The present invention relates to a gas tap of the tapered rotary appendix type attached to a rotary actuating shaft, being the gas tap mounted on the panel of a cooking appliance, wherein the rotary appendix is provided with a series of openings for adjusting the flow rate according to the fuel gas family supplied to the cooking appliance.
Gas taps of the above-defined type, provided with a dome-shaped bearing bush guiding the rotation of the actuating shaft and fulfilling at the same time the function of a cover for the hollow tap body, are already known. The gas tap is mounted on the front control panel with the actuating shaft passing through a external control panel in the appliance, and the tap body resting inside the appliance connected to a fuel gas supply tube or nipple. The external free end of the actuating shaft is fitted with a rotary control knob inserted in the latter. The control knob is removable from the shaft by pulling it out. The hollow body of the tap has its own gas outlet conduit which is connected to the respective appliance burner.
An example of rotary tap of the above type is disclosed in EP-0805310-A1, having its actuating shaft coupled to a frustro-conical regulating organ, which is able to rotate a given angle for the supply of a gas flow from two angular positions spaced around 120.degree. apart, corresponding respectively to a high or maximum flow “Qmax” and to a low or minimum flow “Qmin”, the latter applied to “gentle boiling”. The rotation of the shat as far as one of the angular positions, is started from an initial valve closed “OFF” position.
In this type of known valves the actuating shaft has a pin protruding in a radial direction to limit its angular travel, guided on a circular surface in the inner face of the body cover or some other part of the valve body. The total travel of the regulating organ thus limited is, for instance, 210.degree. from the OFF position. The end position corresponds to Qmin. Any of the flows Qmax, Qint—intermediate flow—and Qmin is regulated by way of a corresponding hole or groove in the regulating organ facing the outlet conduit. All the flow rate are supplied from a common inlet conduit through an inner chamber in the regulating organ which is in communication with an outlet conduit. The Qmin outlet hole has an area of calibrated section for a standard type of given fuel gas, adjusted according to the output power of the cooking appliance burner.
Solutions are already known for a single tap to be mounted on cooking appliances that use two different types of gas, such as natural gas (NG) or liquefied petroleum gas (LPG). For example, in U.S. Pat. No. 5,009,393 an additional valve element in the form of a sleeve, is inserted in the inner chamber of the tapered regulating organ. The area of the opening section for the passage of gas flow towards the outlet, which corresponds to low flow or minimum flow Qmin, is adjusted by rotating this added valve sleeve which thus modifies the uncovered section area of the outlet opening.
This known solution has the disadvantage that for adjusting the Qmin for the rotation of the valve sleeve, it is necessary to use a screwdriver, which has to be inserted from an opening in the actuating shaft until it reaches the valve sleeve and to transmit a precise turn.
The object of the invention comprises a gas tap for a domestic cooking appliance of the type with a frustro-conical regulating organ coupled to an actuating shaft and to a rotary control knob, which is capable of supplying different required flows of gas lying between two angular limit positions, of either of the two different types of gas, N gas or LP gas, the tap having a dual means for limiting the angle of rotation of the regulating organ, and the control knob being interchangeable on the actuating shaft, which depending on the type of gas used by the appliance can be or not provided, with a means for guiding the rotation in cooperation with a means for limiting the rotation provided on a panel on the cooking appliance.
The gas valve according to the invention is capable of providing two angular positions of the regulating organ, both spaced apart from each other to supply a different minimum flow Qmin according to the type of gas, NG or standard LPG, used as the fuel for the appliance. For this purpose the regulating organ has two successive Qmin outlet holes spaced apart in the angular direction, which face up individually with the inlet hole in the tap body, being the two different angular positions established by means of a respective rotation stop.
The use of a single valve for regulating the flow of two different gas families is an advantage of the gas valve invention, when mounted on a cooking appliance. During the start-up of the cooking appliance the user only has to carry out a choice for a control knob from among two available units accompanying the valve, in accordance with the type of fuel gas NG or LP appropriate for the cooking appliance. Instead of mounting to each rotary valve shaft one elected class of control knob, the user also can choose for a element of cooker panel, from among two different available units of a panel element to be mounted on the cooker. In this way, it is not necessary to use tools for adjusting the flow, nor to learn how to adjust the regulating organ as is required in the prior art valve.
With reference to
The valve body 3a has an elongated shape with a similarly frustro-conical central housing cavity 15, wherein the regulating organ 6 is pushed by a spring 11 for a tight sealing. The free end of the actuating shaft 7 is installed passing through a hole 2a in the appliance panel 2, and afterwards the user fits it with a control knob 9, which is chosen from the two different units of control knob 9, both supplied to the user with each valve unit 3. A cover 12 protecting the housing cavity 15, has a tubular portion 12b for guiding the actuating shaft 7 in rotation.
The regulating organ 6 may rotate with the shaft 7 an angle “A” in either of the two directions from an initial angular “OFF” position corresponding to the valve closed condition, to an angle A larger than 180.degree. and smaller than 360.degree. The OFF position is the initial end of the rotational travel “A”, and it is established by a radial pin 13 on the shaft. The cover 12 presents a sliding surface for the radial pin 13, extending in a rotating arc “A3” ending in a recess 12a in the cover, which acts as a stop for the rotation of the radial pin 13.
Depending on whether N or LP gas is supplied to the cooking appliance, the control knob 9 to be fitted on the actuating shaft 7 is distinguished by means of an appendix 14 integral with the control knob. A first class of control knob 9 to be chosen for incorporating to each valve rotary shaft before being mounted on the appliance 1A, represented on
In reference to
On the NG type cooking appliance, the knob class provided with the appendix 14 cannot turn through an angle larger than A2. The external control panel 2 (
Once installed on the panel 2, the knob unit 9 chosen for the supply of LPG, lacks in having said appendix 14 or any other element limiting the angle “A” of rotation. Thus, the regulating organ 6 may rotate as far as an angular position A3=270 degrees, located farther away from the initial OFF position than the prior position “A2”, until a second through hole 19 lines up with the inlet conduit 4. The diameter D2 of hole 19 is calibrated for the supply of a predetermined LPG “Qmin” flow.
It is preferred that the control knob 9 button impose a rotational end position A2 less than the end position A3 imposed by the actuating shaft 7 because the valve body is constructed according to the existing model with a limit A3=270.degree. of rotation of the shaft 7 already imposed. The angular values are indicated herein as an example. Similarly, the regulating valve 3 and its rotary regulating organ 6 may be constructed with through holes 16-19, superimposed for the regulation of the flow “Q” to the outlet conduit 5 of the valve instead of the inlet conduit 4 as shown in
The cover 12 of the valve body is equipped with a tubular part 12b for guiding the actuating shaft of the valve 7 and the recess 12a to limit the angular stroke A3=270 degrees corresponding to the Qmin of LPG. The cover 12 can be made at a low cost using die-stamping operations. The mould for the two different classes of control knob 9, provided with and lacking the guide means 14 can also be made inexpensively by plastic molding.
The placement of the two stop means 12a and 20, respectively in the valve body 3a and in the control or assembly panel 2 of the appliance 1A, each one of them with a pre-determined circular extension, corresponds with the two angular travels A3 and A2. The angular space A3-A2 existing between them corresponds to the intermediate space between the two orifices of passage 18 and 19, which are calibrated for a constant Qmin of NG and LPG, respectively. Hence, the same valve unit 3 is valid for either of the two types of gas supplied to the cooking appliance 1A, without the need for any adjustment or change in the regulating organ 6 for the supply of another type of gas.
With reference to
The bezel disk 22 is provided with a stop means 24 for the rotation of the control knob 9. The stop means 24 protrudes toward the guide means 14 at the base 9a of the knob, and is constructed preferably of a tongue 24 lifted from a cut-off in the surface of the recess 22a, as shown in
Other embodiments of the invention in addition to those 1A and 1B described above are also possible. Either a half of the control knob 9 units those of the class provided with a rotation guide means 14, or a half of the panel element units 22 those of equipped with a stop means 24, will be chosen to be assembled in an appliance 1A or 1B of the type for supplying the gas NG, said guide means 14 interacting with a stop means 20 or 22 on the fixed part of the cooking appliance. On the other hand, the appliance to be supplied either with the gas LPG will be equipped either with a knob unit 9 of the half lacking the rotation guide means 14, or with a panel element unit 22 of the half lacking the stop means 24.
Likewise, another rotation guide means of the shaft 7 different than the radial pin 13 described here can be constructed for the supply position A3 of Qmin of LPG through the calibrated orifice 19, interacting with a travel stop in the body 3a also different from the recess 12a in the cover 12 herein described. The cooking appliance 1A,1B is always equipped with identical rotary valves 3 for either the supply of NG or LPG, only chosen the class of control knob 9 provided with or lacking the rotation guide means 14, or chosen the panel element unit 22 provided with or lacking the rotation stop means 24.
Number | Date | Country | Kind |
---|---|---|---|
200500309 U | Feb 2005 | ES | national |
The present application is a continuation application of copending patent application Ser. No. 11/886,798, filed on Sep. 20, 2007, which is entitled “ROTARY VALVE ARRANGED IN A MULTI-GAS COOKER,” and which was a 35 USC §371 National Phase application of PCT Application No. PCT/EP2006/001143, filed on Feb. 9, 2006, which claimed priority to and the benefit of Spanish Patent Application No. U 200500309, and was filed on Feb. 10, 2005, the disclosures of all of which being herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
0791260 | Fuller | May 1905 | A |
1215653 | Hale | Feb 1917 | A |
1526500 | Kasch | Feb 1925 | A |
1711436 | Williams | Apr 1929 | A |
1869764 | Methudy | Aug 1932 | A |
1921762 | Leins | Aug 1933 | A |
1940171 | Huss | Dec 1933 | A |
2101356 | William | Dec 1937 | A |
2650612 | Brumbaugh | Sep 1953 | A |
2650613 | Brumbaugh | Sep 1953 | A |
2723102 | Mueller | Nov 1955 | A |
2987078 | Du Perow | Jun 1961 | A |
3001547 | Brumbaugh | Sep 1961 | A |
3068902 | Brumbaugh | Dec 1962 | A |
3093155 | Dawes | Jun 1963 | A |
3107082 | Reynolds | Oct 1963 | A |
3313490 | Loveland | Apr 1967 | A |
3448923 | Saponara | Jun 1969 | A |
3537473 | Dezurik, Jr. | Nov 1970 | A |
3643688 | Meinert | Feb 1972 | A |
3949966 | Fabish | Apr 1976 | A |
3964514 | Manoogian et al. | Jun 1976 | A |
4020870 | Carlson | May 1977 | A |
4140297 | Bussell | Feb 1979 | A |
4366947 | Voege | Jan 1983 | A |
4499630 | Harris et al. | Feb 1985 | A |
4637429 | Dietiker et al. | Jan 1987 | A |
4862917 | Genbauffe | Sep 1989 | A |
4947891 | Genbauffe | Aug 1990 | A |
5009393 | Massey | Apr 1991 | A |
5020774 | Christianson | Jun 1991 | A |
5082023 | D'Alayer de Costemore d'Arc | Jan 1992 | A |
5141018 | Guterman | Aug 1992 | A |
5238398 | Harris | Aug 1993 | A |
5345838 | Howie, Jr. | Sep 1994 | A |
5413141 | Dietiker | May 1995 | A |
5435343 | Buezis | Jul 1995 | A |
5522429 | Bechte | Jun 1996 | A |
5899439 | Gottwald et al. | May 1999 | A |
5931387 | Hurley et al. | Aug 1999 | A |
5983884 | Lee | Nov 1999 | A |
5992457 | Humpert | Nov 1999 | A |
6027335 | Griffioen | Feb 2000 | A |
6162048 | Griffioen | Dec 2000 | A |
6170507 | Dalton et al. | Jan 2001 | B1 |
6341760 | Rawlings | Jan 2002 | B1 |
6347784 | Philipps-Liebich et al. | Feb 2002 | B1 |
6357721 | Maurer | Mar 2002 | B1 |
RE37617 | Sherman | Apr 2002 | E |
6394081 | Aguirre-Esponda et al. | May 2002 | B1 |
6520481 | Harneit | Feb 2003 | B2 |
6640390 | Lai | Nov 2003 | B1 |
6666227 | Erickson | Dec 2003 | B2 |
6758242 | Jones et al. | Jul 2004 | B2 |
6871803 | Ohmi et al. | Mar 2005 | B1 |
6941962 | Haddad | Sep 2005 | B2 |
7156370 | Albizuri | Jan 2007 | B2 |
7237570 | Garnard | Jul 2007 | B2 |
7458386 | Zhang | Dec 2008 | B2 |
7641470 | Albizuri | Jan 2010 | B2 |
7651330 | Albizuri | Jan 2010 | B2 |
20030010952 | Morete | Jan 2003 | A1 |
20040089830 | Beyrak | May 2004 | A1 |
20050109967 | Ohmi et al. | May 2005 | A1 |
20050202361 | Albizuri | Sep 2005 | A1 |
20060060251 | Gamard et al. | Mar 2006 | A1 |
20060201496 | Shingler | Sep 2006 | A1 |
20080138749 | Albizuri | Jun 2008 | A1 |
20080156378 | Zhang | Jul 2008 | A1 |
20080202496 | Albizuri | Aug 2008 | A1 |
20080289615 | Parrish | Nov 2008 | A1 |
20090047610 | Teng | Feb 2009 | A1 |
20100089385 | Albizuri | Apr 2010 | A1 |
20100089386 | Albizuri | Apr 2010 | A1 |
20110005508 | Albizuri | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
3039378 | May 1982 | DE |
0805310 | Nov 1997 | EP |
1517003 | Feb 1968 | FR |
2642148 | Jul 1990 | FR |
1298809 | Dec 1972 | GB |
1329893 | Sep 1973 | GB |
WO2006084690 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100089385 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11886798 | US | |
Child | 12639802 | US |