1. Field of the Invention
The present invention relates generally to an apparatus allowing for simultaneous drilling and casing of a subterranean well. In a further aspect, the invention relates to a rotatable drill shoe coupled with a section of casing and a method of drilling and completing a subterranean well using the same.
2. Description of the Prior Art
Conventional techniques of constructing oil and gas wells, especially deep sea wells, involve drilling a well bore using a string of drill pipe having a drill bit attached to the lower end thereof. As the drill string is advanced into the ground, it encounters different rock formations, some of which may be unstable. In order to minimize problems which may arise in connection with traversing these various formations, the drill bit is run to a desired depth and then the drill string is removed from the well bore. Next, casing is lowered into the well bore and cemented in place. Essentially, the casing acts as a lining within the well bore and prevents collapse of the well bore or loss of drilling fluids into the formations.
This conventional technique requires two separate trips in and out of the well bore in order to complete the well, ignoring any subsequent trips for increasing the depth of the well bore which may be required. Each trip into and out of the well bore can require hours or even days depending upon the depths involved and leads to costly nonproductive time. Combining these two trips into one would significantly reduce the time involved in well completion and costs associated therewith.
Attempts have been made to drill while running casing. These attempts have generally involved using a drill bit rigidly secured to the casing and then rotating the entire casing string in order to turn the drill bit. There are a number of problems associated with this method, especially in the context of deep sea drilling. In deep sea drilling, the casing has a subsea wellhead installed at the top thereof. Conventional drill string is run through the well head and is carried by the drilling rig. The rotation of the casing in the open water between the drilling rig and the mud line can create large stresses at the interface between the casing and the drill pipe. The rotation of the large casing used in deep sea wells in a relatively high water current may also cause vibrations or high excursions from the well center. Furthermore, when landing casing with a high pressure subsea wellhead installed into a low pressure wellhead, rotation may damage one or both wellheads.
It is, therefore, an object of the present invention to provide an apparatus and method of drilling and completing a well in a single trip, with or without rotation of the casing.
One aspect of the present invention concerns a drilling shoe configured to be coupled to a casing section. The drilling shoe comprises a fixed section adapted to be coupled to the casing section, and a rotatable section coupled to the fixed section. The drilling shoe is shiftable between a rotatable configuration and a locked configuration. The rotatable section is rotatable relative to the fixed section when the drilling shoe is in the rotatable configuration. The rotatable section is rotationally fixed relative to the fixed section when the drilling shoe is in the locked configuration.
Another aspect of the invention concerns a drilling apparatus coupled with a section of casing. The drilling apparatus comprises a drilling shoe that is selectively rotatable relative to the casing section and includes a drillable bit. The drilling shoe further includes a locking mechanism for preventing rotation of the shoe relative to the casing section so that the bit can be drilled out after the casing section is set.
Yet another aspect of the invention concerns a method comprising the steps of: (a) coupling a drilling shoe to an end of a casing section; (b) using the drilling shoe to drill a borehole in a subterranean formation by rotating a rotatable portion of the drilling shoe relative to the casing section; and (c) locking the drilling shoe so that relative rotation of the casing section and the rotatable portion is inhibited.
Still another aspect of the invention concerns a method of drilling and completing a well. The method comprises the steps of: (a) providing an apparatus comprising a section of casing, a drilling shoe, and a locking mechanism, with the drilling shoe being coupled to the section of casing and the drilling shoe including a drillable drill bit; (b) rotating the shoe relative to the section of casing to thereby drill a well bore to a desired depth; (c) cementing the casing section into place; and (d) drilling out at least a portion of the drillable bit by a subsequent drilling operation. The locking mechanism prevents rotation of the shoe relative to the section of casing during step (d).
Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and the accompanying drawing figures.
Preferred embodiments of the present invention are described in detail below with reference to the attached drawing figures, wherein:
Turning first to
In order to provide easier assembly of drilling shoe 10, fixed section 14 comprises two portions 14a, 14b which are preferably welded together at seam 25. If another type of connection other than a weld seam is desired, portions 14a and 14b may be threadably coupled, preferably using a left-handed threading arrangement to prevent the connection from becoming loosened during operation of drilling shoe 10. Rotatable section 20 also comprises two portions, 20a and 20b for ease of assembly. Portions 20a and 20b each comprise complementary threading 27 for coupling the portions together. Threading 27 is preferably of a left-handed arrangement to prevent the backing off of portion 20b from portion 20a during operation of drilling shoe 10.
Drilling shoe 10 further comprises a locking mechanism 26 which includes two sets of interlockable projections or teeth 28, 30 and a spring 32, preferably a compression spring 32. Teeth 28 are attached to fixed section 14 and teeth 30 are attached to rotatable section 20. A plurality of recesses 31 are provided between teeth 28 on both fixed section 14, and a plurality of recesses 33 are provided between teeth 30 on rotatable section 20. Drilling shoe 10 is shiftable between a rotatable configuration (shown in
In shifting between locked and rotatable configurations, rotatable section 20 is axially shifted relative to fixed section 14. Spring 32 is disposed between at least a portion of rotatable section 20 and at least a portion of fixed section 14 and normally biases drilling shoe 10 toward the rotatable configuration.
Drillable bit 34 is rigidly coupled (preferably welded) with second rotatable end 24 and presents a diameter that is greater than the widest diameter presented by drilling shoe 10 and casing section 12. As used here, “drillable bit” means that the bit is primarily constructed from a material that allows a second drill bit to drill through it. Suitable materials for constructing the drillable bit include cast aluminum, copper, mild steel, or brass alloy; however, any suitable soft material adapted to be drilled through with a standard earth drill bit may be used. By forming the drillable bit from a relatively soft material, the life of the second drill bit utilized to drill through the drillable bit is extended so as to improve drilling performance with the second drill bit.
Bit 34 comprises a plurality of valves formed therein for controlling fluid flow through the bit. Float valves 36, 38, and 40 are representative of these valves and allow for unidirectional flow of drilling fluid or cement through bit 34 during drilling and cementing operations, respectively.
Drilling shoe 10 also contains a drive section 42 which can be attached to a power source in order to facilitate powered rotation of rotatable section 20 relative to casing section 12. While any means known in the art for attaching a power source to drive section 42 may be used, the present embodiment employs a plurality of splines 44 which define a passage way through drive section 42 and into which the power source is received. Preferably, splines 44 are formed of an easily drilled material.
Drilling shoe 10 is undetachable from casing section 12 while shoe 10 and casing section 12 are positioned down hole in the well. As used herein, “undetachable” means that the shoe and casing are not capable of being separated without substantially damaging either the casing, the shoe, or both. Unless the entire string of casing 12 is removed from the well bore, drilling shoe 10 cannot be retrieved. Therefore, all drilling, cementing, and any subsequent drilling operations are performed without removing casing section 12 or drilling shoe 10 from the borehole.
A mud motor 48 is employed as the power source for drive section 42 and is attached to pipe string 50 which is run through casing 12. Mud motor 48 includes a drive shaft 49 that is complementary to and is releasably engaged with splines 44. Drilling fluid is circulated down pipe string 50, through mud motor 48, and exits bit 34 through float valve 40. The drilling fluid powers mud motor 48 which turns drive section 42 and causes bit 34 to rotate relative to casing section 12. Casing section 12 may remain substantially stationary with respect to formation 46 while bit 34 rotates or casing section 12 may be rotated simultaneously with rotation of bit 34. However, even if casing section 12 is rotated, bit 34 continues to rotate relative to the rotating casing section 12 because bit 34 is separately powered by mud motor 48.
The weight of casing section 12 maintains bit 34 in contact with formation 46 and seats second fixed end 18 against a bearing 54 and seal 56. Most importantly, the seating of end 18 along with the biasing action of spring 32 results in the separation of teeth 28, 30 thereby enabling rotation of rotatable section 20 relative to fixed section 14.
The back pressure of drilling fluid seats the floats of valves 36,38 to prevent flow of drilling fluid through the annulus of casing section 12. Instead, drilling fluid 52 (carrying particulate matter generated as a result of the drilling operation) is forced through the annulus created between formation 46 and casing section 12 and back up toward the surface or seabed. Drilling continues until the desired depth has been reached.
Once the desired depth is reached, casing section 12 is cemented into place as shown in
After casing section 12 is cemented in place, string 50 is removed from the annulus of casing section 12 and a drill string 64, having a conventional drill bit 66 attached thereto, is run down hole as shown in
In certain instances, especially when the clearance beneath bit 34 is insufficient to allow axial shifting of rotatable section 20 and teeth 28, 30 to interlock, rotatable section 20 may initially rotate along with bit 66 during the drilling out step. In such case, drillable bit 34 will drill out underneath itself until teeth 28, 30 engage and lock section 20. Splines 44, drillable bit 34, and valves 36, 38, 40 are then drilled out by bit 66. Fluids may now be produced from subterranean formation 46 through drilling shoe 10.
Finally,
The preferred forms of the invention described above are to be used as illustration only, and should not be used in a limiting sense to interpret the scope of the present invention. Obvious modifications to the exemplary embodiments, set forth above, could be readily made by those skilled in the art without departing from the spirit of the present invention.
The inventors hereby state their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as it pertains to any apparatus not materially departing from but outside the literal scope of the invention as set forth in the following claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 2359717 | Myers | Oct 1944 | A |
| 3447340 | Garrett | Jun 1969 | A |
| RE26745 | Bottoms | Dec 1969 | E |
| 3901331 | Djurovic | Aug 1975 | A |
| 3933209 | Sweeney | Jan 1976 | A |
| 4232751 | Trzeciak | Nov 1980 | A |
| 4848469 | Baugh et al. | Jul 1989 | A |
| 5168942 | Wydrinski | Dec 1992 | A |
| 5662180 | Coffman et al. | Sep 1997 | A |
| 5845722 | Makohl et al. | Dec 1998 | A |
| 5881827 | Ikeda et al. | Mar 1999 | A |
| 5950742 | Caraway | Sep 1999 | A |
| 5957225 | Sinor | Sep 1999 | A |
| 6073708 | Brown et al. | Jun 2000 | A |
| 6106200 | Mocivnik et al. | Aug 2000 | A |
| 6263987 | Vail, III | Jul 2001 | B1 |
| 6368021 | Strong et al. | Apr 2002 | B1 |
| 6412574 | Wardley et al. | Jul 2002 | B1 |
| 6443247 | Wardley | Sep 2002 | B1 |
| 6817633 | Brill et al. | Nov 2004 | B2 |
| 6896075 | Haugen et al. | May 2005 | B2 |
| 6899186 | Galloway et al. | May 2005 | B2 |
| 20040226751 | McKay et al. | Nov 2004 | A1 |
| 20040245020 | Giroux et al. | Dec 2004 | A1 |
| 20060021801 | Hughes et al. | Feb 2006 | A1 |
| Number | Date | Country |
|---|---|---|
| 1559089 | Apr 1990 | SU |
| WO 94738 | Dec 2001 | WO |
| Number | Date | Country | |
|---|---|---|---|
| 20050199426 A1 | Sep 2005 | US |