present invention relates to electrical cable connectors, such as loadbreak connectors and deadbreak connectors. More particularly, aspects described herein relate to a feedthru insert (also referred to as a feedthrough or double bushing) for connecting to an electrical switchgear assembly.
Electrical distribution systems such as those used to provide electrical power to commercial and residential dwellings may incorporate feedthru inserts assemblies to couple high-voltage power feeder cables to the input connections or terminals on electrical distribution transformers. Feedthru inserts typically include two or more upright legs conductively coupled to an opposing leg by a cross bar. The single leg side is coupled to the transformer and the upright legs are then coupled to elbow devices or the like. Using feedthru inserts eliminates unprotected exposed electrical bus elements, connected between the transformer input connections and the primary windings within the transformer casings, and provides a more compact arrangement of the transformer installations and all of the associated connectors and cable connections therewith.
Unfortunately, when the conventional feedthru inserts are torqued into fixed operative threadable engagement with a corresponding transformer bushing well receptacle, the position of upright legs of the feedthru insert are often not suitably aligned to interface with corresponding elbow connectors to facilitate a connection therebetween.
Prior attempts to solve this problem have included incorporating torque limiting elements within the feedthru inserts, such that rotation of the insert in a predetermined direction after assembly neither adversely increases or unduly reduces the amount of torque applied to the interface between the bushing well and the insert. Unfortunately, these prior attempts have failed to provide adequate performance at an acceptable cost.
The following detailed description refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
In one implementation, each of legs 108-112 may be substantially frusto-conically shaped to facilitate secure connection to corresponding switchgear devices, such as power cable elbows, grounding devices, surge arrestors, bushing wells, etc. More specifically, first leg 108 may include a longitudinal bore 114 therein that is concentric with the longitudinal axis of first leg 108.
Feedthru insert assembly 100 may include an electrically conductive outer shield 116 formed from, for example, a conductive or semi-conductive peroxide-cured synthetic rubber, such as EPDM (ethylene-propylene-dienemonomer). Within shield 116, feedthru insert assembly 100 may include an insulative inner housing 118, typically molded from an insulative rubber, silicon, or epoxy material. Within insulative inner housing 118, feedthru insert assembly 100 may include a conductive T-bar portion 120 that includes an upper bar portion 122 and a lower portion 124 extending into longitudinal bore 114 in first leg 108. In some implementations, T-bar portion 120 may be formed of a conductive material, such as copper, aluminum, or the like.
As shown in
Each of second and third legs 110/112 may include longitudinal cavities therein configured to receive conductive contact sleeves 138. As shown in
Bushing well 102 may include a substantially cup-shaped configuration corresponding to the configuration of first leg 108. Bushing well 102 may be mounted within transformer housing 104 via a mounting bracket 141. In some implementations, mounting bracket 141 may be molded into an outer housing of bushing well 102 and may be welded or otherwise secured to transformer housing 104. In addition, mounting bracket 141 may include a number of bailing tabs 142 (two of which are shown in
Bushing well 102 may further include a stud portion 144 configured to receive longitudinal bore 114 and/or T-bar bore 126 thereon. Further, stud portion 144 may include a conductive stud 146 projecting from stud portion 144 and conductively coupled to electrical components within transformer housing 104. As described below, conductive stud 146 may include external threads for facilitating securing of feedthru insert assembly 100 to bushing well 102. Conductive stud 146 may be configured to extend within T-bar bore 126 during assembly of feedthru insert assembly 100.
Feedthru bolt 150 may be configured for insertion into T-bar bore 126. Feedthru bolt 150 may include a cylindrical body portion 152, a louvered contact portion 153, a threaded stud receiving portion 154, a retaining ring groove 156, and a tool engagement shoulder portion 158. As shown in
In some implementations, a washer 159 may be provided between first annular shoulder portion 134 of feedthru insert assembly 100 and tool engagement shoulder portion 158. Washer 159 may provide a smooth or relatively flat interface between bolt 150 and an upper surface of tool engagement shoulder portion 158.
Retaining ring groove 156 may include an annular groove in an outer surface of cylindrical body portion 152 spaced from tool engagement shoulder portion 158 such that retaining ring groove 156 extends outside of T-bar bore 126 when feedthru bolt 150 is inserted into T-bare bore 126. A retaining ring 160 may be snapped into retaining ring groove 156 when feedthru bolt 150 is inserted into T-bar bore 126, thereby securing feedthru bolt 150 to feedthru insert assembly 100 and presenting displacement and loss thereof during transport and prior to installation. Moreover, given the substantially cylindrical configuration of T-bar bore 126, feedthru bolt 150, and tool engagement shoulder portion 158, legs 110/112 may be rotated freely about feedthru bolt 150 prior to installation of feedthru insert assembly 100 in bushing well 102.
Furthermore, as shown in
Consistent with implementations described herein, tool 200 (also referred to herein as torque limiting tool 200) may be configured to only apply defined or selected quantities of torque to bolt 150. In some implementations, tool 200 may be task-specific and may be configured to apply only a specific amount of torque, depending on the particular task for which it has been manufactured. For example, tool 200 may include a 200 Amp loadbreak torque limited tool configured to apply approximately 13 pound feet of torque. Continued rotation of tool 200 following application of the designed or preconfigured amount of torque causes tool 200 to cease applying torque to feedthru bolt 150. In other implementations, configurable torque limiting tools may be used, in which a user sets or configures the tool to apply a particular quantity of torque. Regardless of the type of tool used, upon application of the desired amount of torque, tool 200 may be configured to provide an audible indication to a user that the desired torque level has been reached. For example, tool 200 may emit a clicking sound when the desired amount torque has been applied.
Following application of the desired amount of torque (also referred to as “torqueing”) to bolt 150, tool 200 maybe removed from feedthru insert assembly 100.
Following removal of tool 200 (after torqueing of feedthru bolt 150), insulating plug 300 may be inserted into plug bore 305 such that lower threaded portion 320 is received into upper threaded portion 130 of T-bar bore 126. In this configuration, lower shoulder portion 320 abuts second annular shoulder portion 136 upon application of torque to drive cap portion 330 in insulating plug 300.
For example, similar to the application of torque to bolt 150, tool 200 may be inserted into drive cap portion 330 and the desired amount of torque applied to insulating plug 300. This causes lower shoulder portion 320 of insulating plug 300 to compressingly engage second annular shoulder portion 136. Tool 200 may then be removed from drive cap portion 330.
Although the torqued threaded engagement between feedthru bolt 150 and conductive stud 146 may be sufficient to prevent undesired removal of feedthru insert assembly 100 from transformer housing 104, an additional securing element may be desired in some cases, to ensure that feedthru insert 100 does not become removed in the event that heavy devices are installed on one or both of second and third legs 110/112.
As shown in
Each of periphery portions 410 and 415 may include a number of placement holes 420 formed therethrough. As shown in
To secure bailing plate 405 to transformer housing 104, a number of bailing elements 425 may connect bailing plate 405 to bailing tabs 142. For example, two or more bailing rods 425 may connect to placement holes 420 in bailing plate 405 and openings 430 in bailing tabs 142 (two of which are shown in
As depicted in
Because feedthru insert assembly 100 may be positioned in a number of rotational orientations with respect to bushing well 102, selection of particular ones of placement holes 420 may depend on the rotational position of feedthru insert assembly 100 relative to bushing well 102. Once particular placement holes 420 have been selected, threaded ends 445 may be inserted into the selected placement holes 420 in bailing plate 405 when bailing plate 405 is positioned body portion 106. Nuts 450 (e.g., hand tightenable wing-type nuts) may be threaded onto threaded ends 445 of bailing rods 425 and tightened, thereby securing feedthru insert assembly 100 to bushing well 102 via a compression force between bailing plate 405 and insulating plug 300.
Although described above in reference to bailing plate 405, in some implementations consistent with aspects described herein, the features of bailing plate 405 may be integral with body portion 106 of feedthru insert assembly 100. For example, body portion 106 may include tabs having placement holes 420 formed therein for receiving threaded ends 445 of bailing rods 425.
Although the present description refers to bailing rods 425 having opposing hooked and threaded ends, it should be understood that any suitable bailing element may be used, such as bailing straps or wires, clamps, a hub configuration, etc.
The above-described devices and configurations provide a low cost and effective feedthru insert assembly configuration. For example, implementations described herein provide a feedthru insert assembly that includes a central bore extending through a first leg configured for insertion into a bushing well. A conductive bolt maybe inserted through the central bore and the feedthru insert assembly may be rotated to a desired position relative to the bushing well. The conductive bolt may matingly engage a conductive stud in the bushing well. Application of a specific amount of torque to the conductive bolt may ensure that the bolt is securely fastened to the bushing well. An insulating plug may then be inserted into the feedthru insert assembly to cover the conductive bolt and ensure that the conductive bolt is fully insulated from a grounded shield that covers the feedthru insert assembly.
The foregoing description of exemplary implementations provides illustration and description, but is not intended to be exhaustive or to limit the embodiments described herein to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the embodiments. For example, implementations may also be used for other devices, such as other medium or high voltage switchgear equipment, such as any 15 kV, 25 kV, 35 kV, etc., equipment, including both deadbreak-class and loadbreak-class equipment.
For example, various features have been mainly described above with respect to feedthru-type connectors. In other implementations, other medium/high voltage power components may be configured to include the rotatable configuration described above.
Although the invention has been described in detail above, it is expressly understood that it will be apparent to persons skilled in the relevant art that the invention may be modified without departing from the spirit of the invention. Various changes of form, design, or arrangement may be made to the invention without departing from the spirit and scope of the invention. Therefore, the above-mentioned description is to be considered exemplary, rather than limiting, and the true scope of the invention is that defined in the following claims.
No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
This application claims priority under 35. U.S.C. §119, based on U.S. Provisional Patent Application No. 61/366,250 filed Jul. 21, 2010, the disclosure of which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61366250 | Jul 2010 | US |