow rate and change timing are preset in the open loop operative control; or 2) it is randomly manually operatively controlled; or 3) to install both or at least one of the temperature detecting device (11), and humidity detecting device (21) at the position capable of directly or indirectly detecting the temperature variation, or humidity variation of the pumping exchange fluid, wherein the detected signals are referred to determine the operating timing for operatively controlling the flow rate of pumping exchange fluid and/or the rotating speed of the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110);
The unidirectional fluid pump (120a) and unidirectional fluid pump (120b) can also be installed to the fluid ports (a)(d) or installed to the fluid ports (b)(c) in said embodiment of
The aforesaid embodiment of
In addition, it is further through the operative control device (250) to refer to detected values of the temperature detecting device (11), humidity detecting device (21) to operatively control the heating timing and heating thermal energy value of the heater (130);
As shown in
The rotary type heat exchange apparatus (1000) and the unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure can be integrally combined or separately installed to constitute the double flow circuit fluid pumping device (123) function, and the two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively installed to the fluid port (b) and the fluid port (d) so as to pump the fluid in different pumping flow directions; said two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively driven by the electric motor individually or are commonly driven by the same motor, wherein they are operatively controlled by the operative control device (250) to operate in one or more than one functional modes of the following, including: 1) the two unidirectional fluid pumps (120a)(120b) are pumped in negative pressure for pumping the two fluid streams in different pumping flow directions; 2) the two unidirectional fluid pumps (120a)(120b) are pumped in positive pressure for pumping the two fluid streams in different pumping flow directions; in said two functional mode operations of said 1) & 2), the two fluid streams are pumped to pass through different areas of the rotary type heat exchange rotating disk (100), the flow circuits of the two fluid streams are mutually isolated, and the flow directions of the two fluid streams are contrary to each other;
At least one temperature detecting device (11) and at least one gaseous or liquid state fluid composition detecting device (31) are installed at the positions capable of directly or indirectly detecting the temperature variation of the pumping exchange fluid and the composition variation of the pumping gaseous or liquid state fluid, including installing both or at least one detecting device, wherein the detected signals are referred as the operating timing for the operative control device (250); including 1) operatively controlling the flow rate of the exchange fluid pumped by the double flow circuit fluid pumping device (123); or 2) operatively controlling the rotating speed of the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110); or 3) operatively controlling said items 1) & 2) simultaneously;
Said temperature detecting device (11) and gaseous or liquid state fluid composition detecting device (31) are integrally combined or individually separately installed;
The double flow circuit fluid pumping device (123): It is constituted by at least two unidirectional fluid pumps (120a)(120b), wherein the fluid port (b) and fluid port (d) among the fluid port (a), fluid port (b), fluid port (c), and fluid port (d) of the double flow circuit installed within the rotary type heat exchange apparatus (1000) are respectively installed with the unidirectional fluid pumps (120a)(120b) being capable of producing negative or positive pressure to constitute the double flow circuit fluid pumping device (123), thereby by the operative control device (250) to operative control the flow rate of the heat exchange fluid pumped by the double fluid circuit fluid pumping device (123) driven by the power source (300), as well as to operative control the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110);
The power source (300): It is the device including AC or DC city power system or independent power supply device to provide power source for the operation of the rotary type heat exchange apparatus with automatic exchange flow rate modulation;
The operative control device (250): It is constituted by electromechanical components, solid state electronic components, or microprocessors and related software and operative control interfaces to operatively control the unidirectional fluid pumps (120a)(120b) of the double flow circuit fluid pumping device (123) by: 1) operatively controlling the switching functional operation; or 2) operatively controlling the flow rate of pumping heat exchange fluid; or 3) operatively controlling the temperature distribution status between the fluid and the rotary type heat exchange rotating disk (100); or 4) operatively controlling the composition interaction status of between the gaseous or liquid state fluids for heat exchange at the two sides of the rotary type heat exchange apparatus (1000);or 5) operatively controlling the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110); or 6) integrally operatively controlling at least two of said items 1), 2), 3), 4) & 5)in combination;
The rotating disk rotationally driving device (110): It is constituted by electric motor or other rotational power source with variable speed transmission device (111) for driving the rotary type heat exchange rotating disk (100) to rotate and modulating its rotating speed to change its heat exchange characteristics;
The rotary type heat exchange rotating disk (100): It is rotationally driven by the rotating disk rotationally driving device (110), wherein its disk is internally provided with two porous fluid circuit areas for passing through different directional fluid flows and has the heat absorbing or dissipating function, the two fluid circuits of the rotary type heat exchange rotating disk are respectively individually made with two fluid ports for respectively pumping two fluid streams, wherein the two fluid flow circuits are mutually isolated, thereby allowing the fluids in different flow directions to pass through the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110) for heat exchange function operations;
The timings to operatively control the flow rate of heat exchange fluid and/or the rotating speed of rotary type heat exchange rotating disk (100) driven by rotating disk rotationally driving device (110) are that: 1) the fluid flow rate and change timing are preset in the open loop operative control; or 2) It is randomly manually operatively controlled; or 3) to install at least one temperature detecting device (11) or at least one gaseous or liquid state fluid composition detecting device (31) at the position capable of directly or indirectly detecting the temperature or composition of the pumping gaseous or liquid state fluid, including installing both or at least one detecting device, wherein the detected signals are used as the reference to determine the operating timing for operatively controlling the flow rate of the pumping exchange fluid or the rotating speed of the rotary type heat exchange rotating disk (100) driven by the rotating disk rotationally driving device (110);
The unidirectional fluid pump (120a) and unidirectional fluid pump (120b) can also be installed to the fluid ports (a)(d) or installed to the fluid ports (b)(c) in said embodiment of
As shown in
The rotary type heat exchange apparatus (1000) and the unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure can be integrally combined or separately installed to constitute the double flow circuit fluid pumping device (123) function, and the two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively installed to the fluid port (b) and the fluid port (d) so as to pump the fluid in different pumping flow directions; said two unidirectional fluid pumps (120a)(120b) capable of producing negative pressure or positive pressure are respectively driven by the electric motor individually or are commonly driven by the same motor, wherein they are operatively controlled by the operative control device (250) to operate in one or more than one functional modes of the following, including: 1) the two unidirectional fluid pumps (120a)(120b) are pumped in negative pressure for pumping the two fluid streams in different pumping flow directions; 2) the two unidirectional fluid pumps (120a)(120b) are pumped in positive pressure for pumping the two fluid streams in different pumping flow directions; in said two functional mode operations of said 1) & 2), the two fluid streams are pumped to pass through different areas of the rotary type total heat exchange rotating disk (200), the flow circuits of the two fluid streams are mutually isolated, and the flow directions of the two fluid streams are contrary to each other;
At least one temperature detecting device (11), at least one humidity detecting device (21), or at least one gaseous or liquid state fluid composition detecting device (31) are installed at the positions capable of directly or indirectly detecting the temperature variation, humidity variation, or gaseous or liquid state fluid composition variation of the pumping exchange fluid, including installing three or at least one detecting device, wherein the detected signals are used as the references to determine the operating timing of the exchange fluid flow rate pumped by the double flow circuit fluid pumping device (123) being operatively controlled by the operative control device (250); including 1) operatively controlling the flow rate of the exchange fluid pumped by the double flow circuit fluid pumping device (123); or 2) operatively controlling the rotating speed of the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110); or 3) operatively controlling said items 1) & 2) simultaneously;
Said temperature detecting device (11), humidity detecting device (21) and gaseous or liquid state fluid composition detecting device (31) are integrally combined or individually separately installed;
The double flow circuit fluid pumping device (123): It is constituted by at least two unidirectional fluid pumps (120a)(120b), wherein the fluid port (b) and fluid port (d) of the double flow circuit installed within the rotary type heat exchange apparatus (1000) are respectively installed with the unidirectional fluid pumps (120a)(120b) being capable of producing negative or positive pressure to constitute the double flow circuit fluid pumping device (123), thereby by the operative control device (250) to operative control the flow rate of the heat exchange fluid pumped by the double fluid circuit fluid pumping device (123) driven by the power source (300), as well as to operative control the rotating speed of the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110);
The power source (300): It is the device including AC or DC city power system or independent power supply device to provide power source for the operation of the rotary type heat exchange apparatus with automatic exchange flow rate modulation;
The operative control device (250): It is constituted by electromechanical components, solid state electronic components, or microprocessors and related software and operative control interfaces to operatively control the unidirectional fluid pumps (120a)(120b) of the double flow circuit fluid pumping device (123) by: 1) operatively controlling the switching functional operation; or 2) operatively controlling the flow rate of pumping heat exchange fluid; or 3) operatively controlling the temperature distribution status between the fluid and the rotary type total heat exchange rotating disk (200); or 4) operatively controlling the humidity distribution status of the rotary type total heat exchange rotating disk (200); or 5) operatively controlling the composition interaction status between the gaseous or liquid state fluids for heat exchange at the two sides of the rotary type heat exchange apparatus (1000);or 6) operatively controlling the rotating speed of the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110); or 7) integrally operatively controlling at least two of said items 1), 2), 3), 4), 5) & 6) in combination;
The rotating disk rotationally driving device (110): It is constituted by electric motor or other rotational power source with variable speed transmission device (111) for driving the rotary type total heat exchange rotating disk (200) to rotate and modulating its rotating speed to change its heat exchange characteristics;
The rotary type total heat exchange rotating disk (200): It is rotationally driven by the rotating disk rotationally driving device (110), wherein its disk is internally provided with two porous fluid circuit areas for passing through different directional fluid flows and has the heat absorbing or dissipating as well as humidity absorbing or dissipating function, the two fluid circuits of the rotary type total heat exchange rotating disk (200) are respectively individually made with two fluid ports for respectively pumping two fluid streams, wherein the two fluid flow circuits are mutually isolated, thereby allowing the fluids in different flow directions to pass through the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110) for total heat exchange function operations;
The timings to operatively control the flow rate of heat exchange fluid and/or the rotating speed of rotary type total heat exchange rotating disk (200) driven by rotating disk rotationally driving device (110) are that: 1) the fluid flow rate and change timing are preset in the open loop operative control; or 2) it is randomly manually operatively controlled; or 3) to install three or at least one kind of detecting devices of at least one temperature detecting device (11), at least one humidity detecting device (21), or at least one gaseous or liquid state fluid composition detecting device (31) at the position capable of directly or indirectly detecting the temperature variation, humidity variation, or gaseous or liquid state fluid composition variation of the pumping exchange fluid, wherein the detected signals are used as the reference to determine the operating timing for operatively controlling the flow rate of the pumping fluid or the rotating speed of the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110);
The unidirectional fluid pump (120a) and unidirectional fluid pump (120b) can also be installed to the fluid ports (a)(d) or installed to the fluid ports (b)(c) in said embodiment of
The aforesaid embodiment of
In addition, it is further through the operative control device (250) to refer to detected values of the temperature detecting device (11), humidity detecting device (21), gaseous or liquid state composition detecting device (31) to operatively control the heating timing and heating thermal energy value of the heater (130);
For the rotary type heat exchange apparatus with automatic flow rate exchange modulation of present invention, the structural types of the rotary type heat exchange rotating disk or the rotary type total heat exchange rotating disk include one or more than one characteristic of the following: 1) the tubular structure in linear or other geometric shape; or 2) the multi-layer structure constituted by the gaseous or liquid state liquid fluid circuits; or 3) one or more than one fluid circuit in series connection, parallel connection, or series and parallel connection;
The rotary type heat exchange apparatus with automatic flow rate exchange modulation of present invention is further installed with the three or at least one or more than one detecting devices of the temperature detecting device (11), humidity detecting device (21), and gaseous or liquid state fluid composition detecting device (31), wherein the installation positions include both or one of the positions near to fluid port (a) and fluid port (b), or both or one of the positions near to fluid port (c) and fluid port (d) of the rotary type heat exchange apparatus (1000), rotary type heat exchange rotating disk (100), or rotary type total heat exchange rotating disk (200), or the other positions capable of detecting the temperature, humidity or composition of the exchange fluid during heat exchange operation, and the number of them could be one or more than one to provide detected signals for reference by one or more than functional operations of the following: 1) for reference to operatively control the double flow circuit fluid pumping device (123) for modulating the flow speed or flow rate of the pumping fluid; or 2) for reference to operatively control the opening percentage of the fluid valve for modulating the flow speed or flow rate of the pumping fluid;
For said temperature detecting device (11), humidity detecting device (21), and gaseous or liquid state fluid composition detecting device (31), all of the detecting devices are integrally combined, or part of the detecting devices are integrally combined, or they are individually separately installed;
Said double flow circuit fluid pumping device (123) of the present invention constituted by two unidirectional fluid pumps (120a)(120b) is configured for pumping gaseous or liquid state fluids, wherein the two unidirectional fluid pumps (120a)(120b) constituting the double flow circuit fluid pumping device (123) except for being driven by individually installed electric motors or by a common electric motor, they can also be driven by engine power, or the mechanical or electric power converted from other wind power, thermal energy, temperature-difference energy, or solar energy.
The operative control device (250) of the present invention is equipped with the electric motor, engine power, or mechanical or electric power generated or converted from other wind power, thermal energy, temperature-difference energy, or solar energy for driving various unidirectional fluid pumps (120a)(120b), or the rotating disk rotationally driving device (110), or capable of operatively controlling the operating timing of the fluid pumps or fluid valves thereby changing the flow directions of the two fluid streams passing through the rotary type heat exchange rotating disk (100), or capable of operatively controlling the rotating speed of the rotary type heat exchange rotating disk (100) or the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110) to further operatively control partial or all modulating functions of the rotating speed, flow rate, fluid pressure of the fluid pumps.
For said rotary type heat exchange apparatus with automatic flow rate exchange modulation of present invention, it is further through the operative control device (250) to operatively control the flow rate of the pumping fluid pumped by the double flow circuit fluid pumping device (123) and/or to operatively control the rotating speed of the rotary type heat exchange rotating disk (100) or the rotary type total heat exchange rotating disk (200) driven by the rotating disk rotationally driving device (110), wherein the operating modes include one or more than one of the following:
In setting up the flow rate operative control function of the rotary type heat exchange apparatus with automatic flow rate exchange modulation of present invention, the fluid flow rate operative control range including the stepped or stepless fluid flow rate modulations from cease of transportation to maximum transportation rate is relied on one or more than one of the following devices to change the fluid flow rate, wherein it includes:
The flow rate ratio between the two fluid streams of the said rotary type heat exchange apparatus with automatic flow rate exchange modulation of present invention for passing through the rotary type heat exchange apparatus (1000) during operation include one or more than one ratio mode of the following:
For said rotary type heat exchange apparatus with automatic flow rate exchange modulation of present invention, beside of the operating function of pumping fluids of the double flow circuit in different flow directions, the double flow circuit fluid pumping device (123) being constituted by two fluid pumps capable of bidirectional pumping is through operatively controlling the pumping flow directions of the two fluid streams to further have one or more than one special operating modes of the following:
The same directional pumping function of said two fluid streams can be applied to meet the needs for emergency additional fluid flow rate pumping in or out.