Claims
- 1. A rotary valve head system for a multi-cylinder engine having pistons residing within cylinders and capable of reciprocal movement therein forming multiple combustion chambers, each cylinder having intake and exhaust ports, the engine having fuel, air or fuel/air intake means to each cylinder and exhaust passage means for exhausting combustion products from each cylinder, the rotary valve head system comprising:a hollow intake rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder intake port, wherein each aperture is registerable with the engine intake means and a cylinder intake port according to an intake timing mechanism operably linked to the intake rotary valve tube; a hollow exhaust rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder exhaust port wherein each aperture is registerable with the engine exhaust passageway means and a cylinder exhaust port according to an exhaust timing mechanism operably linked to the exhaust rotary valve tube; and a cylinder head overlying the multiple cylinders and the intake and exhaust rotary valve tubes, the cylinder head having head intake ports registered with the cylinder intake ports of the multiple cylinders and registerable with the apertures of the intake rotary valve tube, and head exhaust ports registered with the cylinder exhaust ports of the multiple cylinders and registerable with the apertures of the exhaust rotary valve tube; wherein incoming fuel/air from the intake means is admitted within an aperture of the intake rotary valve tube and permitted to flow through the hollow intake rotary valve tube until entering into a cylinder through a tube aperture registered with a head intake port and a cylinder intake port; wherein the outgoing combustion products are emitted through the aligned cylinder exhaust port, head exhaust port, and an aperture of the exhaust rotary valve tube and permitted to flow through the hollow exhaust rotary valve tube until exiting into the exhaust passage means through an exhaust rotary valve tube aperture registered therewith; and wherein the intake and exhaust rotary valve tubes include spherical components having apertures aligned with the intake and exhaust rotary valve tube apertures.
- 2. The system of claim 1, wherein the intake and exhaust rotary valve tubes are generally cylindrical.
- 3. The system of claim 1, wherein the intake and exhaust rotary valve tubes include spherical components having apertures aligned with the intake and exhaust rotary valve tube apertures.
- 4. The system of claim 1, including bushings overlying the intake and exhaust rotary valve tubes between the spherical components.
- 5. The system of claim 1, wherein the cylinder head is configured such that a clearance is provided between the cylinder head and outer surfaces of the intake and exhaust rotary valve tubes.
- 6. The system of claim 1, including at least one bushing overlying a portion of the outer surface of each of the intake and exhaust rotary valve tubes.
- 7. The system of claim 5, including a sleeve interposed between the intake rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head intake ports and cylinder intake ports and registerable with the apertures of the intake rotary valve tube.
- 8. The system of claim 5, including a sleeve interposed between the exhaust rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head exhaust ports and cylinder exhaust ports and registerable with the apertures of the exhaust rotary valve tube.
- 9. The system of claim 1, including inserts within the cylinder head at the cylinder intake and exhaust ports, and means for maintaining contact between the inserts and the intake and exhaust rotary valve tubes to form a seal between the intake and exhaust rotary valve tube apertures and the cylinder head.
- 10. The system of claim 1, including a rod extending from an end of each of the intake and exhaust rotary valve tubes for connecting to a bearing assembly secured to the cylinder head.
- 11. The system of claim 10, wherein the intake timing mechanism is operably linked to the rod extending from the intake rotary valve tube and the exhaust timing mechanism is operably linked to the rod extending from the exhaust rotary valve tube.
- 12. A rotary valve head system for a multi-cylinder engine having multiple cylinders and pistons capable of reciprocal movement therein forming multiple combustion chambers, each cylinder having intake and exhaust ports, the engine having fuel, air or fuel/air intake means to each cylinder and exhaust passage means for exhausting combustion products from each cylinder, the rotary valve head system comprising:a hollow intake rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder intake port, wherein each aperture is registerable with the engine intake means and a cylinder intake port according to an intake timing mechanism operably linked to a rod extending from a closed end of the intake rotary valve tube; at least one bushing overlying at least a portion of an outer surface of the intake rotary valve tube; a bearing assembly connected to each closed end of the intake rotary valve tube; a hollow exhaust rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder exhaust port wherein each aperture is registerable with the engine exhaust passageway means and a cylinder exhaust port according to an exhaust timing mechanism operably linked to the exhaust rotary valve tube; and at least one bushing overlying at least a portion of an outer surface of the exhaust rotary valve tube; a bearing assembly connected to each closed end of the exhaust rotary valve tube; a cylinder head overlying the multiple cylinders and the intake and exhaust rotary valve tubes such that a clearance is provided between the cylinder head and outer surfaces of the intake and exhaust rotary valve tubes, the cylinder head having head intake ports registered with the cylinder intake ports of the multiple cylinders and registerable with the apertures of the intake rotary valve tube, and head exhaust ports registered with the cylinder exhaust ports of the multiple cylinders and registerable with the apertures of the exhaust rotary valve tube; inserts within the cylinder head at the intake and exhaust ports of the cylinder head; and means for placing the inserts into contact with the intake and exhaust rotary valve tubes during operation; wherein incoming fuel/air from the intake means is admitted within an aperture of the intake rotary valve tube and permitted to flow through the hollow intake rotary valve tube until entering into a cylinder through a tube aperture registered with a head intake port and cylinder intake port; and wherein the outgoing combustion products are emitted through the aligned cylinder exhaust port, head exhaust port, and an aperture of the exhaust rotary valve tube and permitted to flow through the hollow exhaust rotary valve tube until exiting into the exhaust passage means through an exhaust rotary valve tube aperture registered therewith.
- 13. The system of claim 12, wherein the intake and exhaust rotary valve tubes are generally cylindrical.
- 14. The system of claim 12, wherein the intake and exhaust rotary valve tubes include spherical components overlying the intake and exhaust rotary valve tube, the spherical components having apertures aligned with the intake and exhaust valve tube apertures.
- 15. The system of claim 14, including bushings overlying the intake and exhaust rotary valve tubes between the spherical components.
- 16. The system of claim 12, including a sleeve interposed between the intake rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head intake ports and cylinder intake ports and registerable with the apertures of the intake rotary valve tube, and a sleeve interposed between the exhaust rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head exhaust ports and cylinder exhaust ports and registerable with the apertures of the exhaust rotary valve tube.
- 17. A rotary valve head system for a multi-cylinder engine having multiple cylinders and pistons capable of reciprocal movement therein forming multiple combustion chambers, each cylinder having intake and exhaust ports, the engine having fuel, air or fuel/air intake means to each cylinder and exhaust passage means for exhausting combustion products from each cylinder, the rotary valve head system comprising:a generally cylindrical hollow intake rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder intake port, wherein each aperture is registerable with the engine intake means and a cylinder intake port according to an intake timing mechanism operably linked to a rod extending from a closed end of the intake rotary valve tube; spherical components overlying an outer surface of the intake rotary valve tube and having apertures aligned with the apertures of the intake rotary valve tube; bushings overlying the outer surface of the intake rotary valve tube and positioned between the spherical components; a bearing assembly connected to each closed end of the intake rotary valve tube; a generally cylindrical hollow exhaust rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder exhaust port, wherein each aperture is registerable with the engine exhaust means and a cylinder exhaust port according to an exhaust timing mechanism operably linked to a rod extending from a closed end of the exhaust rotary valve tube; spherical components overlying an outer surface of the exhaust rotary valve tube and having apertures aligned with the apertures of the exhaust rotary valve tube; bushings overlying the outer surface of the exhaust rotary valve tube and positioned between the spherical components; a bearing assembly connected to each closed end of the exhaust rotary valve tube; a cylinder head overlying the multiple cylinders and the intake and exhaust rotary valve tubes such that a clearance is provided between the cylinder head and outer surfaces of the intake and exhaust rotary valve tubes, the cylinder head having head intake ports registered with the cylinder intake ports of the multiple cylinders and registerable with the apertures of the intake rotary valve tube, and head exhaust ports registered with the cylinder exhaust ports of the multiple cylinders and registerable with the apertures of the exhaust rotary valve tube; inserts within the cylinder head at the intake exhaust ports of the cylinder head; and means for placing the inserts into contact with the intake and exhaust rotary valve tubes during operation; wherein incoming fuel/air from the intake means is admitted within an aperture of the intake rotary valve tube and permitted to flow through the hollow intake rotary valve tube until entering into a cylinder through a tube aperture registered with a head intake port and cylinder intake port; and wherein the outgoing combustion products are emitted through the aligned cylinder exhaust port, head exhaust port, and an aperture of the exhaust rotary valve tube and permitted to flow through the hollow exhaust rotary valve tube until exiting into the exhaust passageway means through an exhaust rotary valve tube aperture registered therewith.
- 18. The system of claim 17, including a sleeve interposed between the intake rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head intake ports and cylinder intake ports and registerable with the apertures of the intake rotary valve tube, and a sleeve interposed between the exhaust rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head exhaust ports and cylinder exhaust ports and registerable with the apertures of the exhaust rotary valve tube.
- 19. A rotary valve head system for a multi-cylinder engine having pistons residing within cylinders and capable of reciprocal movement therein forming multiple combustion chambers, each cylinder having intake and exhaust ports, the engine having fuel, air or fuel/air intake means to each cylinder and exhaust passage means for exhausting combustion products from each cylinder, the rotary valve head system comprising:a hollow intake rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder intake port, wherein each aperture is registerable with the engine intake means and a cylinder intake port according to an intake timing mechanism operably linked to the intake rotary valve tube; a hollow exhaust rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder exhaust port wherein each aperture is registerable with the engine exhaust passageway means and a cylinder exhaust port according to an exhaust timing mechanism operably linked to the exhaust rotary valve tube; a cylinder head overlying the multiple cylinders and the intake and exhaust rotary valve tubes, the cylinder head having head intake ports registered with the cylinder intake ports of the multiple cylinders and registerable with the apertures of the intake rotary valve tube, and head exhaust ports registered with the cylinder exhaust ports of the multiple cylinders and registerable with the apertures of the exhaust rotary valve tube, wherein the cylinder head is configured such that a clearance is provided between the cylinder head and outer surfaces of the intake and exhaust rotary valve tubes; and a sleeve interposed between the intake rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head intake ports and cylinder intake ports and registerable with the apertures of the intake rotary valve tube; wherein incoming fuel/air from the intake means is admitted within an aperture of the intake rotary valve tube and permitted to flow through the hollow intake rotary valve tube until entering into a cylinder through a tube aperture registered with a head intake port and a cylinder intake port; and wherein the outgoing combustion products are emitted through the aligned cylinder exhaust port, head exhaust port, and an aperture of the exhaust rotary valve tube and permitted to flow through the hollow exhaust rotary valve tube until exiting into the exhaust passage means through an exhaust rotary valve tube aperture registered therewith.
- 20. A rotary valve head system for a multi-cylinder engine having pistons residing within cylinders and capable of reciprocal movement therein forming multiple combustion chambers, each cylinder having intake and exhaust ports, the engine having fuel, air or fuel/air intake means to each cylinder and exhaust passage means for exhausting combustion products from each cylinder, the rotary valve head system comprising:a hollow intake rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder intake port, wherein each aperture is registerable with the engine intake means and a cylinder intake port according to an intake timing mechanism operably linked to the intake rotary valve tube; a hollow exhaust rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder exhaust port wherein each aperture is registerable with the engine exhaust passageway means and a cylinder exhaust port according to an exhaust timing mechanism operably linked to the exhaust rotary valve tube; a cylinder head overlying the multiple cylinders and the intake and exhaust rotary valve tubes, the cylinder head having head intake ports registered with the cylinder intake ports of the multiple cylinders and registerable with the apertures of the intake rotary valve tube, and head exhaust ports registered with the cylinder exhaust ports of the multiple cylinders and registerable with the apertures of the exhaust rotary valve tube, wherein the cylinder head is configured such that a clearance is provided between the cylinder head and outer surfaces of the intake and exhaust rotary valve tubes; and a sleeve interposed between the exhaust rotary valve tube and the cylinder head, the sleeve having apertures aligned with the head exhaust ports and cylinder exhaust ports and registerable with the apertures of the exhaust rotary valve tube; wherein incoming fuel/air from the intake means is admitted within an aperture of the intake rotary valve tube and permitted to flow through the hollow intake rotary valve tube until entering into a cylinder through a tube aperture registered with a head intake port and a cylinder intake port; and wherein the outgoing combustion products are emitted through the aligned cylinder exhaust port, head exhaust port, and an aperture of the exhaust rotary valve tube and permitted to flow through the hollow exhaust rotary valve tube until exiting into the exhaust passage means through an exhaust rotary valve tube aperture registered therewith.
- 21. A rotary valve head system for a multi-cylinder engine having pistons residing within cylinders and capable of reciprocal movement therein forming multiple combustion chambers, each cylinder having intake and exhaust ports, the engine having fuel, air or fuel/air intake means to each cylinder and exhaust passage means for exhausting combustion products from each cylinder, the rotary valve head system comprising:a hollow intake rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder intake port, wherein each aperture is registerable with the engine intake means and a cylinder intake port according to an intake timing mechanism operably linked to the intake rotary valve tube; a hollow exhaust rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder exhaust port wherein each aperture is registerable with the engine exhaust passageway means and a cylinder exhaust port according to an exhaust timing mechanism operably linked to the exhaust rotary valve tube; a cylinder head overlying the multiple cylinders and the intake and exhaust rotary valve tubes, the cylinder head having head intake ports registered with the cylinder intake ports of the multiple cylinders and registerable with the apertures of the intake rotary valve tube, and head exhaust ports registered with the cylinder exhaust ports of the multiple cylinders and registerable with the apertures of the exhaust rotary valve tube; and inserts within the cylinder head at the cylinder intake and exhaust ports, and means for maintaining contact between the inserts and the intake and exhaust rotary valve tubes to form a seal between the intake and exhaust rotary valve tube apertures and the cylinder head; wherein incoming fuel/air from the intake means is admitted within an aperture of the intake rotary valve tube and permitted to flow through the hollow intake rotary valve tube until entering into a cylinder through a tube aperture registered with a head intake port and a cylinder intake port; and wherein the outgoing combustion products are emitted through the aligned cylinder exhaust port, head exhaust port, and an aperture of the exhaust rotary valve tube and permitted to flow through the hollow exhaust rotary valve tube until exiting into the exhaust passage means through an exhaust rotary valve tube aperture registered therewith.
- 22. A rotary valve head system for a multi-cylinder engine having pistons residing within cylinders and capable of reciprocal movement therein forming multiple combustion chambers, each cylinder having intake and exhaust ports, the engine having fuel, air or fuel/air intake means to each cylinder and exhaust passage means for exhausting combustion products from each cylinder, the rotary valve head system comprising:a hollow intake rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder intake port, wherein each aperture is registerable with the engine intake means and a cylinder intake port according to an intake timing mechanism operably linked to the intake rotary valve tube; a hollow exhaust rotary valve tube having closed ends and multiple apertures formed therethrough corresponding to each cylinder exhaust port wherein each aperture is registerable with the engine exhaust passageway means and a cylinder exhaust port according to an exhaust timing mechanism operably linked to the exhaust rotary valve tube; a cylinder head overlying the multiple cylinders and the intake and exhaust rotary valve tubes, the cylinder head having head intake ports registered with the cylinder intake ports of the multiple cylinders and registerable with the apertures of the intake rotary valve tube, and head exhaust ports registered with the cylinder exhaust ports of the multiple cylinders and registerable with the apertures of the exhaust rotary valve tube; and a rod extending from an end of each of the intake and exhaust rotary valve tubes for connecting to a bearing assembly secured to the cylinder head; wherein incoming fuel/air from the intake means is admitted within an aperture of the intake rotary valve tube and permitted to flow through the hollow intake rotary valve tube until entering into a cylinder through a tube aperture registered with a head intake port and a cylinder intake port; and wherein the outgoing combustion products are emitted through the aligned cylinder exhaust port, head exhaust port, and an aperture of the exhaust rotary valve tube and permitted to flow through the hollow exhaust rotary valve tube until exiting into the exhaust passage means through an exhaust rotary valve tube aperture registered therewith.
- 23. The system of claim 22, wherein the intake timing mechanism is operably linked to the rod extending from the intake rotary valve tube and the exhaust timing mechanism is operably linked to the rod extending from the exhaust rotary valve tube.
RELATED APPLICATION
This application claims priority from provisional application Ser. No. 60/170,134, filed Dec. 10, 1999.
US Referenced Citations (41)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/170134 |
Dec 1999 |
US |