This invention relates to the field of percussive tools used in drilling. More specifically, the invention relates to the field of downhole jack hammers which may be actuated by the drilling fluid. Typically, traditional percussion bits are activated through a pneumonic actuator. Through this percussion, the drill string is able to more effectively apply drilling power to the formation, thus aiding penetration into the formation.
The prior art has addressed the operation of a downhole hammer actuated by drilling mud. Such operations have been addressed in the U.S. Pat. No. 7,073,610 to Susman, which is herein incorporated by reference for all that it contains. The '610 patent discloses a downhole tool for generating a longitudinal mechanical load. In one embodiment, a downhole hammer is disclosed which is activated by applying a load on the hammer and supplying pressurizing fluid to the hammer. The hammer includes a shuttle valve and piston that are moveable between first and further position, seal faces of the shuttle valve and piston being released when the valve and the piston are in their respective further positions, to allow fluid flow through the tool. When the seal is releasing, the piston impacts a remainder of the tool to generate mechanical load. The mechanical load is cyclical by repeated movements of the shuttle valve and piston.
U.S. Pat. No. 6,994,175 to Egerstrom, which is herein incorporated by reference for all that it contains, discloses a hydraulic drill string device that can be in the form of a percussive hydraulic in-hole drilling machine that has a piston hammer with an axial through hole into which a tube extends. The tube forms a channel for flushing fluid from a spool valve and the tube wall contains channels with ports cooperating with the piston hammer for controlling the valve.
U.S. Pat. No. 4,819,745 to Walter, which is herein incorporated by reference for all that it contains, discloses a device placed in a drill string to provide a pulsating flow of the pressurized drilling fluid to the jets of the drill bit to enhance chip removal and provide a vibrating action in the drill bit itself thereby to provide a more efficient and effective drilling operation.
In one aspect of the present invention a tool string comprises a jack element substantially coaxial with an axis of rotation. The jack element is housed within a bore of the tool string and has a distal end extending beyond a working face of the tool string. A rotary valve is disposed within the bore of the tool string. The rotary valve has a first disc attached to a driving mechanism and a second disc axially aligned with and contacting the first disc along a flat surface. As the discs rotate relative to one another at least one port formed in the first disc aligns with another port in the second disc. Fluid passed through the ports is adapted to displace an element in mechanical communication with the jack element. In a downhole environment, a the fluid displaces the element, the jack element oscillates, thereby furthering the penetration into a formation.
The driving mechanism controlling the first disc may be a turbine or a motor. The jack element may be adapted to rotate the second disc. However, the second disc may be fixed to a bore wall of the tool string. The jack element and the driving mechanism may rotate opposite each other when in operation. Thus, the first and second discs may rotate opposite each other. The jack element may be stationary with respect to the formation.
At least two fluid ports may be formed in the second disc. During operation, all the drilling fluid may be passed through the fluid ports. However, only a portion of the drilling fluid may pass through the fluid ports. A sensor attached to the tool string may be adapted to receive acoustic reflections produced by the movement of the jack element. The element may be a ring, a rod, a piston, a block, or a flange. In some cases, the element may be rigidly attached to the jack element. Further, the element may be part of the jack element. Thus, the drilling fluid may be in direct communication with the jack element. A flat surface of the element and the flat surface of the disc may comprise materials selected from the group consisting of chromium, tungsten, tantalum, niobium, titanium, molybdenum, carbide, natural diamond, polycrystalline diamond, vapor deposited diamond, cubic boron nitride, TiN, AlNi, AlTiNi, TiAlN, CrN/CrC/(Mo, W)S2, TiN/TiCN, AlTiN/MoS2, TiAlN, ZrN, diamond impregnated carbide, diamond impregnated matrix, silicon bounded diamond, and/or combinations thereof.
In some embodiments, the jack element 200 may be adapted to rotate the second disc 208. In other embodiments, the second disc 208 may be fixed to a wall 214 of the bore 202. The jack element 200 and the driving mechanism 207 may rotate opposite each other such that the first and second discs 206, 208 rotate opposite each other. In some embodiments, the jack element 200 may be stationary with respect to a formation during a drilling operation.
At least two fluid ports 211 may be formed in the second disc 208. During a drilling operation, all the drilling fluid may be passed through the fluid ports 210, 211 or only a portion of the drilling fluid may be passed through the fluid ports. In hard formations, it may be beneficial to allow all the drilling fluid to pass through the ports 210, 211 such that the vibrations of the jack element 200 are maximized to more effectively penetrate the formation. However, in soft formations, it may not be necessary to vibrate the jack element 200. Thus, not all the drilling fluid may pass through the fluid ports 210, 211. Furthermore, in some formations all the drilling fluid may bypass the ports 210, 211 such that the drilling fluid does not vibrate or displace the jack element 200.
In
In
In some embodiments, the element 212 may be rigidly attached to the jack element 200. More specifically, in
In the preferred embodiment, the port 210 of the first disc 206 may align with the two ports 211, 800 while rotating. As fluid passes through the different ports 211, 800 the fluid may displace the element away from the valve or toward the valve, as shown in
Referring to
The coil is in communication with a load. When the load is applied, power is drawn from the generator 1208, causing the turbine to slow its rotation, which thereby slows the rotation discs with respect to one another and thereby reduces the frequency the element may move in and out of contact with the jack element. Thus the load may be applied to control the vibrations of the jack element. The load may be a resistor, nichrome wires, coiled wires, electronics, or combinations thereof. The load may be applied and disconnected at a rate at least as fast as the rotational speed of driving mechanism. There may be any number of generators used in combination. In embodiments where the driving mechanism is a valve or a hydraulic motor, a valve may control the amount of fluid that reaches the driving mechanism, which may also control the speed at which they rotate.
The electrical generator may be in communication with the load through electrical circuitry 1301. The electrical circuitry 1301 may be disposed within the bore wall 1302 of the component 1202. The generator may be connected to the electrical circuitry 1301 through a coaxial cable. The circuitry may be part of a closed-loop system. The electrical circuitry 1301 may also comprise sensors for monitoring various aspects of the drilling, such as the rotational speed or orientation of the component with respect to the formation. Sensors may also measure the orientation of the generator with respect to the component.
The data collected from these sensors may be used to adjust the rotational speed of the turbine in order to control the jack element.
The load may be in communication with a downhole telemetry system 1303. One such system is the IntelliServ system disclosed in U.S. Pat. No. 6,670,880, which is herein incorporated by reference for all that it discloses. Data collected from sensors or other electrical components downhole may be sent to the surface through the telemetry system 1303. The data may be analyzed at the surface in order to monitor conditions downhole. Operators at the surface may use the data to alter drilling speed if the jack element encounters formations of varying hardness. Other types of telemetry systems may include mud pulse systems, electromagnetic wave systems, inductive systems, fiber optic systems, direct connect systems, wired pipe systems, or any combinations thereof. In some embodiments, the sensors may be part of a feed back loop which controls the logic controlling the load. In such embodiments, the drilling may be automated and electrical equipment may comprise sufficient intelligence to avoid potentially harsh drilling formations while keeping the drill string on the right trajectory.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 11/680,997 filed on Mar. 1, 2007 and entitled Bi-center Drill Bit. U.S. patent application Ser. No. 11/680,997 is a continuation-in-part of U.S. patent application Ser. No. 11/673,872 filed on Feb. 12, 2007 and entitled Jack Element in Communication with an Electric Motor and/or generator. U.S. patent application Ser. No. 11/673,872 is a continuation-in-part of U.S. patent application Ser. No. 11/611,310 filed on Dec. 15, 2006 and which is entitled System for Steering a Drill String. This patent application is also a continuation-in-part of U.S. patent application Ser. No. 11/278,935 filed on Apr. 6, 2006 and which is entitled Drill Bit Assembly with a Probe. U.S. patent application Ser. No. 11/278,935 is a continuation-in-part of U.S. patent application Ser. No. 11/277,394 which filed on Mar. 24, 2006 and entitled Drill Bit Assembly with a Logging Device. U.S. patent application Ser. No. 11/277,394 is a continuation-in-part of U.S. patent application Ser. No. 11/277,380 also filed on Mar. 24, 2006 and entitled A Drill Bit Assembly Adapted to Provide Power Downhole, now U.S. Pat. No. 7,337,856. U.S. patent application Ser. No. 11/277,380 is a continuation-in-part of U.S. patent application Ser. No. 11/306,976 which was filed on Jan. 18, 2006 and entitled Drill Bit Assembly for Directional Drilling, now U.S. Pat. No. 7,360,610. U.S. patent application Ser. No. 11/306,976 is a continuation-in-part of Ser. No. 11/306,307 filed on Dec. 22, 2005, entitled Drill Bit Assembly with an Indenting Member, now U.S. Pat. No. 7,225,886. U.S. patent application Ser. No. 11/306,307 is a continuation-in-part of U.S. patent application Ser. No. 11/306,022 filed on Dec. 14, 2005, entitled Hydraulic Drill Bit Assembly, now U.S. Pat. No. 7,198,119. U.S. patent application Ser. No. 11/306,022 is a continuation-in-part of U.S. patent application Ser. No. 11/164,391 filed on Nov. 21, 2005, which is entitled Drill Bit Assembly, now U.S. Pat. No. 7,270,196. All of these applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
465103 | Wegner | Dec 1891 | A |
616118 | Kuhne | Dec 1898 | A |
946060 | Looker | Jan 1910 | A |
1116154 | Stowers | Nov 1914 | A |
1183630 | Bryson | May 1916 | A |
1189560 | Gondos | Jul 1916 | A |
1360908 | Everson | Nov 1920 | A |
1387733 | Midgett | Aug 1921 | A |
1460671 | Hebsacker | Jul 1923 | A |
1544757 | Hufford | Jul 1925 | A |
1821474 | Mercer | Sep 1931 | A |
1879177 | Gault | Sep 1932 | A |
2054255 | Howard | Sep 1936 | A |
2064255 | Garfield | Dec 1936 | A |
2169223 | Christian | Aug 1939 | A |
2218130 | Court | Oct 1940 | A |
2320136 | Kammerer | May 1943 | A |
2371248 | McNamara | Mar 1945 | A |
2466991 | Kammerer | Apr 1949 | A |
2540464 | Stokes | Feb 1951 | A |
2545036 | Kammerer | Mar 1951 | A |
2755071 | Kammerer | Jul 1956 | A |
2776819 | Brown | Jan 1957 | A |
2819043 | Henderson | Jan 1958 | A |
2838284 | Austin | Jun 1958 | A |
2894722 | Buttolph | Jul 1959 | A |
2901223 | Scott | Aug 1959 | A |
2963102 | Smith | Dec 1960 | A |
3135341 | Ritter | Jun 1964 | A |
3216514 | Nelson | Nov 1965 | A |
3294186 | Buell | Dec 1966 | A |
3301339 | Pennebaker, Jr. | Jan 1967 | A |
3379264 | Cox | Apr 1968 | A |
3429390 | Bennett | Feb 1969 | A |
3493165 | Schonfield | Feb 1970 | A |
3583504 | Aalund | Jun 1971 | A |
3764493 | Rosar | Oct 1973 | A |
3815692 | Varley | Jun 1974 | A |
3821993 | Kniff | Jul 1974 | A |
3955635 | Skidmore | May 1976 | A |
3960223 | Kleine | Jun 1976 | A |
4081042 | Johnson | Mar 1978 | A |
4096917 | Harris | Jun 1978 | A |
4106577 | Summer | Aug 1978 | A |
4176723 | Arceneaux | Dec 1979 | A |
4253533 | Baker | Mar 1981 | A |
4280573 | Sudnishnikov | Jul 1981 | A |
4304312 | Larsson | Dec 1981 | A |
4307786 | Evans | Dec 1981 | A |
4397361 | Langford | Aug 1983 | A |
4416339 | Baker | Nov 1983 | A |
4445580 | Sahley | May 1984 | A |
4448269 | Ishikawa | May 1984 | A |
4499795 | Radtke | Feb 1985 | A |
4531592 | Hayatdavoudi | Jul 1985 | A |
4535853 | Ippolito | Aug 1985 | A |
4538691 | Dennis | Sep 1985 | A |
4566545 | Story | Jan 1986 | A |
4574895 | Dolezal | Mar 1986 | A |
4640374 | Dennis | Feb 1987 | A |
4852672 | Behrens | Aug 1989 | A |
4889017 | Fuller | Dec 1989 | A |
4962822 | Pascale | Oct 1990 | A |
4981184 | Knowlton | Jan 1991 | A |
5009273 | Grabinski | Apr 1991 | A |
5027914 | Wilson | Jul 1991 | A |
5038873 | Jurgens | Aug 1991 | A |
5119892 | Clegg | Jun 1992 | A |
5141063 | Quesenbury | Aug 1992 | A |
5186268 | Clegg | Feb 1993 | A |
5222566 | Taylor | Jun 1993 | A |
5255749 | Bumpurs | Oct 1993 | A |
5265682 | Russell | Nov 1993 | A |
5361859 | Tibbitts | Nov 1994 | A |
5410303 | Comeau | Apr 1995 | A |
5417292 | Polakoff | May 1995 | A |
5423389 | Warren | Jun 1995 | A |
5507357 | Hult | Apr 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5568838 | Struthers | Oct 1996 | A |
5655614 | Azar | Aug 1997 | A |
5678644 | Fielder | Oct 1997 | A |
5732784 | Nelson | Mar 1998 | A |
5794728 | Palmberg | Aug 1998 | A |
5896938 | Moeny | Apr 1999 | A |
5947215 | Lundell | Sep 1999 | A |
5950743 | Cox | Sep 1999 | A |
5957223 | Doster | Sep 1999 | A |
5957225 | Sinor | Sep 1999 | A |
5967247 | Pessier | Oct 1999 | A |
5979571 | Scott et al. | Nov 1999 | A |
5992547 | Caraway | Nov 1999 | A |
5992548 | Silva | Nov 1999 | A |
6021859 | Tibbitts | Feb 2000 | A |
6039131 | Beaton | Mar 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6150822 | Hong | Nov 2000 | A |
6186251 | Butcher | Feb 2001 | B1 |
6202761 | Forney | Mar 2001 | B1 |
6213226 | Eppink | Apr 2001 | B1 |
6223824 | Moyes | May 2001 | B1 |
6269893 | Beaton | Aug 2001 | B1 |
6296069 | Lamine et al. | Oct 2001 | B1 |
6340064 | Fielder . | Jan 2002 | B2 |
6364034 | Schoeffler | Apr 2002 | B1 |
6394200 | Watson | May 2002 | B1 |
6439326 | Huang et al. | Aug 2002 | B1 |
6474425 | Truax | Nov 2002 | B1 |
6484825 | Watson | Nov 2002 | B2 |
6510906 | Richert | Jan 2003 | B1 |
6513606 | Krueger | Feb 2003 | B1 |
6533050 | Molloy | Mar 2003 | B2 |
6594881 | Tibbitts | Jul 2003 | B2 |
6601454 | Botnan | Aug 2003 | B1 |
6622803 | Harvey | Sep 2003 | B2 |
6668949 | Rives | Dec 2003 | B1 |
6729420 | Mensa-Wilmot | May 2004 | B2 |
6732817 | Dewey | May 2004 | B2 |
6822579 | Goswami | Nov 2004 | B2 |
9629076 | Fanuel | Apr 2005 | |
6953096 | Gledhill et al. | Oct 2005 | B2 |
20030213621 | Britten | Nov 2003 | A1 |
20040238221 | Runia | Dec 2004 | A1 |
20040256155 | Kriesels | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070221412 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11680997 | Mar 2007 | US |
Child | 11686638 | US | |
Parent | 11673872 | Feb 2007 | US |
Child | 11680997 | US | |
Parent | 11611310 | Dec 2006 | US |
Child | 11673872 | US | |
Parent | 11278935 | Apr 2006 | US |
Child | 11611310 | US | |
Parent | 11277394 | Mar 2006 | US |
Child | 11278935 | US | |
Parent | 11277380 | Mar 2006 | US |
Child | 11277394 | US | |
Parent | 11306976 | Jan 2006 | US |
Child | 11277380 | US | |
Parent | 11306307 | Dec 2005 | US |
Child | 11306976 | US | |
Parent | 11306022 | Dec 2005 | US |
Child | 11306307 | US | |
Parent | 11164391 | Nov 2005 | US |
Child | 11306022 | US |