Various exemplary embodiments of the systems and methods are described in detail below, with reference to the attached drawing figures, in which:
The embodiments herein are useful with printing/copying devices that use, such as those discussed in U.S. Patent Application 2003/0039491, the complete disclosure of which is incorporated herein by reference, and portions of which are incorporated herein.
This invention relates to a printing system which is used to produce color output in a single pass of a photoreceptor belt. It will be understood, however, that it is not intended to limit the invention to the embodiment disclosed. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims, including a multi-pass color process system, a single or multiple pass highlight color system, an ink jet system, and a black and white printing system.
Turning now to
With continued reference to
Next, the charged portion of photoconductive surface is advanced through an imaging station B. At exposure station B, the uniformly charged belt 10 is exposed to a laser based output scanning device 24 which causes the charge retentive surface to be discharged in accordance with the output from the scanning device. The scanning device can be a laser Raster Output Scanner (ROS). Alternatively, the ROS could be replaced by other xerographic exposure devices such as LED arrays.
The photoreceptor, which is initially charged to a voltage Vc, undergoes dark decay to a level Vddp equal to about −500 volts. When exposed at the exposure station B it is discharged to Vimage equal to about −50 volts. Thus after exposure, the photoreceptor contains a monopolar voltage profile of high and low voltages, the former corresponding to charged areas and the latter corresponding to discharged or image areas.
At a first development station C, developer structure, indicated generally by the reference numeral 32 utilizing a hybrid jumping development (HJD) system, the development roll, better known as the donor roll, is powered by two development fields (potentials across an air gap). The first field is the AC jumping field which is used for toner cloud generation. The second field is the DC development field which is used to control the amount of developed toner mass on the photoreceptor. The toner cloud causes charged toner particles 26 to be attracted to the electrostatic latent image. Appropriate developer biasing is accomplished via a power supply. This type of system is a noncontact type in which only toner particles (magenta, for example) are attracted to the latent image and there is no mechanical contact between the photoreceptor and a toner delivery device to disturb a previously developed, but unfixed, image.
The developed but unfixed image is then transported past a second charging device 36 where the photoreceptor and previously developed toner image areas are recharged to a predetermined level.
A second exposure/imaging is performed by imaging device 38 which comprises a laser based output structure and is utilized for selectively discharging the photoreceptor on toned areas and/or bare areas, pursuant to the image to be developed with the second color toner. At this point, the photoreceptor contains toned and untoned areas at relatively high voltage levels and toned and untoned areas at relatively low voltage levels. These low voltage areas represent image areas which are developed using discharged area development (DAD). To this end, a negatively charged, developer material 40 comprising color toner is employed. The toner, which by way of example may be yellow, is contained in a developer housing structure 42 disposed at a second developer station D and is presented to the latent images on the photoreceptor by way of a second HSD developer system. A power supply (not shown) serves to electrically bias the developer structure to a level effective to develop the discharged image areas with negatively charged yellow toner particles 40.
The above procedure is repeated for a third image for a third suitable color toner such as cyan and for a fourth image and suitable color toner such as black. The exposure control scheme described below may be utilized for these subsequent imaging steps. In this manner a full color composite toner image is developed on the photoreceptor belt.
To the extent to which some toner charge is totally neutralized, or the polarity reversed, thereby causing the composite image developed on the photoreceptor to consist of both positive and negative toner, a negative pre-transfer dicorotron member 50 is provided to condition the toner for effective transfer to a substrate using positive corona discharge.
Subsequent to image development a sheet of support material 52 is moved into contact with the toner images at transfer station G. The sheet of support material is advanced to transfer station G by a sheet feeding apparatus to the pretransfer device which directs the advancing sheet of support material into contact with photoconductive surface of belt 10 in a timed sequence so that the toner powder image developed thereon contacts the advancing sheet of support material at transfer station G.
Transfer station G includes a transfer dicorotron 54 which sprays positive ions onto the backside of sheet 52. This attracts the negatively charged toner powder images from the belt 10 to sheet 52. A detack dicorotron 56 is provided for facilitating stripping of the sheets from the belt 10.
After transfer, the sheet continues to move, in the direction of arrow 58, onto a conveyor (not shown) which advances the sheet to fusing station H. Fusing station H includes a fuser assembly, indicated generally by the reference numeral 60, which permanently affixes the transferred powder image to sheet 52. The fuser assembly 60 comprises a heated fuser roller 62 and a backup or pressure roller 64. Sheet 52 passes between fuser roller 62 and backup roller 64 with the toner powder image contacting fuser roller 62. In this manner, the toner powder images are permanently affixed to sheet 52 after it is allowed to cool. After fusing, the sheet is separated from the fuser roll by the corrugating air knife, described in more detail below, to a chute which guides the advancing sheets 52 to a catch tray for subsequent removal from the printing machine by the operator.
After the sheet of support material is separated from photoconductive surface of belt 10, the residual toner particles carried by the non-image areas on the photoconductive surface are removed therefrom. These particles are removed at cleaning station I using a cleaning brush structure contained in a housing 66.
As shown in
Referring now to
In a more specific embodiment, the apparatus can comprise a fuser 62 that has an outer surface adapted to contact sheets of print media 52, and the rotatable air outlet 116 can be positioned next to the fuser 62.
Thus, as shown in
As described above, the rotatable air outlet 116 or “air knife” is positioned with respect to the fuser so as to blow air to remove the sheets of print media 52 from the fuser 62. The air outlet 116 can further comprise, or be connected to, an actuator 114. Further, the actuator 114 can include or be connected to a controller which is also represented by item 114. The actuator can comprise a motor, a motor driven belt apparatus 118, 122, 124, and/or any other device that can cause the air outlet 116 to rotate. In the examples shown in
The air outlet 116 is at least as long as the width of the fuser. This allows the air to be blown along the entire width of the fuser, which prevents delta-gloss defects that can be caused by local cooling effects on the fuser roll.
Thus, as mentioned above, when in the first position, the air outlet 116 blows air in a direction that lifts the leading edge of the sheet of print media 52 off the outer surface of the heating device 62, and when in the second position, the air outlet 116 blows air in a direction that maintains a central portion of the sheet of print media 52 off the outer surface of the heating device 62. After the print media 52 passes through the nip created by the fuser 62 and pressure roller 64, the air outlet 116 returns to the initial position shown in
While the example shown in
Similarly, while an approximate 90 degree rotation is illustrated from the initial position shown in
Also, the air outlet 116 can rotate differently depending upon the specific print media being used. Different types of print media will have different characteristics, such as thickness, roughness, moisture content, etc. Print devices can receive inputs regarding the type of print media loaded or can automatically detect the nature of the print media being processed. Thus, the air outlet 116 can rotate through a smaller angle range (rotate less) for a first type of print media and rotate through a larger angle range (rotate more) for a second type of media. In addition, the air outlet can rotate only for specific types of print media and not rotate for other types of media. The different amounts of rotation are controlled by the controller 114.
In additional embodiments, the air blown by the air outlet 116 can be heated or non-heated using any type of heating device (e.g., resistive heater). Again, different types of media can receive different amounts of heating.
Also, the air outlet 116 could comprise a multi-velocity air outlet, such as that disclosed in U.S. Patent Application Publication 2003/0039491 (discussed above). Thus, when in the first position, the air outlet 116 can blow air having a first velocity at the first angle, and when in the second position, the air outlet 116 can blow air having a second velocity (more or less than the first velocity) at the second angle.
The air outlet 116 can be, in one embodiment, part of a tube-shaped air plenum 172, as shown in
The word “printer” or “image output terminal” as used herein encompasses any apparatus, such as a digital copier, bookmaking machine, facsimile machine, multi-function machine, etc. which performs a print outputting function for any purpose. The details of printers, printing engines, etc. are well-known by those ordinarily skilled in the art and are discussed in, for example, U.S. Pat. No. 6,032,004, the complete disclosure of which is fully incorporated herein by reference. The embodiments herein can encompass embodiments that print in color, monochrome, or handle color or monochrome image data. All foregoing embodiments are specifically applicable to electrostatographic and/or xerographic machines and/or processes.
It will be appreciated that the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. The claims can encompass embodiments in hardware, software, and/or a combination thereof. Unless specifically defined in a specific claim itself, steps or components of the invention should not be implied or imported from any above example as limitations to any particular order, number, position, size, shape, angle, color, or material.