The tricuspid valve controls blood flow from the right atrium to the right ventricle of the heart, preventing blood from flowing backwards from the right ventricle into the right atrium so that it is instead forced through the pulmonary valve and into the pulmonary arteries for delivery to the lungs. A properly functioning tricuspid valve opens and closes to enable blood flow in one direction. However, in some circumstances the tricuspid valve is unable to close properly, allowing blood to regurgitate back into the atrium. Such regurgitation can result in shortness of breath, fatigue, heart arrhythmias, and even heart failure.
Tricuspid valve regurgitation has several causes. Functional tricuspid valve regurgitation (FTR) is characterized by structurally normal tricuspid valve leaflets that are nevertheless unable to properly coapt with one another to close properly due to other structural deformations of surrounding heart structures. Often, the right ventricle is dilated as a result of pulmonary hypertension or an abnormal heart muscle condition (cardiomyopathy).
Other causes of tricuspid valve regurgitation are related to defects of the tricuspid valve leaflets, tricuspid valve annulus, or other tricuspid valve tissues. In some circumstances, tricuspid valve regurgitation is a result of infective endocarditis, blunt chest trauma, rheumatic fever, Marfan syndrome, carcinoid syndrome, or congenital defects to the structure of the heart. Tricuspid valve conditions are also often associated with problems related to the left side of the heart, such as mitral valve regurgitation.
Tricuspid valve regurgitation is often treated by replacing the tricuspid valve with a replacement valve implant or by repairing the valve through an interventional procedure. One method for repairing the tricuspid valve is through annuloplasty. Annuloplasty is accomplished by delivering and implanting a ring or band in the annulus of the tricuspid valve to attempt to return the annulus to a functioning shape. In tricuspid valve repair procedures, a surgeon attempts to reshape or reposition tricuspid valve leaflets so that they can better coapt with one another to sufficiently close the valve and prevent regurgitation.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one exemplary technology area where some embodiments described herein may be practiced.
Certain embodiments described herein are directed to devices and methods for repairing tissue, such as tissue of a malfunctioning cardiac valve, including a regurgitant tricuspid valve. Some embodiments are directed to methods for repairing tissue by positioning a repair device at a targeted location. The repair device includes a pair of distal arms and a pair of corresponding proximal arms disposed opposite the pair of distal arms, each proximal arm and corresponding opposite distal arm forming an arm pair. The repair device is actuated to grasp leaflet tissue of the targeted valve between the proximal and distal arms. A first arm pair grasps tissue at a first engagement point, and a second arm pair grasps tissue at a second engagement point. Preferably, the first and second engagement points are located respectively on first and second adjacent leaflets of a tricuspid valve.
The leaflet tissue at the second engagement point is sutured. For example, one or more suture lines are passed through the leaflet tissue and are anchored at the second engagement point to prevent the one or more suture lines from detaching or tearing away from the second engagement point. In some embodiments, a suturing catheter is positioned near the second arm pair and engages with the second arm pair to enable deployment of the one or more suture lines at the leaflet tissue grasped by the second arm pair.
After deploying the one or more suture lines at the second engagement point, the second arm pair is pivoted to a third engagement point (e.g., the third tricuspid leaflet) while the first arm pair remains engaged at the first engagement point (e.g., the first tricuspid leaflet). The pivoting motion carries the one or more suture lines deployed at the second engagement point (e.g., the second tricuspid leaflet) to the third engagement point. Tension in the one or more suture lines can then be adjusted to tie together the tissue of the second engagement point and third engagement point to a desired degree. The repair device remains deployed across the first and third engagement points to tie together the tissue of the first and third engagement points. The repair device can be adjusted to tie the grasped tissue together to a desired degree.
In certain embodiments, at least a first arm pair of the repair device includes a point element configured to engage against leaflet tissue to function as a pivot point allowing a second arm pair to rotate about the pivot point. In some embodiments, at least the second arm pair includes a set of through holes through which one or more suture lines are passable to enable suturing of leaflet tissue grasped by the second arm pair. In some embodiments, the second arm pair is independently adjustable so that the first arm pair can remain in a closed/grasped configuration during pivoting while the second arm pair is in a more open configuration to allow it to rotate around the first engagement point.
In some embodiments, a heart valve repair system includes a repair device and a suturing catheter. The suturing catheter includes an internal lumen through which one or more suture lines are extendable, the suturing catheter being configured to engage with the second arm pair of the repair device to enable passage of the one or more suture lines through the leaflet tissue grasped by the second arm pair.
In certain embodiments, a repair device includes a proximal member with an axial lumen and a plurality or extendable arms which may be extended to an open position transverse to the axial lumen, and a distal member disposed at least partially within the axial lumen of the proximal member so as to be axially translatable relative to the proximal member. The distal member includes an end section extending distally beyond the proximal member. The end section includes a plurality of extendable arms which are extendable to an open position transverse to an axis of the distal member.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
At least some of the embodiments described herein are directed to devices and methods for repairing a malfunctioning cardiac valve, such as a regurgitant tricuspid valve. Some embodiments are directed to devices and methods configured to provide repair of a regurgitant tricuspid valve through a “lasso” technique capable of tethering and/or tightening the three leaflets of the tricuspid valve together in a desired configuration to improve valve closure and minimize or eliminate regurgitation at the tricuspid valve.
Although many of the examples illustrated and described herein are directed to tricuspid valve regurgitation, it will be understood that the principles, features, and components described herein may also be applied in other applications, such as repair of other heart valves, or use in other interventional procedures or treatment applications.
Oxygenated blood returning from the lungs enters the left atrium 24, where it is then passed through the mitral valve 26 and into the left ventricle 28. During ventricular systole, the blood is then passed from the left ventricle through the aortic valve for delivery throughout the body. Similar to the right side of the heart, failure of the mitral valve 26 to fully close during ventricular systole leads to regurgitation of blood from the left ventricle 28 back into the left atrium 24. In some circumstances, problems related to mitral valve regurgitation or other issues with the left side of the heart also cause or are associated with structural issues on the right side of the heart, such as tricuspid valve regurgitation.
As explained in more detail below, the repair device 100 may be utilized to grasp tissue between the respective arms of the distal member 104 and proximal member 102 by positioning the distal member 104 on a first side of the targeted tissue, with the proximal member 102 positioned on the opposite side of the targeted tissue, and translating the distal member 104 relative to the proximal member 102 to reduce the space between the arms of the distal member 104 and proximal member 102 to grasp the targeted tissue therebetween.
In some embodiments, the repair device is delivered to the targeted tricuspid valve 18 by positioning the repair device in the right atrium, superior to the tricuspid valve 18, and extending the distal member 204 through the tricuspid valve 18 into the right ventricle. For example, the repair device may be delivered via a transfemoral approach so that the device passes through the inferior vena cava into the right atrium. Alternatively, the device may be delivered through a transjugular approach, transapical approach, or other approach.
Although the example depicted in
As shown in
In some embodiments, the distal member 204 and/or proximal member 202 may be delivered in a sheathed configuration such that the corresponding arms, which are biased toward an expanded position, are held in a collapsed position by the sheath. The arms may then be selectively opened to the expanded position by retracting the corresponding sheath and/or pushing the respective member out from the sheath. The arms may be retracted to a collapsed position by repositioning the corresponding sheath over the arms to force them back into the retracted position.
As shown in
As shown, the proximal arms 208 and 210 are each substantially aligned with a corresponding distal side arm 212 and 214 to form an arm pair. In the illustrated embodiment, the proximal arm 208 and the distal arm 212 form a first arm pair, and the proximal arm 210 and distal arm 214 form a second arm pair. Additional examples of repair devices are provided in U.S. Pat. No. 7,666,204, which is incorporated herein by reference in its entirety. One or more of the clip device components and/or features described therein may be utilized for grasping tricuspid valve leaflet tissue as part of a tricuspid valve repair procedure described herein.
From this position, one or more suture lines are passed from the first engagement point 216 to the second engagement point 218, or vice versa, to tie the first and second leaflets together. For example, one or more suture lines may be tied or otherwise attached (e.g., using buttons, anchors, pledgets, etc.) at the first engagement point 216, and passed to the second engagement point 218 where they may be likewise attached. Alternatively, one or more suture lines may be anchored at or tied to the second engagement point 218, but not passed to or from the first engagement point 216.
In some embodiments, one or more suture loops are attached at the first and/or second engagement points. For example, one or more suture lines may be passed from the first engagement point 216 to the second engagement point 218 where they are passed through a suture loop attached at the second engagement point 218. The one or more sutures may then be further routed to other areas of the tricuspid valve 18, as described in more detail below.
In alternative implementations, one or more suture lines may be anchored to one of the engagement points but not passed between the first and second engagement points 216 and 218. For example, one or more suturing lines may be attached (e.g., using buttons, anchors, pledgets, or other anchoring structures) at the second engagement point 218. The first and second leaflets are not sutured together, but the one or more suture lines anchored to the second leaflet at the second engagement point 218 are subsequently passed to the third leaflet to tie the second leaflet to the third leaflet. The one or more suture lines may be passed to the third leaflet in this manner by a pivoting motion of the repair device, as shown in
As shown in
In some embodiments, one or more suture lines are anchored at or threaded through the leaflet tissue at through least two of the various engagement points 216, 218, and 220 to form a suture lasso. Additionally, or alternatively, one or more suture lines are passed through one or more suture loops positioned at the engagement points 216, 218, and/or 220. In some embodiments, one or more sutures are tied to the first leaflet at the first engagement point 216 then passed through suture loop(s) at engagement point 218 (and in some embodiments passed additionally through engagement point 220), or are tied/anchored to the second leaflet at the second engagement point 218 then passed through suture loop(s) at engagement point 220. The one or more suture lines are then tightened to bring the leaflets of the tricuspid valve 18 closer together to reduce or eliminate regurgitation through the valve. In some embodiments, one or more sutures are tied at the first engagement point 216, then passed to both the second engagement point 218 and third engagement point 220 before being passed back to the first engagement point 216 to tie all three leaflets together.
The various engagement points 216, 218, and 220 may be positioned relative to one another so as to provide a desired degree of tightening and/or a desired amount of valve closure when the leaflets are cinched closer together with a suture lasso. Further, the suture lasso may be tightened so as to provide a desired degree of closure to the leaflets. For example, in a procedure where a targeted tricuspid valve has a relatively greater degree of structural deformity, a suture lasso may be tightened to a greater degree and/or one or more engagement points may be positioned relatively further from the valve annulus and relatively closer to a respective leaflet margin. In contrast, in a procedure where a targeted tricuspid valve has a relatively lower amount of structural deformity, the suture lasso may be tightened to a lesser degree and/or one or more engagement points may be positioned relatively closer to the valve annulus and further from a respective leaflet margin.
Typically, as shown in
The clip device 300 may include one or more control lines, actuator rods, and/or other control mechanisms operably coupled to a handle to enable adjustments to the clip arms, detachment of the device, etc. The clip device 300 is preferably delivered using a transfemoral approach, although a tranjugular approach, transapical approach, or other suitable approach method may also be utilized.
The illustrated clip device 300 is also configured to enable suturing of grasped leaflet tissue. As shown, the distal arms 312 and 314 include through holes 330 and 332 for receiving suturing components. The proximal arms 308 and 310 also include corresponding through holes 350 and 352 (best seen in the superior view of
As shown in
In the illustrated embodiment, the first suture line 408 includes at a distal end a first suture anchor 412. The first suture anchor 412 can be a pledget, button, bight or bundle or suture, or other structure capable of holding position against the leaflet 42 to prevent movement or tearing through the leaflet 42 when tightening tension is applied to the first suture line 408. In some embodiment, the first suture anchor 412 is flexible enough to bend and/or fold to a lower profile shape when passed through the leaflet 42, and is capable of expanding and/or folding into a larger profile shape once passed to the distal side of the leaflet 42.
After deploying the first suture line 408, the first suture deployment catheter 404 is retracted, leaving the first suture line 408 deployed in the leaflet 42, as shown in
As shown in
As shown in
The lock 416 may be a cinch, clamp, grommet, stop, or other fastening device capable of engaging against the suture line 408 to hold it in place and prevent it from slipping past the lock 416. In some embodiments, the lock 416 may be applied using the suturing catheter 402. In other embodiments, the lock 416 may form part of the clip device 300 and may be selectively actuated to engage against the suture line 408. In some embodiments, the suture line 408 may be slipped through a bight or otherwise knotted, in addition to or as an alternative to the lock 416, in order to hold the position of the suture line 408. Excess suture material may be cut from the device 300 prior to finishing the repair procedure.
After tensioning the first suture line 408 to tie the second leaflet 42 and third leaflet 43 together, the clip device 300 may also be kept in the position shown to tie the third leaflet 43 and first leaflet 41 together. The clip device 300 may be adjusted toward a more closed position, as shown in
As shown in
The combination of suturing a pair of adjacent leaflets and deploying the clip device 300 across another pair of adjacent leaflets beneficially provides effective repair of the tricuspid valve and effective reduction or elimination of regurgitant flow through the valve. In some embodiments, even further closing of a targeted tricuspid valve is achieved by adding a suture to the first leaflet 41 (e.g., by passing a suture deployment catheter through the proximal through hole 350 of the proximal arm 308 in a manner similar to that described above) and connecting that suture to the engagement point 318 of the second leaflet 42 to thereby stitch all three leaflets together.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount or condition close to the stated amount or condition that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” and “substantially” may refer to an amount or condition that deviates by less than 10%, or by less than 5%, or by less than 1%, or by less than 0.1%, or by less than 0.01% from a stated amount or condition.
Elements described in relation to any embodiment depicted and/or described herein may be combinable with elements described in relation to any other embodiment depicted and/or described herein. For example, any element described in relation to a repair device of
The present invention may be embodied in other forms, without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
2097018 | Chamberlain | Oct 1937 | A |
2108206 | Meeker | Feb 1938 | A |
3296668 | Aiken | Jan 1967 | A |
3378010 | Codling et al. | Apr 1968 | A |
3557780 | Sato | Jan 1971 | A |
3675639 | Cimber | Jul 1972 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4091815 | Larsen | May 1978 | A |
4112951 | Hulka et al. | Sep 1978 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4297749 | Davis et al. | Nov 1981 | A |
4458682 | Cerwin | Jul 1984 | A |
4425908 | Simon | Nov 1984 | A |
4487205 | Di Giovanni et al. | Dec 1984 | A |
4498476 | Cerwin et al. | Feb 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4641366 | Yokoyama et al. | Feb 1987 | A |
4686965 | Bonnet et al. | Aug 1987 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4944295 | Gwathmey et al. | Jul 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
5015249 | Nakao et al. | May 1991 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5125758 | Dewan | Jun 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5190554 | Coddington et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5275578 | Adams | Jan 1994 | A |
5282845 | Bush et al. | Feb 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306283 | Conners | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5359994 | Kreuter et al. | Nov 1994 | A |
5368564 | Savage | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5383886 | Kensey et al. | Jan 1995 | A |
5391182 | Chin | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5423858 | Bolanos et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5447966 | Hermes et al. | Sep 1995 | A |
5450860 | O'connor | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5462527 | Stevens-Wright et al. | Oct 1995 | A |
5472044 | Hall et al. | Dec 1995 | A |
5476470 | Fitzgibbons, Jr. | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5520701 | Lerch | May 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5562678 | Booker | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5575802 | McQuilkin et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5593424 | Northrup, III | Jan 1997 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5618306 | Roth et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5620461 | Muijs Van De Moer et al. | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5634932 | Schmidt | Jun 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5640955 | Ockuly et al. | Jun 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5702825 | Keita et al. | Dec 1997 | A |
5706824 | Whittier | Jan 1998 | A |
5709707 | Lock et al. | Jan 1998 | A |
5713910 | Gordon et al. | Feb 1998 | A |
5713911 | Racene et al. | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5719725 | Nakao | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5738649 | MacOviak | Apr 1998 | A |
5741280 | Fleenor | Apr 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5759193 | Burbank et al. | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5782845 | Shewchuk | Jul 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5824065 | Gross | Oct 1998 | A |
5827237 | MacOviak et al. | Oct 1998 | A |
5833671 | MacOviak et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5843031 | Hermann et al. | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855271 | Eubanks et al. | Jan 1999 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879307 | Chio et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5916147 | Boury | Jun 1999 | A |
5928224 | Laufer | Jul 1999 | A |
5944733 | Engelson | Aug 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5957949 | Leonhard et al. | Sep 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5980455 | Daniel et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6022360 | Reimels et al. | Feb 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6059757 | Macoviak et al. | May 2000 | A |
6060628 | Aoyama et al. | May 2000 | A |
6060629 | Pham et al. | May 2000 | A |
6063106 | Gibson | May 2000 | A |
6066146 | Carroll et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6088889 | Luther et al. | Jul 2000 | A |
6099505 | Ryan et al. | Aug 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6110145 | Macoviak | Aug 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6126658 | Baker | Oct 2000 | A |
6132447 | Dorsey | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6165164 | Hill et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6182664 | Cosgrove | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190408 | Melvin | Feb 2001 | B1 |
6203531 | Ockuly et al. | Mar 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6210419 | Mayenberger et al. | Apr 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6267746 | Bumbalough | Jul 2001 | B1 |
6267781 | Tu | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6283962 | Tu et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6306133 | Tu et al. | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6319250 | Falwell et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6368326 | Dakin et al. | Apr 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6402780 | Williamson et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6540755 | Ockuly et al. | Apr 2003 | B2 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6585761 | Taheri | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626930 | Allen | Sep 2003 | B1 |
6629534 | St Goar et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6701929 | Hussein | Mar 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709382 | Homer | Mar 2004 | B1 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6740107 | Loeb et al. | May 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755777 | Schweich et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6860179 | Hopper et al. | Mar 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
6945978 | Hyde | Sep 2005 | B1 |
6949122 | Adams et al. | Sep 2005 | B2 |
6966914 | Abe | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
7004970 | Cauthen, III et al. | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7497822 | Kugler et al. | Mar 2009 | B1 |
7533790 | Knodel et al. | May 2009 | B1 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7651502 | Jackson | Jan 2010 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
20010004715 | Duran et al. | Jun 2001 | A1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010010005 | Kammerer et al. | Jul 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010022872 | Marui | Sep 2001 | A1 |
20010037084 | Nardeo | Nov 2001 | A1 |
20010039411 | Johansson et al. | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020022848 | Garrison et al. | Feb 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020055767 | Forde et al. | May 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020055775 | Carpentier et al. | May 2002 | A1 |
20020058910 | Hermann et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020107534 | Schaefer et al. | Aug 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020156526 | Hilavka et al. | Oct 2002 | A1 |
20020158528 | Tsuzaki et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020169360 | Taylor et al. | Nov 2002 | A1 |
20020183766 | Seguin | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20030005797 | Hopper et al. | Jan 2003 | A1 |
20030045778 | Ohline et al. | Mar 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Lisk et al. | Jun 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030130669 | Damarati | Jul 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030171776 | Adams et al. | Sep 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030195562 | Collier et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233038 | Hassett | Dec 2003 | A1 |
20040002719 | Oz et al. | Jan 2004 | A1 |
20040003819 | St Goar et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040030382 | St Goar et al. | Feb 2004 | A1 |
20040039442 | St Goar et al. | Feb 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040078053 | Berg et al. | Apr 2004 | A1 |
20040087975 | Lucatero et al. | May 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040092962 | Thorton et al. | May 2004 | A1 |
20040097878 | Anderson et al. | May 2004 | A1 |
20040097979 | Svanidze et al. | May 2004 | A1 |
20040106989 | Wilson et al. | Jun 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040127981 | Randert et al. | Jul 2004 | A1 |
20040127982 | MacHold et al. | Jul 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133062 | Pai et al. | Jul 2004 | A1 |
20040133063 | McCarthy et al. | Jul 2004 | A1 |
20040133082 | Abraham-Fuchs et al. | Jul 2004 | A1 |
20040133192 | Houser et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | MacOviak et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040152847 | Emri et al. | Aug 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040153144 | Seguin | Aug 2004 | A1 |
20040158123 | Jayaraman | Aug 2004 | A1 |
20040162610 | Laiska et al. | Aug 2004 | A1 |
20040167539 | Kuehn et al. | Aug 2004 | A1 |
20040186486 | Roue et al. | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040243229 | Vidlund et al. | Dec 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040260393 | Randert et al. | Dec 2004 | A1 |
20050004583 | Oz et al. | Jan 2005 | A1 |
20050004665 | Aklog | Jan 2005 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050021056 | St Goer et al. | Jan 2005 | A1 |
20050021057 | St Goer et al. | Jan 2005 | A1 |
20050021058 | Negro | Jan 2005 | A1 |
20050033446 | Deem et al. | Feb 2005 | A1 |
20050038508 | Gabbay | Feb 2005 | A1 |
20050049698 | Bolling et al. | Mar 2005 | A1 |
20050055089 | MacOviak et al. | Mar 2005 | A1 |
20050059351 | Cauwels et al. | Mar 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050228422 | MacHold et al. | Oct 2005 | A1 |
20050228495 | MacOviak | Oct 2005 | A1 |
20050251001 | Hassett | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20050273160 | Lashinski et al. | Dec 2005 | A1 |
20050287493 | Novak et al. | Dec 2005 | A1 |
20060004247 | Kute et al. | Jan 2006 | A1 |
20060015003 | Moaddes et al. | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060030866 | Schreck | Feb 2006 | A1 |
20060030867 | Zadno | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064118 | Kimblad | Mar 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060135993 | Seguin | Jun 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195012 | Mortier et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060252984 | Randert et al. | Nov 2006 | A1 |
20070038293 | St Goar et al. | Feb 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070118155 | Goldfarb et al. | May 2007 | A1 |
20070129737 | Goldfarb et al. | Jun 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080051703 | Thorton et al. | Feb 2008 | A1 |
20080051807 | St Goar et al. | Feb 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080167714 | St Goer et al. | Jul 2008 | A1 |
20080183194 | Goldfarb et al. | Jul 2008 | A1 |
20090156995 | Martin et al. | Jun 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090198322 | Deem et al. | Aug 2009 | A1 |
20090270858 | Hauck et al. | Oct 2009 | A1 |
20090326567 | Goldfarb et al. | Dec 2009 | A1 |
20100016958 | St Goer et al. | Jan 2010 | A1 |
20140236198 | Goldfarb et al. | Aug 2014 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
3504292 | Jul 1986 | DE |
10116168 | Nov 2001 | DE |
0179562 | Jul 1989 | EP |
0558031 | Feb 1993 | EP |
0684012 | Nov 1995 | EP |
0727239 | Aug 1996 | EP |
0782836 | Jul 1997 | EP |
1230899 | Aug 2002 | EP |
1674040 | Jun 2006 | EP |
2768324 | Mar 1999 | FR |
1598111 | Sep 1981 | GB |
2151142 | Jul 1985 | GB |
H09253030 | Sep 1997 | JP |
H11089937 | Apr 1999 | JP |
2000283130 | Oct 2000 | JP |
2015502548 | Jan 2015 | JP |
WO 1981000668 | Mar 1981 | WO |
WO 1991018881 | Dec 1991 | WO |
WO 1992012690 | Aug 1992 | WO |
WO 1994018881 | Sep 1994 | WO |
WO 1994018893 | Sep 1994 | WO |
WO 1995011620 | May 1995 | WO |
WO 1995015715 | Jun 1995 | WO |
WO 1996014032 | May 1996 | WO |
WO 1996020655 | Jul 1996 | WO |
WO 1996022735 | Aug 1996 | WO |
WO 1996030072 | Oct 1996 | WO |
WO 1997018746 | May 1997 | WO |
WO 1997025927 | Jul 1997 | WO |
WO 1997026034 | Jul 1997 | WO |
WO 1997038748 | Oct 1997 | WO |
WO 1997039688 | Oct 1997 | WO |
WO 1997048436 | Dec 1997 | WO |
WO 1998007375 | Feb 1998 | WO |
WO 1998024372 | Jun 1998 | WO |
WO 1998030153 | Jul 1998 | WO |
WO 1998032382 | Jul 1998 | WO |
WO 1999007354 | Feb 1999 | WO |
WO 1999013777 | Mar 1999 | WO |
WO 1999066967 | Dec 1999 | WO |
WO 2000002489 | Jan 2000 | WO |
WO 2000003651 | Jan 2000 | WO |
WO2000003759 | Jan 2000 | WO |
WO 2000012168 | Mar 2000 | WO |
WO 2000044313 | Aug 2000 | WO |
WO 2000059382 | Oct 2000 | WO |
WO 2001000111 | Jan 2001 | WO |
WO 2001000114 | Jan 2001 | WO |
WO 2001003651 | Jan 2001 | WO |
WO 2001026557 | Apr 2001 | WO |
WO 2001026586 | Apr 2001 | WO |
WO 2001026587 | Apr 2001 | WO |
WO 2001026588 | Apr 2001 | WO |
WO 2001026703 | Apr 2001 | WO |
WO2001028432 | Apr 2001 | WO |
WO 2001028455 | Apr 2001 | WO |
WO 2001047438 | Jul 2001 | WO |
WO 2001049213 | Jul 2001 | WO |
WO 2001050985 | Jul 2001 | WO |
WO 2001054618 | Aug 2001 | WO |
WO 2001056512 | Aug 2001 | WO |
WO 2001066001 | Sep 2001 | WO |
WO 2001070320 | Sep 2001 | WO |
WO 2001089440 | Nov 2001 | WO |
WO 2001095831 | Dec 2001 | WO |
WO 2001095832 | Dec 2001 | WO |
WO 2001097741 | Dec 2001 | WO |
WO 2002000099 | Jan 2002 | WO |
WO 2002001999 | Jan 2002 | WO |
WO 2002003892 | Jan 2002 | WO |
WO 2002034167 | May 2002 | WO |
WO 2002060352 | Aug 2002 | WO |
WO 2002062263 | Aug 2002 | WO |
WO 2002062270 | Aug 2002 | WO |
WO 2002062408 | Aug 2002 | WO |
WO 2003001893 | Jan 2003 | WO |
WO 2003003930 | Jan 2003 | WO |
WO 2003020179 | Mar 2003 | WO |
WO 2003028558 | Apr 2003 | WO |
WO 2003037171 | May 2003 | WO |
WO 2003047467 | Jun 2003 | WO |
WO 2003049619 | Jun 2003 | WO |
WO 2003073910 | Sep 2003 | WO |
WO 2003073913 | Sep 2003 | WO |
WO 2003082129 | Oct 2003 | WO |
WO 2003105667 | Dec 2003 | WO |
WO 2004004607 | Jan 2004 | WO |
WO 2004012583 | Feb 2004 | WO |
WO 2004012789 | Feb 2004 | WO |
WO 2004014282 | Feb 2004 | WO |
WO 2004019811 | Mar 2004 | WO |
WO 2004030570 | Apr 2004 | WO |
WO 2004037317 | May 2004 | WO |
WO 2004045370 | Jun 2004 | WO |
WO 2004045378 | Jun 2004 | WO |
WO 2004045463 | Jun 2004 | WO |
WO 2004047679 | Jun 2004 | WO |
WO 2004062725 | Jul 2004 | WO |
WO 2004082523 | Sep 2004 | WO |
WO 2004082538 | Sep 2004 | WO |
WO 2004093730 | Nov 2004 | WO |
WO 2004112585 | Dec 2004 | WO |
WO 2004112651 | Dec 2004 | WO |
WO 2005002424 | Jan 2005 | WO |
WO 2005018507 | Mar 2005 | WO |
WO 2005027797 | Mar 2005 | WO |
WO 2005032421 | Apr 2005 | WO |
WO 2005062931 | Jul 2005 | WO |
WO 2005112792 | Dec 2005 | WO |
WO 2006037073 | Apr 2006 | WO |
WO 2006105008 | Oct 2006 | WO |
WO 2006105009 | Oct 2006 | WO |
WO 2006115875 | Nov 2006 | WO |
WO 2006115876 | Nov 2006 | WO |
WO2016110760 | Jul 2016 | WO |
WO 2018111865 | Jun 2018 | WO |
Entry |
---|
Agricola et al., “Mitral Valve Reserve in Double Orifice Technique: an Exercise Echocardiographic Study,”Journal of Heart Valve Disease, 11(5):637-643 (2002). |
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,”J. Card Surg., 14:468-470 (1999). |
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,”Annals of Thoracic Surgery, 74:1488-1493 (2002). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,”Journal of Thoracic and Cardiovascular Surgery, 122:674-681 (2001). |
Alfieri et al., “The edge to edge technique,”The European Association for Cardio-Thoracic Surgery 14th Annual Meeting, Oct. 7-11, 2000, Book of Proceedings. |
Alfieri, “The Edge-to-Edge Repair of the Mitral Valve,” [Abstract] 6th Annual New Era Cardiac Care: Innovation & Technology, Heart Surgery Forum, (Jan. 2003) pp. 103. |
Arisi et al., “Mitral Valve Repair with Alfieri Technique in Mitral Regurgitation of Diverse Etiology: Early Echocardiographic Results,”Circulation Supplement II, 104(17):3240 (2001). |
Bailey, “Mitral Regurgitation”in Surgery of the Heart, Chapter 20, pp. 686-737 (1955). |
Bernal et al., “The Valve Racket': a new and different concept of atrioventricular valve repair,”Eur. J. Cardio-thoracic Surgery 29:1026-1029 (2006). |
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,”Ann Thorac Surg, 77:1598-1606 (2004). |
Bhudia, #58 Edge-to-edge mitral repair: a versatile mitral repair technique, 2003 STS Presentation, [Abstract Only], 2004. |
Borghetti et al., “Preliminary observations on haemodynamics during physiological stress conditions following 'double-orifice' mitral valve repair,”European Journal of Cardio-thoracic Surgery, 20:262-269 (2001). |
Castedo, “Edge-to-Edge Tricuspid Repair for Redeveloped Valve Incompetence after DeVega's Annuloplasty,”Ann Thora Surg., 75:605-606 (2003). |
Chinese Office Action issued in Chinese Application No. 200980158707.2 dated Sep. 9, 2013. |
Communication dated Apr. 16, 2018 from the European Patent Office in counterpart European application no. 04752603.3. |
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2. |
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2. |
Communication dated May 8, 2017, from the European Patent Office in counterpart European Application No. 04752714.8. |
Dottori et al., “Echocardiographic imaging of the Alfieri type mitral valve repair,”Ital. Heart J., 2(4):319-320 (2001). |
Downing et al., “Beating heart mitral valve surgery: Preliminary model and methodology,”Journal of Thoracic and Cardiovascular Surgery, 123(6):1141-1146 (2002). |
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1. |
Falk et al., “Computer-Enhanced Mitral Valve Surgery: Toward a Total Endoscopic Procedure,”Seminars in Thoracic and Cardiovascular Surgery, 11(3):244-249 (1999). |
Filsoufi et al., “Restoring Optimal Surface of Coaptation With a Mini Leaflet Prosthesis: A New Surgical Concept for the Correction of Mitral Valve Prolapse,”Intl. Soc. For Minimally Invasive Cardiothoracic Surgery 1(4):186-87 (2006). |
Frazier et al., #62 Early Clinical Experience with an Implantable, Intracardiac Circulatory Support Device: Operative Considerations and Physiologic Implications, 2003 STS Presentation, 1 page total. [Abstract Only]. |
Fundaro et al., “Chordal Plication and Free Edge Remodeling for Mitral Anterior Leaflet Prolaspe Repair: 8-Year Follow-up,”Annals of Thoracic Surgery, 72:1515-1519 (2001). |
Garcia-Rinaldi et al., “Left Ventricular vol. Reduction and Reconstruction is Ischemic, Cardiomyopathy,”Journal of Cardiac Surgery, 14:199-210 (1999). |
Gateliene, “Early and postoperative results results of metal and tricuspid valve insufficiency surgical treatment using edge-to-edge central coaptation procedure,”(Oct. 2002) 38 (Suppl 2):172-175. |
Gatti et al., “The edge to edge technique as a trick to rescue an imperfect mitral valve repair,”Eur. J. Cardiothorac Surg, 22:817-820 (2002). |
Gillinov et al., “Is Minimally Invasive Heart Valve Surgery a Paradigm for the Future?” Current Cardiology Reports, 1:318-322 (1999). |
Gundry, “Facile mitral valve repair utilizing leaflet edge approximation: midterm results of the Alfieri figure of eight repair,”Presented at the Meeting of the Western Thoracic Surgical Association, (1999). |
Gupta et al., #61 Influence of Older Donor Grafts on Heart Transplant Survival: Lack of Recipient Effects, 2003 STS Presentation, [Abstract Only]. |
Ikeda et al., “Batista's Operation with Coronary Artery Bypass Grafting and Mitral Valve Plasty for Ischemic Dilated Cardiomyopathy,”The Japanese Journal of Thoracic and Cardiovascular Surgery, 48:746-749 (2000). |
International Search Report and Written Opinion of PCT Application No. PCT/US2009/068023, dated Mar. 2, 2010, 10 pages total. |
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,”Annuals of Thoracic Surgery, 67:1703-1707 (1999). |
Kallner et al., “Transaortic Approach for the Alfieri Stitch,”Ann Thorac Surg, 71:378-380 (2001). |
Kavarana et al., “Transaortic Repair of Mitral Regurgitation,”The Heart Surgery Forum, #2000-2389, 3(1):24-28 (2000). |
Kaza et al., “Ventricular Reconstruction Results in Improved Left Ventricular Function and Amelioration of Mitral Insufficiency,”Annals of Surgery, 235(6):828-832 (2002). |
Kherani et al., “The Edge-To-Edge Mitral Valve Repair: The Columbia Presbyterian Experience”, Ann. Thorac. Surg., 78:73-76 (2004). |
Konertz et al., “Results After Partial Left Ventriculectomy in a European Heart Failure Population,”Journal of Cardiac Surgery, 14:129-135 (1999). |
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,”Annals. Of Thoracic Surgery, 74:600-601 (2002). |
Kruger et al., “P73 - Edge to Edge Technique in Complex Mitral Valve Repair,”Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000). |
Langer et al., “Posterier mitral leaflet extensions: An adjunctive repair option for ischemic mitral regurgitation?”J Thorac Cardiovasc Surg, 131:868-877 (2006). |
Lorusso et al., “Double-Orifice'Technique to Repair Extensive Mitral Valve Excision Following Acute Endocarditis,”J. Card Surg, 13:24-26 (1998). |
Lorusso et al., “The double-orifice technique for mitral valve reconstruction: predictors of postoperative outcome,”Eur J. Cardiothorac Surg, 20:583-589 (2001). |
Maisano et al., “The double orifice repair for Barlow Disease: a simple solution for a complex repair,”Supplement I Circulation, (Nov. 1999); 100(18):1-94. |
Maisano et al., “The double orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique,”European Journal of Cardio- thoracic Surgery, 17:201-205 (2000). |
Maisano et al., “The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model,”European Journal of Cardio-thoracic Surgery, 15:419-425 (1999). |
Maisano et al., “Valve repair for traumatic tricuspid regurgitation,”Eur. J. Cardio-thorac Surg, 10:867-873 (1996). |
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,”J. Heart Valve Dis., 9:641-643 (2000). |
Mccarthy et al., “Partial left ventriculectomy and mitral valve repair for end-stage congestive heart failure,”European Journal of Cardio-thoracic Surgery, 13:337-343 (1998). |
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,”Annals of Thoracic Surgery, 73:963-965 (2002). |
Morales et al., “Development of an Off Bypass Mitral Valve Repair,”The Heart Surgery Forum #1999-4693, 2(2):115-120 (1999). |
Nakanishi et al., “Early Outcome with the Alfieri Mitral Valve Repair,”J. Cardiol., 37: 263-266 (2001) [Abstract in English; Article in Japanese]. (2001). |
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,”Circulation, 104(Suppl. I):I-29-I-35 (2001). |
Noera et al., “Tricuspid Valve Incompetence Caused by Nonpenetrating Thoracic Trauma”, Annals of Thoracic Surgery, 51:320-322 (1991). |
Osawa et al., “Partial Left Ventriculectomy in a 3-Year Old Boy with Dilated Cardiomyopathy,”Japanese Journal of Thoracic and Cardiovascular Surg, 48:590-593 (2000). |
Patel et al., #57 Epicardial Atrial Defibrillation: Novel Treatment of Postoperative Atrial Fibrillation, 2003 STS Presentation, [Abstract Only]. |
Privitera et al., “Alfieri Mitral Valve Repair: Clinical Outcome and Pathology,”Circulation, 106:e173-e174 (2002) |
Redaelli et al., “A Computational Study of the Hemodynamics After 'Edge-To-Edge'Mitral Valve Repair,”Journal of Biomechanical Engineering, 123:565-570 (2001) |
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,”Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997). |
Robicsek et al., #60 the Bicuspid Aortic Valve: How Does It Function? Why Does It Fail?2003 STS Presentation, [Abstract Only] . |
Supplemental European Search Report of EP Application No. 02746781, dated May 13, 2008, 3 pages total. |
Supplementary European Search Report issued in European Application No. 05753261.6 dated Jun. 9, 2011, 3 pages total. |
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of a Case,”Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001). |
Tibayan et al., #59 Annular Geometric Remodeling in Chronic Ischemic Mitral Regurgitation, 2003 STS Presentation, [Abstract Only] . |
Timek et al., “Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation,”Eur J. Of Cardiothoracic Surg., 19:431-437 (2001). |
Timek, “Edge-to-Edge Mitral Valve Repair without Annuloplasty Ring in Acute Ischemic Mitral Regurgitation”, [Abstract] Clinical Science, Abstracts from Scientific Sessions, 106(19):2281 (2002) Regurgitation, |
Totaro, “Mitral valve repair for isolated prolapse of the anterior leaflet: an 11-year follow-up ”Journal of Cardio-thoracic Surgery, 15:119-126 (1999). |
Umana et al., “Bow-tie'Mitral Valve Repair Successfully Addresses Subvalvular Dysfunction in Mitral Regurgitation,”Surgical Forum, XLVIII:279-280 (1997) |
Votta et al., “3-D Computational Analysis of the Stress Distribution on the Leaflets after Edge-to-Edge Repair of Mitral Regurgitation,”Journal of Heart Valve Disease, 11:810-822 (2002). |
U.S. Appl. No. 14/577852, dated Oct. 20, 2016, Office Action. |
U.S. Appl. No. 14/577852, dated May 16, 2017, Office Action. |
U.S. Appl. No. 14/577852, dated Sep. 7, 2017, Office Action. |
U.S. Appl. No. 14/577852, dated Apr. 25, 2018, Notice of Allowance. |
Number | Date | Country | |
---|---|---|---|
20180161035 A1 | Jun 2018 | US |