This disclosure relates generally to rotatable cutting elements for earth-boring tools. More specifically, disclosed embodiments relate to rotatable cutting elements for earth-boring tools that may reduce friction and increase freedom of rotation.
Earth-boring tools may include cutting elements secured to bodies of the earth-boring tools. The cutting elements may be secured at least partially within pockets extending into the bodies of the earth-boring tools. When the earth-boring tools are rotated under an applied load, the cutting elements may be driven into and remove an underlying earth formation. Some attempts have been made to render the cutting elements rotatable relative to the bodies within the pockets.
In some embodiments, rotatable cutting elements for earth-boring tools may include a substrate and a polycrystalline, superabrasive material secured to an end of the substrate. A sleeve may be sized and shaped to circumferentially surround at least a portion of the substrate. Rollers may be sized and shaped for positioning between, and making rolling contact with, the substrate and the sleeve, the rollers configured to rotate relative to the substrate and the sleeve and to enable the substrate to rotate relative to the sleeve. The rollers may be configured to bear at least radial forces acting on the substrate and the sleeve.
In other embodiments, earth-boring tools may include a body and at least one rotatable cutting element secured to the body. The at least one rotatable cutting element may include a substrate and a polycrystalline, superabrasive material secured to an end of the substrate. A sleeve may circumferentially surround at least a portion of the substrate, the sleeve at least partially located within a pocket extending into the body. The sleeve may be secured to the body within the pocket. Rollers may be located between, and in rolling contact with, the substrate and the sleeve. The rollers may be configured to rotate relative to the substrate and the sleeve and to enable the substrate to rotate relative to the sleeve, the rollers configured to bear at least radial forces acting on the substrate and the sleeve.
In still other embodiments, methods of using rotatable cutting elements may involve contacting a cutting face of a superabrasive, polycrystalline material secured to an end of a substrate against an earth material. The substrate may rotate about an axis of rotation in response to contacting the cutting face against the earth material. Rollers may rotate relative to the substrate, the rollers in rolling contact with the substrate and with a sleeve circumferentially surrounding at least a portion of the substrate. The rollers may bear at least radial forces acting on the substrate and the sleeve.
While this disclosure concludes with claims particularly pointing out and distinctly claiming specific embodiments, various features and advantages of embodiments within the scope of this disclosure may be more readily ascertained from the following description when read in conjunction with the accompanying drawings, in which:
The illustrations presented in this disclosure are not meant to be actual views of any particular earth-boring tool, rotatable cutting element, or component thereof, but are merely idealized representations employed to describe illustrative embodiments. Thus, the drawings are not necessarily to scale.
Disclosed embodiments relate generally to rotatable cutting elements for earth-boring tools that may reduce friction and increase freedom of rotation. More specifically, disclosed are embodiments of rotatable cutting elements for earth-boring tools that may include rotatable cutting elements including roller bearings enabling the rotatable cutting elements to rotate within the respective pockets of the earth-boring tools to which the rotatable cutting elements are secured.
As used in this specification, the terms “substantially” and “about” in reference to a given parameter, property, or condition means and includes to a degree that one skilled in the art would understand that the given parameter, property, or condition is met with a small degree of variance, such as within acceptable manufacturing tolerances. For example, a parameter that is substantially or about a specified value or condition may be at least about 90% the specified value or condition, at least about 95% the specified value or condition, or even at least about 99% the specified value or condition.
The term “earth-boring tool,” as used herein, means and includes any type of bit or tool used for drilling during the formation or enlargement of a wellbore in a subterranean formation. For example, earth-boring tools include fixed-cutter bits, core bits, eccentric bits, bi-center bits, reamers, mills, hybrid bits including both fixed and rotatable cutting structures, and other drilling bits and tools known in the art.
As used herein, the term “superabrasive material” means and includes any material having a Knoop hardness value of about 3,000 Kgf/mm2 (29,420 MPa) or more. Superabrasive materials include, for example, diamond and cubic boron nitride. Superabrasive materials may also be characterized as “superhard” materials.
As used herein, the term “polycrystalline material” means and includes any structure comprising a plurality of grains (i.e., crystals) of material that are bonded directly together by inter-granular bonds. The crystal structures of the individual grains of the material may be randomly oriented in space within the polycrystalline material.
As used herein, the terms “inter-granular bond” and “inter-bonded” mean and include any direct atomic bond (e.g., covalent, metallic, etc.) between atoms in adjacent grains of superabrasive material.
As used herein, the term “tungsten carbide” means any material composition that contains chemical compounds of tungsten and carbon, such as, for example, WC, W2C, and combinations of WC and W2C. Tungsten carbide includes, for example, cast tungsten carbide, sintered tungsten carbide, and macrocrystalline tungsten carbide.
Referring to
Rotatable cutting elements 104 may be secured at least partially within pockets 120 extending from rotationally leading surfaces of a blade 106 into the blade 106. The rotatable cutting elements 104 may be secured to one, some, or all of the blades 106 of a given earth-boring tool 100. The rotatable cutting elements 104 may be configured to rotate within the pockets 120 as the rotatable cutting elements 104 are driven into, and remove, an underlying earth material during rotation of the earth-boring tool 100 under an applied load (e.g., weight-on-bit). Nozzles 123 located within the junk slots 118 may emit drilling fluid circulating through the drill string under pressure to remove cuttings from the rotatable cutting elements 104 and any stationary cutting elements 122 and carry the cuttings suspended in the drilling fluid to the surface. In some embodiments, such as that shown in
The rotatable cutting element 104 may be retained in the pocket 120 in which it is located, and at least radial loads acting on the rotatable cutting element 104 may be borne, by a rolling-element bearing 132. The rolling-element bearing 132 may include rollers 134 in rolling contact with the substrate 126 of the rotatable cutting element 104. The rolling-element bearing 132 shown in
The rolling-element bearing 132 may further include a sleeve 140 surrounding the rollers 134 and at least some of the second portion 130 of the substrate 126. For example, the sleeve 140 may extend longitudinally from proximate to the first portion 128 of the substrate 126, along the second portion 130 of the substrate 126, toward an end 142 of the substrate 126 opposite the polycrystalline, superabrasive material 124. In some embodiments, such as that shown in
The sleeve 140 may include one or more grooves 144 extending from an inner surface 146 of the sleeve 140 radially outward into the sleeve 140. As shown in
The sleeve 140 of the rolling-element bearing 132 may be directly secured to the body 102 of the earth-boring tool 100. For example, a braze material 148 may be located within the pocket 120 between the sleeve 140 and the material of the body 102 making up the blade 106. The braze material 148 may secure the sleeve 140 within the pocket 120, and mechanical interference between the sleeve 140, rollers 134, substrate 126, and optionally other components of the rolling-element bearing 132 may retain at least some of the second portion 130 of the substrate 126 of the rotatable cutting element 104 within the pocket 120.
In some embodiments, such as that shown in
The rolling-element bearing 132 may include one or more sealing elements 156 positioned to seal an interior 158 of the sleeve 140 from an exterior 160 of the sleeve 140. For example, the rolling-element bearing 132 may include one sealing element 156 forming a seal at a first longitudinal end of the sleeve 140 proximate to the first portion 128 of the substrate 126 and another sealing element 156 forming a seal at a second longitudinal end of the sleeve 140 proximate to the end 142 of the second portion 130 of the substrate 126. The sealing elements 156 may reduce the extent to which contaminants from circulating drilling fluid may enter the interior 158 of the sleeve 140 during use, and the extent to which braze material 148 may enter the interior 158 of the sleeve 140 during brazing. In some embodiments, the sealing elements 156 may seal a lubricant 162 within the interior 158 of the sleeve 140. The lubricant 162 may include, for example, an oil-based or a silicone-based material. More specifically, the lubricant 162 may include mineral oils, synthetic oils, greases, and mixtures and combinations thereof, and such materials may be formulated with additives or modifiers to enhance the performance of the lubricant 162, such as, for example, to adapt the lubricant 162 for extreme pressure properties.
The sleeve 176 may likewise include a single groove 178 extending from an inner surface 180 of the sleeve 176 radially outward into the sleeve 176. As shown in
The rolling-element bearing 166 may optionally include a cage 184 configured to maintain the rollers 168 at predetermined positions relative to one another. For example, the cage 184 may include retainers 186 partially surrounding each of the rollers 168, and connectors 188 extending between the retainers 186. The retainers 186 shown in
As also shown in
The sleeve 204 may likewise include a single groove 206 extending from an inner surface 208 of the sleeve 204 radially outward into the sleeve 204. As shown in
The rolling-element bearing 196 may further include a cage 212 configured to maintain the rollers 198 at predetermined positions relative to one another. For example, the cage 212 may include retainers 214 partially surrounding each of the rollers 198, and connectors 216 extending between the retainers 214. The retainers 214 shown in
The sleeve 238 may include multiple tapered surfaces 240 extending from an inner surface 242 of the sleeve 238 radially outward into the sleeve 238. The tapered surfaces 240 in contact with the rollers 222 may be frustoconical in shape and extend in a longitudinal direction oblique to the axis of rotation 137 of the rotatable cutting element 218. More specifically, the tapered surfaces 240 of the sleeve 238 may be shaped as a line oblique to the axis of rotation 137, oriented such that a portion of the surfaces 240 proximate to the polycrystalline, superabrasive material 124 may be closer to the axis of rotation 137 than a portion of the surfaces 240 distal from the polycrystalline, superabrasive material 124, and extending around the axis of rotation 137 to exhibit an annular shape. The rollers 222 may be interposed between the substrate 126 and the sleeve 238, and may be in rolling contact with the surface 232 of the groove 230 of the substrate 126 and the surface 240 of the sleeve 238. As a result, the rollers 222 may transfer radial and axial forces acting on the rotatable cutting element 218 to the sleeve 238.
The rolling-element bearing 220 may further include a cage 244 configured to maintain the rollers 222 at predetermined positions relative to one another. For example, the cage 244 may include retainers 246 partially surrounding each of the rollers 222, and connectors 248 extending between the retainers 246. The retainers 246 shown in
As also shown in
The sleeve 272 may include multiple arcuate surfaces 268 extending from an inner surface 270 of the sleeve 204 radially outward into the sleeve 272. The arcuate surfaces 268 in contact with the rollers 254 may be sections of circles rotated about the axis of rotation 137 of the rotatable cutting element 250 to form an annular shape, and the first subgroup of rollers 254 may be in rolling contact with an upper portion of the surface 268 while the second subgroup of rollers 254 may be in rolling contact with a lower portion of the surface 268. The rollers 254 may be interposed between the substrate 126 and the sleeve 272, and may be in rolling contact with the surfaces 264 and 266 of the groove 260 of the substrate 126 and the surface 268 of the sleeve 272. As a result, the rollers 254 may transfer radial and axial forces acting on the rotatable cutting element 250 to the sleeve 272.
The rolling-element bearing 252 may further include a cage 274 configured to maintain the rollers 254 at predetermined positions relative to one another. For example, the cage 274 may include retainers 276 partially surrounding each of the rollers 254, and connectors 278 extending between the retainers 276. The retainers 276 shown in
The foregoing figures depict various features for rotatable cutting elements, and should not be considered separate embodiments that are not combinable with one another, but illustrative feature configurations that may be intermixed with one another to produce rotatable cutting elements in accordance with this disclosure. For example, the roller shapes and corresponding contact surface shapes, numbers of rows of rollers, designs for roller cages, methods of assembly, presence or absence of certain features (e.g., the sealing element) may be selectively combined with one another in various configurations to produce rotatable cutting elements as contemplated by the inventors.
Additional, nonlimiting embodiments within the scope of this disclosure include the following:
A rotatable cutting element for an earth-boring tool, comprising: a substrate; a polycrystalline, superabrasive material secured to an end of the substrate; a sleeve sized and shaped to circumferentially surround at least a portion of the substrate; and rollers sized and shaped for positioning between, and making rolling contact with, the substrate and the sleeve, the rollers configured to rotate relative to the substrate and the sleeve and to enable the substrate to rotate relative to the sleeve, the rollers configured to bear at least radial forces acting on the substrate and the sleeve.
The rotatable cutting element of Embodiment 1, wherein a surface of the sleeve in contact with the rollers is at least substantially cylindrical.
The rotatable cutting element of Embodiment 2, wherein the rollers are cylindrical, such that each roller is rotatable about a respective axis of rotation during rotation of the substrate.
The rotatable cutting element of Embodiment 3, wherein the rollers comprise needle rollers, a ratio of a longitudinal length of a respective needle roller to a diameter of the respective needle roller being between about 3:1 and about 20:1.
The rotatable cutting element of Embodiment 1, wherein a surface of the sleeve in contact with the rollers is tapered relative to an axis of rotation of the substrate, such that the sleeve and rollers are configured to bear axial and radial forces acting on the substrate and the sleeve.
The rotatable cutting element of Embodiment 5, wherein the rollers comprise tapered rollers, a diameter of each roller at a first end of the respective roller located proximate to the superabrasive, polycrystalline material being less than the diameter of each roller at a second, opposite end of the respective roller located distal from the superabrasive, polycrystalline material.
The rotatable cutting element of Embodiment 1, wherein a surface of the sleeve in contact with the rollers is arcuate relative to an axis of rotation of the substrate, such that the sleeve and rollers are configured to bear axial and radial forces acting on the substrate and the sleeve.
The rotatable cutting element of Embodiment 7, wherein the rollers are spherical, such that the rollers are free to rotate in any direction during rotation of the substrate.
The rotatable cutting element of Embodiment 7, wherein the rollers include arcuate side surfaces in contact with the surface of the sleeve, a diameter of each roller at ends thereof being less than the diameter of each roller at a midpoint along an axis of rotation thereof.
The rotatable cutting element of Embodiment 9, wherein surfaces of the rollers at the end thereof are parallel planes.
The rotatable cutting element of Embodiment 9, wherein the arcuate surface of the sleeve and the arcuate side surfaces of the rollers exhibit a spherical curvature.
The rotatable cutting element of Embodiment 1, further comprising sealing elements forming seals at longitudinal ends of the sleeve, the seals inhibiting fluid flow between a space defined within the sleeve by surfaces of the sleeve, substrate, rollers, and cage and a space located outside the sleeve.
The rotatable cutting element of Embodiment 12, further comprising a lubricant sealed within the space defined within the sleeve by surfaces of the sleeve, substrate, rollers, and cage.
The rotatable cutting element of Embodiment 1, further comprising a cage sized and shaped to partially surround each of the rollers, the cage configured to retain the rollers in position between the substrate and the sleeve.
An earth-boring tool, comprising: a body; and at least one rotatable cutting element secured to the body, the at least one rotatable cutting element comprising: a substrate; a polycrystalline, superabrasive material secured to an end of the substrate; a sleeve circumferentially surrounding at least a portion of the substrate, the sleeve at least partially located within a pocket extending into the body, the sleeve secured to the body within the pocket; and rollers located between, and in rolling contact with, the substrate and the sleeve, the rollers configured to rotate relative to the substrate and the sleeve and to enable the substrate to rotate relative to the sleeve, the rollers configured to bear at least radial forces acting on the substrate and the sleeve.
A method of using a rotatable cutting element, comprising: contacting a cutting face of a superabrasive, polycrystalline material secured to an end of a substrate against an earth material; rotating the substrate about an axis of rotation in response to contacting the cutting face against the earth material; and rotating rollers relative to the substrate, the rollers being in rolling contact with the substrate and with a sleeve circumferentially surrounding at least a portion of the substrate, the rollers bearing at least radial forces acting on the substrate and the sleeve.
The method of Embodiment 16, wherein rotating rollers relative to the substrate comprises rotating tapered rollers about the substrate, the tapered rollers being in rolling contact with a tapered surface of the sleeve relative to an axis of rotation of the substrate.
The method of Embodiment 16, wherein rotating rollers relative to the substrate comprises rotating rollers having arcuate side surfaces about the substrate, the rollers being in rolling contact with an arcuate surface of the sleeve relative to an axis of rotation of the substrate.
The method of Embodiment 16, further comprising inhibiting fluid flow between a space defined within the sleeve by surfaces of the sleeve, substrate, rollers, and cage and a space located outside the sleeve utilizing sealing elements forming seals at longitudinal ends of the sleeve.
The method of Embodiment 16, further comprising retaining the rollers in position between the substrate and the sleeve utilizing a cage partially surrounding each of the rollers.
While certain illustrative embodiments have been described in connection with the figures, those of ordinary skill in the art will recognize and appreciate that the scope of this disclosure is not limited to those embodiments explicitly shown and described in this disclosure. Rather, many additions, deletions, and modifications to the embodiments described in this disclosure may be made to produce embodiments within the scope of this disclosure, such as those specifically claimed, including legal equivalents. In addition, features from one disclosed embodiment may be combined with features of another disclosed embodiment while still being within the scope of this disclosure, as contemplated by the inventors.
Number | Name | Date | Kind |
---|---|---|---|
4316515 | Pessier | Feb 1982 | A |
4553615 | Grainger | Nov 1985 | A |
4751972 | Jones et al. | Jun 1988 | A |
7604073 | Cooley et al. | Oct 2009 | B2 |
7703559 | Shen et al. | Apr 2010 | B2 |
7762359 | Miess | Jul 2010 | B1 |
7845436 | Cooley et al. | Dec 2010 | B2 |
7987931 | Cooley et al. | Aug 2011 | B2 |
8061452 | Cooley et al. | Nov 2011 | B2 |
8079431 | Cooley et al. | Dec 2011 | B1 |
8091655 | Shen et al. | Jan 2012 | B2 |
8210285 | Cooley et al. | Jul 2012 | B2 |
8413746 | Shen et al. | Apr 2013 | B2 |
8561728 | Cooley et al. | Oct 2013 | B2 |
8800691 | Shen et al. | Aug 2014 | B2 |
8881849 | Shen et al. | Nov 2014 | B2 |
8931582 | Cooley et al. | Jan 2015 | B2 |
8950516 | Newman | Feb 2015 | B2 |
8973684 | Cooley et al. | Mar 2015 | B1 |
8991523 | Shen et al. | Mar 2015 | B2 |
9016409 | Zhang et al. | Apr 2015 | B2 |
9033070 | Shen et al. | May 2015 | B2 |
9187962 | Burhan et al. | Nov 2015 | B2 |
9279294 | Cooley et al. | Mar 2016 | B1 |
9291000 | Zhang et al. | Mar 2016 | B2 |
9322219 | Burhan et al. | Apr 2016 | B2 |
9328564 | Zhang et al. | May 2016 | B2 |
9382762 | Cooley et al. | Jul 2016 | B2 |
9388639 | Patel et al. | Jul 2016 | B2 |
9464486 | Zhang et al. | Oct 2016 | B2 |
9803427 | Cooley | Oct 2017 | B1 |
20020153175 | Ojanen | Oct 2002 | A1 |
20070278017 | Shen et al. | Dec 2007 | A1 |
20080017419 | Cooley et al. | Jan 2008 | A1 |
20080251293 | Mumma et al. | Oct 2008 | A1 |
20130140094 | Burhan et al. | Jun 2013 | A1 |
20130146367 | Zhang et al. | Jun 2013 | A1 |
20140054094 | Burhan et al. | Feb 2014 | A1 |
20140131118 | Chen et al. | May 2014 | A1 |
20140318873 | Patel et al. | Oct 2014 | A1 |
20140326515 | Shi et al. | Nov 2014 | A1 |
20140326516 | Haugvaldstad et al. | Nov 2014 | A1 |
20140360789 | Siracki et al. | Dec 2014 | A1 |
20140360792 | Azar et al. | Dec 2014 | A1 |
20150047910 | Chen et al. | Feb 2015 | A1 |
20160290056 | Propes et al. | Oct 2016 | A1 |
Entry |
---|
International Written Opinion for International Application No. PCT/US2018/043709 dated Nov. 29, 2018, 6 pages. |
International Search Report for International Application No. PCT/US2018/043709 dated Nov. 29, 2018, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190032413 A1 | Jan 2019 | US |