This invention relates to methods of utilizing solar energy. Solar energy can provide energy for many different residential, commercial, and industrial applications, without the use of fossil fuels and the associated economic and environmental disadvantages. Solar energy installations typically require a large area to collect and focus solar energy on a certain solar application. Some solar energy applications may be constrained by the area available for energy collection.
Efforts to increase the economic and spatial efficiency of solar energy collection are disclosed in the prior art. U.S. Pat. No. 7,531,740 which is herein incorporated by reference for all that it contains, discloses a photovoltaic module generates electrical power when installed on a roof. The module is constructed as a laminated sandwich having a transparent protective upper layer adhered to a photovoltaic layer. The photovoltaic layer is adhered to a rigid layer formed from a fiber reinforced plastic. The laminated sandwich has a frame around the perimeter. The laminated panel has a layer of double stick tape on the bottom to adhere the panel to the surface of a roof.
U.S. Patent Application Publication No. 2007/0074754 which is herein incorporated by reference for all that it contains to Farquhar discloses a photovoltaic roofing system and a method of installing the photovoltaic ridge cap structure have been provided. The photovoltaic roofing system includes a ridge cap adapted to cover a ridge of a roof structure. The system also includes at least one photovoltaic cell disposed within the ridge cap. The method of installing a photovoltaic ridge cap structure includes mounting the ridge cap over multiple photovoltaic cells along a ridge of a roof structure. The method further includes routing electrical leads from each photovoltaic cell through one or more opening along the ridge of the roof structure.
U.S. Patent Application Publication No. 2007/0074753 to Altali which is herein incorporated by reference for all that it contains, discloses the present invention provides a motor driven by shape memory alloys for use in a variety of applications. In the disclosed embodiment, the motor is used to drive a photovoltaic panel so that the panel may remain in appropriate alignment with the sun throughout the day. In such a configuration, the motor assembly relies upon the intrinsic properties of shape memory alloys, in conjunction with a spring assembly, in order to generate sufficient torque in order to rotate the photovoltaic panel. In order to control the orientation of the panel, the system relies upon a sun tracking mechanism which includes an analog sensor circuit, a plurality of phototransistors and a power source. Accordingly, the device is able to rotate the photovoltaic panel in discrete and precise increments as the day progresses.
U.S. Pat. No. 4,271,818 to Hastwell, which is herein incorporated by reference for all that it contains discloses a roofing structure in which roofing panels support solar collector plates in cavities in the roofing panels, or formed on the roofing panels, above which are shielding panels which pass solar radiation but prevent water flow into the cavities, so that the solar collector plates are positioned between the shielding panels and the roofing panels with the roofing panels being thermally insulated on their undersides to pass back heat which passes through the solar collector plates.
In one aspect of the present invention, a structure comprises a plurality of reflective panels secured to the structure. Each panel has an axis of rotation, and a processing element controls an orientation of each reflective panel about its axis of rotation to direct solar energy within the structure. The panels may be controlled individually or in groups. In some embodiments, all of the panels are controlled as a single group.
Solar energy applications within the structure may comprise solar energy heated working fluids; agricultural operations such as a greenhouse, algae farm, or fish hatchery; or may comprise photovoltaic cells for direct electricity generation. The reflective panels may comprise reflective surfaces that are parabolic, curved, planer or combinations thereof. The reflective panels may be secured to an exterior portion of the building, such as a roof or wall. In some cases, the panels are secured below a transparent roof or inside a window of the structure.
A processing element that controls the orientation of the panels may comprise an electrical microprocessor. The microprocessor may be in communication with several electrical sensors, such as one or more photo-sensitive electrical elements such as photoresistors, and one or more temperature sensitive electrical elements such as thermocouples or thermistors. The electrical microprocessor may be in communication with electrical servo motors, electrical linear actuators, or solenoids. The servo motors, linear actuators, or solenoids may be in mechanical communication with the reflective panels, and may cause rotation about the axis of rotation.
In some embodiments, the panels may be constructed from steel, stainless steel, aluminum, magnesium, or other metals or metal alloys. The panels may be polished to enhance reflectivity. In other embodiments, the panels may comprise wood, plastic, or composite materials and may comprise a metal coating or metal film. Other materials may be used as a reflective surface. The reflective panels may comprise an elongated shape, and each reflective panel may be supported at opposite ends by pivots connected to the structure. The panels may also be made a translucent material that allows some light wavelengths to pass through while reflecting other light wavelengths. In some embodiments, the translucent materials may include dichroic and/or dielectric coatings.
In another aspect of the invention, a method of utilizing solar power comprises the following steps: providing a building comprising rotatable reflective panels secured to the building and one or more solar powered operations within the building, prioritizing the solar energy applications, and rotating the reflective panels to focus solar energy reflected from the reflective panels to one or more solar powered operations according to priority.
a is a cross-sectional view of another embodiment of a structure.
b is a cross-sectional view of another embodiment of a structure.
a is a cross-sectional view of another embodiment of a reflective panel.
b is a cross-sectional view of another embodiment of a reflective panel.
c is a cross-sectional view of another embodiment of a reflective panel.
d is a cross-sectional view of another embodiment of a reflective panel.
e is a cross-sectional view of another embodiment of a reflective panel.
Referring now to the figures,
A plurality of reflective panels 101 is secured to the structure. These panels may direct solar energy to any of the solar application within the structure. In some embodiments, the panels may be disposed on an exterior portion 102 of the structure 100. In the embodiment of
The agricultural application 200 may comprise food crops, material crops, or other plants that rely on photosynthetic. Food crops may include grains, fruits, vegetables, tubers, legumes, or other comestibles. Material crops may include bamboo, cotton, flax, jute, sisal, or other plants. Crops, such as these, rely on solar energy to provide energy for photosynthetic. In this embodiment, the structure 100 functions to protect such plants from extreme heat, cold, and wind, and solar energy is guided by the panels to the plants. In some embodiments, the agricultural operation may comprise hydroponic or aeroponic growing methods.
Also in this embodiment, the structure houses an aquarium operation 201. Many fish, mollusks and crustaceans raised for consumption require heated water and light to survive. Solar energy entering the structure 100 through the roof portion 203 may heat the water and provide the required light. In other embodiments, the structure 100 may comprise other aquaculture operations such as algae farming for food, oil, or biomass. Further, the water in the aquarium operation may store heat from the sun. The solar energy stored in the aquarium tanks may radiate out when sunlight is not available and keep the agriculture operation heated.
The heated fluid may be used for interior space heating by directing the fluid through a radiator or other heat exchanger, through a surface of the structure such as a floor or wall, or by heating air in a forced air ventilation system. Other embodiments may use the heated fluid for steam generation to drive a turbine connected to an electrical generator. After heat is transferred from the fluid to heat air or water for steam, the fluid may be directed back through a portion of conduit 202 exposed to solar radiation 205.
In the embodiment of
Liquids such in tanks 750, such as water in an aquarium, may store solar energy. When the panels are in a closed arrangement, the solar energy may radiate out of the tanks and warm the interior of the structure. In some embodiments, heat exchangers, such as tubes, may draw the solar energy out of the tanks and take the heat to another location.
a discloses an array of photovoltaic cells 700 disposed underneath the roof 203 and incorporated into the rotatable panels. In this embodiment, photovoltaic panels 700 comprise a dye-sensitized photovoltaic liquid intermediate two glass panels. The photovoltaic panels absorb a portion of the solar energy incident on the structure and generate electrical current indicated by 850. The glass panels may be treated with partially reflective materials. In some embodiments, the partially reflective materials may comprise polarizing filters or electrically actuated filters.
In some embodiments, the panels incorporate the photovoltaic material on one side fo the panel and incorporate a reflective surface on the other side. In the embodiment of
b discloses some panels that are configured to reflect a range of light wavelengths, while allowing another range of wavelengths to pass through. In some situations, light of certain wavelengths may be better suited for different solar applications within the structure. For example, visible light may be better suited for agricultural applications involving photosynthesis, while shorter wavelengths may be better suited for heat storage. Thus, the translucent panels 850 may allow visible light 851 to pass through directly to the agricultural applications, while reflecting the shorter wavelengths 852 to the aquariums for solar radiation storage.
In this embodiment, the reflective panel 900 is rotated by a linear actuator 902. Linear actuator 902 may comprise an electrical solenoid or a hydraulic cylinder driving a rack gear 903 in communication with a pinion gear 904 attached to the reflective panel 900. Other embodiments may comprise a mechanical linkage or direct mechanical connection between the panel 900 and the linear actuator 902.
a discloses a reflective panel 1000 with a planer surface 1001. The panel may be constructed from a metal or metal alloy such as aluminum, carbon steel, or stainless steel. Aluminum panels may comprise a corrosion resistant surface finish such as anodizing or electro-plating with nickel or chromium. The surface 1001 may be polished prior to finishing. Carbon steel panels may be polished and electroplated with nickel, chromium, or combinations thereof.
b discloses a reflective panel 1002 with a structural substrate 1003 that may be made from polymers such as polyvinyl chloride, high or low density polyethylene, other polymers, or composite materials such as fiberglass, carbon fiber, or aramid fiber with a resin binder, or natural wood. The structural substrate 1003 may comprise a curved cross section such as a parabolic cross section. A layer of reflective material 1004 may be disposed on the structural substrate 1003. The reflective material may comprise polished sheet metal or metal foil affixed atop the substrate. In some embodiments, the structural substrate may be coated with metal by chemical or physical deposition processes. Other embodiments may comprise polymer films with metal foil or embedded metal particles.
c discloses an embodiment of a reflective panel 1000 comprising a reflective side 1004 and an insulated side 1005. During times of little or no solar radiation, the reflective side can be positioned inward to reflect radiant heat back into a structure, while the insulation slows heat transfer from conduction and convection.
d discloses an embodiment of a reflective panel 1000 comprising two panes 1006 and 1007 separated by an air gap 1008. Panes 1006 and 1007 may be adapted to allow different wavelengths to pass through while reflecting other wavelengths. Thus, by rotating the panel, the different ranges of wavelengths may be more accurately controlled. The air gap may act as a thermal insulator because air may have a lower thermal conduction coefficient that the panel's panes.
e disclose a panel with opposing panes 1006, 1007, with an opaque insulator 1009 between them.
The processing element 1100 may collect data from the temperature sensitive elements, the light sensitive elements, and the position sensitive elements. This data may be processed and used to create output data. The output data may be transmitted to servo motors or linear actuators that control the rotation of the reflective panels to reflect solar energy according to the temperature, solar energy exposure, and solar energy requirements of the various solar energy applications. The duration and magnitude of the temperature and/or solar radiation be used collectively to estimate the amount of heat of solar radiation that has been absorbed in each application. In some cases, the solar applications may require an optimal amount of solar radiation, and the controller may prevent over or under solar exposure. The processing element may also compare the solar exposure received by each of the applications and adjust solar distribution based on the amount of solar radiation available and needs of the various applications.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.